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1.  Introduction 

 

A large literature exists on stochastic choice behaviour of an agent.1  This literature has 

advanced a number of rationality, or consistency, restrictions for such choice behaviour.  Perhaps the 

best known and intuitively most compelling of these restrictions is the so-called ‘regularity’ (RG) 

condition.  This simply postulates that the probability of choosing from any subset of a feasible set of 

options cannot rise if the feasible set is expanded.  Recently, in a series of papers, Bandyopadhyay, 

Dasgupta and Pattanaik (2003, 2002, 1999) have introduced a different rationality postulate for 

stochastic choice, the weak axiom of stochastic revealed preference (WASRP), and analyzed its 

implications in the context of consumers’ behaviour.2   

A priori, RG and WASRP appear to have very different focus.  While RG specifies 

consistency restrictions for choice behaviour when the feasible set is contracted or expanded, it does 

not explicitly spell out any such restriction across two feasible sets, neither of which includes the 

other.  WASRP, however, is formulated explicitly to cover such cases.  A natural question to ask, 

therefore, is: what is the relationship between these two rationality postulates, which, at first sight, 

appear to have very different focus?  Since both RG and WASRP have independent intuitive appeal, if 

it can be shown that one in fact implies the other, then the case for taking the latter seriously would be 

further strengthened.  In particular, since RG is arguably the weakest and intuitively most plausible 

rationality condition suggested in the literature, if it can be shown that even RG suffices to imply 

WASRP, at least for a large class of cases, then the justification for WASRP would be significantly 

enhanced. 

We address this issue in this paper.  We first show that WASRP necessarily implies RG, 

regardless of the domain of the stochastic choice function.  However, if the stochastic choice function 

is not defined for some subsets of the universal set of alternatives, then it can violate WASRP while 

satisfying RG.  Thus, in this sense, WASRP is stronger than RG.  We then identify a restriction on the 

domain of the stochastic choice function, under which RG turns out to be equivalent to WASRP.  This 

restriction allows the possibility that the domain of the stochastic choice function is ‘incomplete’, i.e., 

not defined for some subsets of the universal set of alternatives. A corollary of our results is that, for 

every stochastic choice function with a complete domain, WASRP and regularity are equivalent 

properties.  We proceed to show that our domain restriction is also necessary for RG to imply 

WASRP, when the universal set is finite.  Lastly, we provide a necessary and sufficient domain 

restriction under which RG and WASRP are equivalent, when the universal set is finite and stochastic 

choice functions are constrained to be degenerate.  Results in the traditional, deterministic, framework 

                                                            
1  See Barbera and Pattanaik (1986), Block and Marschak (1960), Cohen (1980), Corbin and Marley (1974), 
Falmagne (1978), Fishburn (1973, 1977, 1978), Halldin (1974), Luce (1958, 1959, 1977), Luce and Suppes 
(1965), Manski (1977), Marschak (1960), Quandt (1956), Sattath and Tversky (1976) and Yellott (1977). 
 
2  We define RG and WASRP formally in Section 2 below. 
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regarding the relation between Chernoff’s Condition (or Sen’s Condition α ) and the Weak Axiom of 

Revealed Preference follow as special cases of our general analysis. 

Section 2 sets out the basic notation and definitions.  We present our main results in Sections 

3 and 4.  Section 3 deals with the general case where stochastic choice functions may be degenerate, 

but are not constrained to be so.  Section 4 deals with the special case where the universal set of 

alternatives is assumed to be finite and stochastic choice functions are constrained to be degenerate.  

Section 5 concludes.  Proofs are relegated to the Appendix. 

 

2.  The notation and definitions 

 

Let X denote the (non-empty) universal set of alternatives, and let χ  denote the class of all 

non-empty subsets of X .  Let ℑ  be the class of all non-empty subsets of χ .  Thus, an element of ℑ  

is a non-empty class of non-empty subsets of X . 

 Definition 2.1.  Let Z ∈ℑ .  A stochastic choice function (SCF) over Z  is a function which, 

for every A Z∈ , specifies exactly one finitely additive probability measure over the class of all 

subsets of A . 

 If F  is an SCF over Z ∈ℑ  and A Z∈ , then the probability measure specified by F  for A  

will be denoted by FAp .  When there is no ambiguity about the SCF, F , we shall write simply Ap  

rather than FAp .  Given an SCF F over Z ∈ℑ  and given A Z∈ , for every subset B  of A , ( )BpA  

is to be interpreted as the probability that the agent’s choice from the set A  will lie in B .  When B  

contains exactly one element, say x, we write ( )xpA  rather than { }( )xpA .   

 Definition 2.2.  An SCF F over Z ∈ℑ  is degenerate iff, for all A Z∈ , there exists Ax∈  

such that ( ) 1Ap x = . 

 Definition 2.3.  Let Z ∈ℑ .  A deterministic choice function (DCF) over Z  is a function 

which, for every A Z∈ , specifies exactly one alternative in A . 

 Remark 2.4.  Let Z ∈ℑ .  Let F  be a degenerate SCF over Z  and f  be a DCF over Z .  

We say that F  induces f  iff, for all A Z∈ , ( ) xAf = , where ( ) 1Ap x = ; and we say that 

f induces F  iff, for all ZA∈ , ( ) 1Ap x = , where ( )Afx = .  It is clear that every degenerate SCF 

induces a DCF, which, in turn, induces the degenerate SCF under consideration.  Similarly, every 

DCF induces a degenerate SCF, which, in turn, induces the DCF under consideration.   

 Definition 2.5.  Let Z ∈ℑ .   

(i) An SCF F over Z  satisfies regularity (RG) iff, for all , ,A B C Z∈  such that C ⊆ AB ⊆ , 

( ) ( )CpCp AB ≥ . 
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(ii) A DCF f over Z  satisfies Chernoff’s Condition (CC) iff, for all ,A B Z∈  such that AB ⊆ , 

( ){ }( ) ( ){ }( )AfABfB −⊆− . 

RG is arguably the weakest rationality property of stochastic choices discussed in the 

literature.  It stipulates that, if we start with B Z∈ , and if, by adding some alternatives to B , we 

arrive at a new set A Z∈ , then the probability that the agent’s choice will lie in a subset C  of B  

cannot increase when we pass from the feasible set B  to the feasible set A .  CC, first introduced by 

Chernoff (1954), and later discussed by Sen (1969), who called it α , requires that an alternative that 

is rejected in a set B  cannot be chosen, when the set B  is expanded by adding new alternatives.   

 Remark 2.6.  It is clear that a degenerate SCF F  satisfies RG iff the DCF induced by F  

satisfies CC, and, conversely, a DCF f  satisfies CC iff the degenerate SCF induced by f  satisfies 

RG. 

 Definition 2.7.  Let Z ∈ℑ . 

(i)   An SCF F  over Z  satisfies the weak axiom of stochastic revealed preference (WASRP) iff, 

for all ,A B Z∈ ,  

 ( ) ( ) ( )BApCpCp AAB −≤−  for all BAC ∩⊆ .                                                           (2.1) 

(ii) A DCF f over Z  satisfies the weak axiom of revealed preference (WARP) iff, for all 

,A B Z∈ , and, for all distinct Xyx ∈, , if BAyx ∩∈,  and ( ) xAf = , then ( ) yBf ≠ . 

WARP, introduced by Samuelson in the context of competitive consumers’ choices,3 and 

reformulated by Houthakker (1950) for our general choice context, is a very familiar property of 

DCFs and hardly needs any explanation.  WASRP was introduced by Bandyopadhyay, Dasgupta and 

Pattanaik (1999).  The intuition behind WASRP is as follows.  Suppose, initially, A  is the set of all 

available alternatives, and AC ⊆ .  Then ( )CpA  is the probability that the agent’s choice from A  

lies in C .  Now suppose that the set of available alternatives changes to B , but BC ⊆ .  If, at all, the 

new choice probability, ( )CpB , for C  is greater than ( )CpA , then this increase must be due to the 

fact that the alternatives in C face ‘less competition’ to the extent that the alternatives in A - B  are no 

longer available.  Hence ( ) ( )CpCp AB −  must not be greater than the choice probability for A B− , 

( )BApA − , in the initial situation. 

Remark 2.8.  A degenerate SCF F  satisfies WASRP iff the DCF induced by F  satisfies 

WARP.  Conversely, a DCF f  satisfies WARP iff the degenerate SCF induced by f  satisfies 

WASRP. 

Definition 2.9.  An SCF is said to have a complete domain iff its domain is χ .  An SCF has  

an incomplete domain iff its domain is a proper subset of χ .  Similarly, we have notions of complete 

                                                            
3  See, for example, Samuelson (1948). 
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and incomplete domains for DCFs. 

 

3.  The relation between RG and WASRP: the general case 

 

We are now ready to explore the relation between RG and WASRP.  We first show that 

WASRP implies RG. 

 Proposition 3.1.  An SCF satisfying WASRP must satisfy RG. 

 Proof: See the Appendix. 

 In light of Remarks 2.6 and 2.8, it is clear that Proposition 3.1 yields the familiar result that 

WARP implies CC.  The following example shows that an SCF satisfying RG does not necessarily 

satisfy WASRP.  Since WASRP was first formulated for stochastic choices of a competitive 

consumer, we have constructed our counter-example in terms of a competitive consumer’s choice. 

 Example 3.2.  Consider a competitive consumer in an economy with exactly two goods.  We 

specify a DCF for the consumer that satisfies CC but violates WARP (by Remarks 2.6 and 2.8, the 

SCF induced by this DCF will satisfy RG but violate WASRP).  Assume that the domain of the DCF 

is the set of all ‘budget triangles’ in 2
+ℜ .  Let 1x  and 2x  denote the quantities of the two goods, 1 and 

2, and let 1r  and 2r  be their respective prices.  Consider Figure 1.  The DCF of the consumer is 

specified as follows.  If 1 2r r≤ , then the chosen consumption bundle is given by the intersection of the 

budget frontier and the ray og through the origin.  If 1 2r r> , then the chosen consumption bundle is 

given by the intersection of the budget frontier and the ray og'.  It can be checked that this DCF 

satisfies CC.  However, it violates WARP: for example, x is chosen from the budget triangle oab, 

while x' is chosen from the budget triangle oa'b'.   

                  Insert Figure 1 

   

 Since, in general, RG does not imply WASRP, the question now arises as to whether one can 

formulate necessary and sufficient conditions, in terms of restrictions on the domains of SCFs, for RG 

to imply WASRP.  Our notions of sufficiency and necessity in this context are as follows. 

(1) A sufficient condition (in terms of domain restrictions) for RG to imply WASRP specifies 

a non-empty subclass 'ℑ of ℑ , such that, for all 'Z ∈ℑ , if an SCF has Z  for its domain 

and satisfies RG, then it must satisfy WASRP. 

(2) A necessary condition (in terms of domain restrictions) for RG to imply WASRP 

specifies a proper subclass "ℑ of ℑ , such that, for every "Z ∈ℑ−ℑ , there exists an 

SCF with Z for its domain, which satisfies RG but violates WASRP.  

Proposition 3.4 below establishes a sufficient condition for RG to imply WASRP. 



 5

Notation 3.3.  Let *ℑ  be the set of all Z ∈ℑ  such that, for all ,A B Z∈ , at least one of the 

following two conditions holds: 

1≤BA∩ ;          (3.1)                                      

there exist ', 'A B Z∈  such that 'A A⊆ , 'B B⊆ , 'A 'B A B=∩ ∩ , and 

 [( 'A ')B Z∈∩ or ( 'A ')B Z∈∪ ].      (3.2)                                       

 We now show that *ℑ  constitutes a sufficient condition for RG to imply WASRP. 

 Proposition 3.4.  Let Z ∗∈ℑ .  Then every SCF with domain Z  that satisfies RG must satisfy 

WASRP. 

 Proof: See the Appendix. 

 Propositions 3.1 and 3.4 immediately yield the following. 

 Corollary 3.5.  Let Z ∗∈ℑ , and let F be any SCF with domain Z .  F satisfies RG if, and 

only if it satisfies WASRP. 

 Since *χ ∈ℑ , Corollary 3.5 implies the following. 

 Corollary 3.6.  An SCF with a complete domain satisfies RG if and only if it satisfies WASRP. 

Remark 3.7. Note that *ℑ  contains many elements of ℑ , other than χ .  Therefore, by 

Corollary 3.5, it follows that RG can be equivalent to WASRP even for SCFs defined over incomplete 

domains. 

Remark 3.8.  By Corollary 3.6 and Remarks 2.6 and 2.8, it follows that a DCF with a 

complete domain satisfies WARP iff it satisfies CC, a fact known in the literature on DCFs.4 

Remark 3.9.  Proposition 3.4 naturally raises the question whether *ℑ also constitutes a 

necessary condition for RG to imply WASRP, i.e., whether for every *Z ∈ℑ−ℑ , there exists an SCF 

with domain Z , which satisfies RG but violates WASRP.  We have not been able to resolve this 

problem for the case where the universal set of alternatives is infinite.  However, *ℑ does turn out to 

be a necessary condition for RG to imply WASRP when the universal set of alternatives is finite. 

Proposition 3.10.  Let X be a finite set.  Then, for all *ℑ−ℑ∈Z , there exists an SCF with 

domain Z , which satisfies RG but violates WASRP. 

  Proof: See the Appendix. 

 Remark 3.11.  By Propositions 3.4 and 3.10, it follows that, if X is a finite set, then *ℑ  

constitutes a necessary and sufficient condition for RG to imply WASRP. 

 

 

 

                                                            
4  See, for example, Sen (1969) and Kreps (1988, pp. 13-14). 
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4. Finite X  and degenerate SCFs 

 

We now consider the special case where, not only is X  assumed to be finite, but SCFs are 

also constrained to be degenerate.  Since this case corresponds to the problem of the relationship 

between CC and WARP in the traditional, deterministic, framework, it is of considerable interest.   

Note that Proposition 3.4 allows SCFs to be degenerate as well as non-degenerate.  Therefore, 

by Proposition 3.4, for every *ℑ∈Z , every degenerate SCF with domain Z , which satisfies RG, 

must satisfy WASRP.  However, as the following example shows, it is not true that, for every 
*ℑ−ℑ∈Z , one can construct a degenerate SCF with domain Z , which satisfies RG but violates 

WASRP. 

 Example 4.1. Let { , , , , }, { , , , }, { , , , },X a b c d e A a c d e B b c d e= = =  

{ }dcC ,1 = , { }edC ,2 = , 3 { , }C e c= , and 1 2 3{ , , , , }Z A B C C C= .  The reader can easily check that 

*ℑ−ℑ∈Z , yet it is not possible to construct a degenerate SCF with domain Z , which satisfies RG 

but violates WASRP. 

 We now introduce a restriction on the domain that turns out to be both necessary and 

sufficient for RG to imply WASRP, when X is finite and F is assumed to be degenerate. 

 Notation 4.2.  Let ℑ  be the set of all Z ∈ℑ , such that, for all ,A B Z∈ , we have (3.1) or 

(4.1) or (4.2) below: 

 ZBA ∈∪ ;                                                                                                                          (4.1) 

for all distinct , ,x y A B∈ ∩  [for some ', 'A B Z∈ ,{ , } ' ,{ , } ' ,x y A A x y B B⊆ ⊆ ⊆ ⊆  and 

( ) ( )BABA ∪∪ ⊂′′ ].                                                                                                         (4.2) 

 Remark 4.3.  It is evident that ℑ⊆ℑ* .  However, it is not true in general that *ℑ⊆ℑ : Z , 

as specified in Example 4.1, belongs to ℑ , but it does not belong to *ℑ . 

Proposition 4.4.  Let X be a finite set.  Then: 

(i)  for every Z ∈ℑ ,  and, for every degenerate SCF F with domain Z , if F satisfies RG, then F 

satisfies WASRP; 

(ii)  for all Z∈ℑ−ℑ , there exists a degenerate  SCF with domain Z , which satisfies RG but violates 

WASRP. 

 Proof: See the Appendix. 

 By Remark 2.8, the following result follows immediately from Proposition 4.4. 

Corollary 4.5.  Let X be a finite set.  Then: 

(i)  for every Z ∈ℑ ,  and, for every DCF f with domain Z , if  f satisfies CC, then F satisfies WARP; 

(ii)  for all Z∈ℑ−ℑ , there exists a DCF with domain Z , which satisfies CC but violates WARP. 
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5.  Conclusion 

 

In this paper, we have clarified the relationship between two rationality restrictions on 

stochastic choice behaviour, viz., regularity and the weak axiom of stochastic revealed preference.  

We have shown that WASRP implies RG, though the converse is not necessarily true. Our next result 

specified a restriction on the domain of SCFs, under which RG implies WASRP, so that RG and 

WASRP turn out to be equivalent.  A corollary of this result is that, for every SCF with a complete 

domain, RG and WASRP are equivalent. For the special case where the universal set of alternatives is 

finite, we have shown that this domain restriction constitutes a necessary, as well as sufficient, 

condition for RG to imply WASRP.  We have also identified another domain restriction as both 

necessary and sufficient for RG to imply WASRP when one constrains SCFs to be degenerate, in 

addition to assuming the universal set to be finite.  This result also provides a necessary and sufficient 

condition, in the standard deterministic framework, for Chernoff’s Condition to imply WARP. 

There remains one unresolved problem: we have not been able to formulate a condition (in 

terms of domain restrictions) that is necessary as well as sufficient for RG to imply WASRP in the 

general case where the universal set of alternatives is permitted to be infinite. In particular, in this 

general case, we do not know whether for every *[ ]Z ∈ ℑ−ℑ , there exists an SCF with domain Z , 

which satisfies RG but violates WASRP. 

 

Appendix 

 

Proof of Proposition 3.1.  Let F  be an SCF and let Z  be its domain.  Suppose F violates 

RG.  Then there must exist , ,A B C Z∈ such that ABC ⊆⊆  and ( ) ( )CpCp AB < .  In that case, 

( ) ( )[ ]0CpCp BA >−  and ( ) ( ) 0B Bp B A p− = ∅ =   . Then F  violates WASRP.                       ◊  

We prove Proposition 3.4 via the following lemmas. 

Lemma N.1.  Let Z ∈ℑ , and let F  be an SCF with domain Z .  For all ,A B Z∈ , if 

A B =∅∩   or A B∩  is a singleton, then (2.1) holds. 

 Proof of Lemma N.1.  Let ,A B Z∈  and suppose either A B =∅∩  or BA∩  is a 

singleton.  Let BAC ∩⊆ .  Then either C = ∅  or BAC ∩= .  If  C = ∅ , then 

( ) ( ) ( ) 0CpCpBAp ABA =−≥− .  If  BAC ∩= , then ( ) ( ) ( )Cp1BApCp BAA ≥=−+ .  

Thus, if C =∅  or BAC ∩= , then (2.1) holds.                                                                                 ◊  

 Lemma N.2.  Let  Z ∈ℑ , and let F  be an SCF with domain Z  that satisfies RG.  Let 

,A B Z∈  be such that ( )A B Z∈∩  or ( )A B Z∈∪ .  Then, (2.1) holds. 
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Proof of Lemma N.2.  Suppose, for some BAC ∩⊆ , ( ) ( ) ( ).B A Ap C p C p A B− > −  Then 

 ( ) ( ) ( )BApCpCp AAB −+> .                                                                                          (A1)   

We shall show that (A1) leads to a contradiction, given our assumptions.  First, consider the case 

where ( )A B Z∈∩ .  In this case, by RG,  

 ( ) ( )CpCp BBA ≥∩ ,                                                                                                           (A2)   

and 

 ( )( ) ( )( )CBApCBAp ABA −≥− ∩∩∩ .                                                                         (A3)    

By (A1-A3), we get ( ) ( )( ) 1A B A Bp C p A B C + − > ∩ ∩ ∩ , a contradiction. 

 Next, consider the case where ( )A B Z∈∪ .  In this case, by RG,  

 ( ) ( )ABpABp BAB −≥− ∪ ,                                                                                              (A4)     

 ( )( ) ( )( )CBApCBAp BAB −≥− ∩∩ ∪ ,                                                                         (A5)   

and 

 ( ) ( ) ( ) ( )BApCpBApCp BABAAA −+≥−+ ∪∪ .                                                         (A6)      

By (A1) and (A6), 

 ( ) ( ) ( )BApCpCp BABAB −+> ∪∪ .                                                                               (A7)    

By (A4), (A5) and (A7), ( ) ( ) 1B A Bp B p A B> =∪ ∪ , which is a contradiction.                     ◊  

 Lemma N.3.  Let Z ∈ℑ  and let F  be an SCF with domain Z  that satisfies RG.  Let  

, ,A B ,A B Z′ ′∈  be such that AA ⊆′ , BB ⊆′ , and BABA ′′= ∩∩ . Then, for all 

' 'C A B A B⊆ =∩ ∩ , ' ' '[ ( ) ( ) ( ' ')]A B Ap C p C p A B− ≤ −  implies [ ( ) ( ) ( )BApCpCp AAB −≤− ]. 

 Proof of Lemma N.3.  Let , , ', 'A B A B Z∈  be such that AA ⊆′ , BB ⊆′  and 

BABA ′′= ∩∩ .  Let BABAC ′′=⊆ ∩∩  and let ' ' '[ ( ) ( ) ( ' ')]A B Ap C p C p A B− ≤ − .   

By RG, noting AA ⊆′ , 

 ( )( ) ( )( ) 0CBApCBAp AA ≥−−−′ ∩∩ .                                                                       (A8) 

Note that: 

( ) ( )( ) ( ) ( ) ( )( ) ( )1A A A A A Ap C p A B C p A B p C p A B C p A B′ ′ ′ ′ ′+ − + − = = + − + −∩ ∩ .  Hence,  

( ) ( ) ( )( ) ( )( ) ( ) ( )BApCpCBApCBApBApCp AAAAAA ′−′++−−−≥−+ ′′′ ∩∩ .          (A9) 

By (A8) and (A9),  

 ( ) ( ) ( ) ( )BApCpBApCp AAAA ′−′+≥−+ ′′ .                                                             (A10) 

By assumption, 

 ( ) ( ) ( )BApCpCp AAB ′−′≤− ′′′ .                                                                                 (A.11)   
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From (A10) and (A11), 

 ( ) ( ) ( )CpBApCp BAA ′≥−+ . 

Noting that, by RG, ( ) ( )CpCp BB ≥′ , it follows that ( ) ( ) ( )A B Ap A B p C p C− ≥ − .      ◊  

Proof of Proposition 3.4.  Let F  be an SCF with domain Z ∗∈ℑ , and let F  satisfy RG.  

Let ,A B Z∈  and let BAC ∩⊆ .  We show that: ( ) ( ) ( )BApCpCp AAB −≤− .                           

Since *Z ∈ℑ , either (3.1) holds or (3.2) holds.  If (3.1) holds, the claim follows immediately from 

Lemma N.1.  If (3.2) holds, then consider ,A B Z′ ′∈  as specified by (3.2).  By Lemma N.2, [for all 

BAD ′′⊆ ∩ , ( ) ( ) ( )BApDpDp AAB ′−′≤− ′′′ ].  Then the claim follows by Lemma N.3.           ◊  

To prove Proposition 3.10, we first introduce a new notation and prove a lemma.  

Notation N.4.  Let ℑ̂  be the set of all ℑ∈Z  such that, for all ZBA ∈, , at least one of (3.1) 

and the following two conditions holds: 

ZBA ∈∪ ;                                                                                                                        (A.12) 

there exist ,, ZBA ∈′′  such that ( ' ')A B =∩ ( )A B∩ , A A′ ⊆ , B B′ ⊆ , and 

( ) ( )BABA ∪∪ ⊂′′ .                                                                                                        (A.13) 

Lemma N.5. Let X be a finite set.  Then, ℑ=ℑ ˆ* . 

 Proof of Lemma N.5.  Given the definitions of *ℑ  and ℑ̂  (see Notations 3.3 and N.4), it is 

evident that ℑ⊆ℑ ˆ* .  Hence, to establish Lemma N.5, we need to show that *ˆ ℑ⊆ℑ for finite X. 

 Let ℑ∈ ˆZ . Suppose *ℑ∉Z .  Then there exist ,A B Z∈ , such that neither (3.1) nor (3.2) is 

satisfied.  Consider such A  and B .  Let IBA =∩ .  

 Since (3.2) is violated, (A.12) cannot hold.  Given that neither (3.1) nor (A.12) holds, as 

ℑ∈ ˆZ  by assumption, (A.13) must hold.  Then 

there exist ,, 11 ZBA ∈  such that 1 1 ,A B I=∩ 1A A⊆ , 1B B⊆ , and 

( ) ( )BABA ∪∪ ⊂11 .                       (A.14) 

Since ( ' ') ,A B I=∩ noting the violation of (3.1), 1 1 2A B ≥∩ .  Further, since (3.2) is violated by 

assumption, ZBA ∉11 ∪ .  Hence, as ℑ∈ ˆZ , there exist ZBA ∈22 , , such that 

2 2 1 1 2 1,A B A B I A A= = ⊆∩ ∩ , 2 1B B⊆ , and ( ) ( )1122 BABA ∪∪ ⊂ .       

 Proceeding in this fashion, we get the following: 

there exists an infinite sequence of ordered pairs ,i iA B , {0,1,2,...},i∈  such that 

BABA ,, 00 = , and, for all { }0,1,2,... ,i∈ [ ZBA ii ∈, , 

 and ( )iiii BABA ∪∪ ⊂++ )( 11 ].                                                (A.15) 
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(A.15) contradicts the assumption that X is finite.                                                                                 ◊  

Proof of Proposition 3.10.   

Suppose ˆ .Z ∈ℑ−ℑ  We shall construct an SCF defined over Z , which satisfies RG but 

violates WASRP.  In light of Lemma N.5, this will suffice to establish Proposition 3.10. 

Since Z ∈ℑ−ℑ� , there exist ,A B Z∈  such that each of (3.1), (A.12) and (A.13) is violated.  

Consider such A and B .  Consider the following subsets of Z . 

( ){ }φ≠−−∈= BAXEZEZ ∩:1 ; 

( ) ( ){ }ABBAEZEZ −−⊆∈= ∪:2  

( ){ }AEBAZEZ ⊆⊂∈= ∩:3 ; 

( ){ }BEBAZEZ ⊆⊂∈= ∩:4 ; 

( ){ }φφ ≠−≠−⊂⊂∈= BEAEBAEBAZEZ ;&);(:5 ∪∩ ; 

( ) ( ){ }BAEBABAEZEZ ∪∩∩∩ ⊂⊂≠∈= ;:6 φ . 

It can be checked that these six subsets of Z  are pairwise disjoint.  Furthermore, since violations of 

(A.12) and (A.13), imply, respectively, that ZBA ∉)( ∪  and ( ) ZBA ∉∩ , it can be seen that the 

union of all of them is Z .  Also, since (A.13) is violated,  

3 { }Z A=  and 4 { }Z B= .                (A.16) 

Further, by the specification of 5Z ,  

for all 5E Z∈ , [if A E⊆ , then not ( B E⊆ )] and [if B E⊆ , then not ( A E⊆ )].       (A.17) 

Since neither (3.1) nor (A.12) holds, 2A B ≥∩ , A B− ≠ ∅ , and B A− ≠ ∅ . Let 

{ } { }1 1,..., ,...,u vA a a c c= ∪ and { } { }1 1,..., ,...,w vB b b c c= ∪ , where  1 1 1,..., , ,..., , ,...,u w va a b b c c  are 

all distinct, , 1u w ≥ , and 2v ≥ . Let G  be a linear ordering over ( )X A B− ∩ .   

Specify an SCF with domain Z as follows. For all 1E Z∈ , ( ) 1Ep x = , where x  is the G-

greatest element in ( )[ ]BAXE ∪∩ − . For all 2E Z∈ , ( ) 1Ep x = , where x is the G-greatest 

element in E.   ( ) 1
1A jp c

v
=

−
 for all { }1,3,...,j v∈ ; and ( ) 1

1B kp c
v

=
−

 for all { }2,...,k v∈  

(recall (A.16)). For every 5ZE ∈ , [ if A E⊆ , then we have ( ) 1
1E kp c

v
=

−
 for all { }1,3,...,k v∈ ] 

and [if not( A E⊆ ), then ( ) 1
1E kp c

v
=

−
 for all { }2,...,k v∈ ] (recall (A.17)).  Finally, for all 

6ZE ∈ , ( ) 1
Ep y

m
=  for all ( )y E A B∈ ∩ ∩ , where BAEm ∩∩= .  
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Given that none of (3.1), (A.12) and (A.13) hold, and noting (A.16) and (A.17), it can be 

checked that the SCF as specified above satisfies RG.  However, the SCF violates WASRP since 

2 2( ) 0, ( ) 0,A Bp v p v= >  and ( ) 0.Ap A B− =                                                                                       ◊  

Proof of Proposition 4.4. 

(i)  Let X be a finite set and let Z ∈ℑ .  Let F  be a degenerate SCF with domain Z , which  

satisfies RG and violates WASRP.  We first establish the following claim: 

for all distinct ,x y X∈  and all ,D E Z∈ , if [{ , }x y D E⊆ ∩  and ( ) 1Dp x =  and 

( ) 1Ep y = ], then there exist ', 'D E Z∈ , such that 

[ ' , ' ,{ , } ' ', ' 'D D E E x y D E D E D E⊆ ⊆ ⊆ ⊂∩ ∪ ∪ , and '( ( ) 1Dp x =  and ' ( ) 1Ep y = )].       (A.18) 

Suppose there exist ,D E Z∈ and distinct ,x y X∈  such that [{ , }x y D E⊆ ∩  and 

( ) 1Dp x =  and ( ) 1Ep y = ].  Then, since F satisfies RG, by Lemma N.2, we have ( ) ZED ∉∪ .  

Since ℑ∈Z , it follows that there exist ZED ∈′′,  such that { } DDyx ⊆′⊆, , { } EEyx ⊆′⊆, , 

and ( )EDED ∪∪ ⊂′′ )( .  (A.18) follows by RG. 

Notice now that, since the degenerate SCF F  violates WASRP,  

there exist ,A B Z∈  and distinct ,x y A B∈ ∩ , such that ( ) 1Ap x =  and ( ) 1.Bp y =    (A.19) 

By (A.18) and (A.19), we have an infinite sequence of ordered pairs, 1 1 2 2( , ), ( , ),...A B A B , such that 

1 1( , ) ( , )A B A B=  and, for every positive integer {1, 2,...}i∈ , 1 1( ) ( )i i i iA B A B+ + ⊂∪ ∪ .  However, 

this contradicts our assumption that X is a finite set.  This completes the proof of Proposition 4.4 (i). 

(ii)  Let Z ∈ℑ−ℑ .  We shall construct a degenerate SCF F  with domain Z  such that F  

satisfies RG but violates WASRP.  Since Z ∈ℑ−ℑ , there exist ,A B Z∈ such that each of (3.1), 

(4.1), and (4.2) are violated, so that  

2A B ≥∩  and A B Z∉∪                 (A.20) 

and  

for some distinct ,x y A B∈ ∩ , and for all ', 'A B Z∈ , if { , } 'x y A A⊆ ⊆  and 

{ , } 'x y B B⊆ ⊆ , then 'A A=  and ' .B B=               (A.21) 

Consider the following subsets of Z : 

( ){ }φ≠−−∈= BAXEZEZ ∩:1 ; 

{ }( ) { }( ){ }yxByxAEZEZ ,,:2 −−⊆∈= ∪  

{ }{ }AEyxZEZ ⊆⊂∈= ,:3 ; 

{ }{ }BEyxZEZ ⊆⊂∈= ,:4 ; 

{ }{ }φφ ≠−≠−⊂⊂∈= BEAEBAEyxZEZ ;&;,:5 ∪ ; 
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{ }( ) { }{ }BAEyxyxEZEZ ∪∩ ⊂⊂≠∈= ;,,:6 φ . 

It follows from (A21) that these six subsets of Z  are pairwise disjoint.  Since (A.20) and 

(A.21) yield A B Z∉∪  and { } Zyx ∉, , the union of all of them is Z .  Further, by (A.21),  

3 { }Z A=  and 4 { }.Z B=                   (A.22)  

Let G  be a linear ordering over { , }X x y− .  Construct a degenerate SCF F , with domain 

Z , as follows. For all 1E Z∈ , ( ) 1Ep z = , where z  is the G-greatest element in ( )[ ]BAXE ∪∩ − . 

For all 2E Z∈ , ( ) 1Ep z = , where z is the G-greatest element in E. ( ) 1Ap x = ; and ( ) 1Bp y =  

(recall (A.22)). For every 5ZE ∈ , [if A E⊆ , then we have ( ) 1Ep x = ] and [if not ( A E⊆ ), then 

( ) 1Ep y = ].  Finally, for all 6 ,E Z∈ [if { , } { }E x y x=∩ , then ( ) 1Ep x = ], and [if 

{ , } { }E x y y=∩ , then ( ) 1=ypE ]. 

 It can be checked that F satisfies RG but violates WASRP.                                            ◊  
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