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Abstract

This paper provides an analytical framework for exploring the relationship
between equity and efficiency for two riparians sharing a transboundary river.
Decreasing marginal productivities of water make a noncooperative approach in-
efficient when water is scarce. If the upstream riparian uses its optimal quantity
the downstream riparian suffers disproportionately. The undesirable properties
can be avoided by means of a cooperative agreement in which the two riparians
share the water equally. Equal quota is at least as efficient as noncooperation
when riparians are identical or when the downstream riparian is relatively cost-
effective and generates a cooperative surplus when water is sufficiently scarce.
The equity-efficiency trade-off is found to be insignificant, in magnitude as well
as prevalence, limited to the case where the downstream riparian has a high
relative cost disadvantage and water is very scarce.
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1. Introduction
River basins shared by two or more riparians constitute an important class

of regional public goods or open access resources that are nonexcludable but
rival in consumption. There are close to 261 international river basins in the
world, covering almost half of the total land surface of the globe (Wolf, 1999).
The quality and quantity of freshwater is increasingly under pressure mainly
because of economic development and population pressures.

Transboundary rivers can elicit either cooperation or conflict depending on
the perceptions of their relative benefits (Sadoff and Grey, 2002). A recent
empirical study suggests that cooperation over shared water is relatively more
common than conflict (Wolf, Yoffe and Giordano, 2003). Nevertheless, water
has indeed been a cause of political tensions between the Arabs and Israelis;
Indians and Bangladeshis; Americans and Mexicans; and all ten riparian states
of the Nile River. At the heart of regional water disputes is the lack of interna-
tionally accepted criteria for sharing water resources between riparians (Wolf,
1999). The identification of suitable equity criteria is essentially a political
question, but economists can add value to the debate by analysing the effi-
ciency implications of the various criteria. Indeed, if economic analysis is to
make an important contribution to policy formulation in transboundary wa-
ter cooperation it must give due attention to distributive issues in addition to
its traditional focus on efficiency (Just, Frisvold, Harrison, Oppenheimer and
Zilbeman, 1998). The purpose of this paper is therefore to present a theoreti-
cal framework within which the equity-efficiency relationship on transboundary
rivers can be explored further.

Several authors emphasise the intrinsic and instrumental importance of ‘rea-
sonable and equitable use’ of transboundary rivers (Barrett 1994; Sadoff et. al.
2002; Wolf 1996, 1999; Wolf and Dinar 1994). These papers take a discursive
approach by presenting and contrasting the vague, numerous and sometimes
contradictory principles of international law. The most comprehensive treat-
ment is given by Wolf (1999) who compares international practice with legal
principles in an analysis of the 145 existing treaties on international freshwa-
ter resources. Wolf observes a general shift in negotiations over time away
from rights-based (i.e. absolute territorial sovereignty or unlimited territorial
integrity2) towards needs-based criteria (i.e. for agricultural production).

There are relatively few contributions in the economics literature on efficient
water sharing agreements among countries within an international river basin.
Efficiency is typically approached either via market solutions (e.g. Kilgour and
Dinar 1995, 2001), or via cooperation in the form of joint development projects
(e.g. Rogers 1997). Kilgour and Dinar identify Pareto-optimal allocations for
every possible flow volume in a river, but they do not directly address questions

2The doctrine of absolute territorial sovereignty gives a country the right over the man-
agement of waters within its territory. In comparison, the doctrine of unlimited territorial
integrity gives a country the right of uninterupted water flow upstream of its territory.
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of equity. Dinar and Wolf (1994) find that a welfare-enhancing market scheme
for the Middle East is theoretically feasible under certain conditions, but ac-
knowledge that political objections are likely to occur. This is partly due to
unbalanced allocations of the regional gains, most of which would benefit Israel.

The joint development approach lends itself directly to equity analysis be-
cause an agreement between the riparians must be reached on which projects to
pursue and how to distribute their benefits and costs. Several authors take the
view that the objectives of equity and efficiency are inseparable and potentially
at odds with each other. One example is Rogers (1997) who applies Bau-
mol’s (1986) concept of Superfairness (an extended theory of non-envy). He
demonstrates how the simultaneous pursuance of the two objectives can lead to
situations where one riparian might prefer a Pareto-inferior project solution to
one which is Pareto optimal, even though this would give it (and other riparians)
a lower net benefit. The potential problem with some Pareto-optimal alloca-
tions, according to Rogers, is that they might induce envy between the parties,
for instance regarding the geographical location of infrastructure investments.
The policy implication is that of a second-best solution where the development
of the river basin is planned under the restriction of non-envy. A related point is
found in Sadoff et. al. (2002) who criticise the conventional economic argument
that, first, aggregate benefits to society should be maximised, and thereafter
issues of distribution can be addressed. Redistribution of economic gains, espe-
cially over international borders, is extremely complex in reality and there are
few successful precedents anywhere in the world, argue the authors. The ab-
sence of side payments implies a recommendation of second-best policies which
do not necessarily maximise social welfare, but lead to equitable agreements,
acceptable to all parties.

Finally, a few authors apply cooperative game theory to identify fair and
efficient water allocations in river sharing problems involving more than two
countries. Barrett (1994a) analyses how two different rights-based doctrines
(territorial sovereignty vs. territorial integrity) would affect the set of core al-
locations in problems with three riparians. The Shapley value is also invoked,
although primarily as a means to select a unique, stable and efficient alloca-
tion rather than as a means to achieve equity. Ambec and Sprumont (2002)
analyse a model of n identical riparians who have quasi-linear preferences over
water and money (thus allowing for side payments). They identify exactly one
welfare distribution in the core, and this fair and efficient outcome represents
a compromise between the two conflicting doctrines analysed by Barrett. The
authors apply Moulin’s (1990) fairness axiom for negative group externalities,
which essentially implies that since ‘no particular agent bears the distinguished
responsibility for these externalities, it is a natural to ask that everyone takes
up a share of them: no one ends above his aspiration welfare.’ (Ambec and
Sprumont, 2002).

In summary, the existing literature on transboundary rivers presents several
different views on how the objectives of equity and efficiency interrelate. These
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differences are partly due to the interpretation of water as an economic good,
and partly due to alternative ways of defining equity. The market approach
interprets water as a private good with clearly defined property rights. Guided
by second welfare theorem and the Coase theorem, this approach emphasises
separability and the corresponding policy implication of ‘efficiency first - equity
afterwards’. In the joint development approach, water is perceived primarily as
a public good with undefined property rights and this leads to the conclusion of
inseparability of objectives. Trade-offs may occur if equity is defined as ‘non-
envy’ or ‘agreement acceptability’, but the possibility of objective compatibility
also exists if an appropriate measure of equity can be identified within the core.

The present paper represents an alternative, and hitherto ignored, possibil-
ity of separable compatibility where the introduction of equity considerations
potentially leads to efficiency gains. We perceive water as a public good with a
priori undefined property rights and allow for the possibility of side payments.
Our interpretation of equity as ‘equal sharing of the waters’ is consistent with
several prominent theories of distributive justice. The remainder of the paper
is organised as follows: Section 2 presents the model. Section 3 presents the
results. Section 4 draws policy implications. Finally, section 5 concludes.

2. The Model
An upstream and a downstream riparian share a transboundary river with

an average annual flow of Q > 0 units of water originating entirely within
the former3. Sharing takes place when the upstream riparian does not use
the entire volume, instead passing some of it on to the downstream neighbor.
Any unused water is eventually discharged into the sea4. Each riparian uses
water qi ≥ 0 (i = u, d) for irrigation to produce an agricultural output yi ≥ 0
which may be thought of as rice or cotton5. The agricultural output is sold at
competitive world markets that both riparians are too small to influence, thus
pi = p. Riparians are described in terms of an agricultural production function
exhibiting diminishing returns to scale yi = yi(qi) where yi(0) = 0,

∂yi
∂qi

> 0 and
∂2yi
∂q2i

< 0. Each riparian incurs a constant unit cost of using water: c(qi) = ciqi6 .

Thus, riparian profit is defined as πi = pyi(qi)− ciqi.

3 In addition to its analytical simplicity, a two-country model is an empirically im-
portant case study relevant to two-thirds of the existing 261 river basins in the world
(www.transboundarywaters.orst.edu).

4A common approach to modelling this situation is to represent riparians with water de-
mand functions and let them exchange water on a market (see Kilgour and Dinar, 1995). This
paper takes an alternative approach by giving the water market a less explicit treatment.

5A majority of global freshwater is used by the agricultural sector (Gleick et. al., 2002).
Around 40 percent of global food crop production originates from irrigated agriculture (Mer-
rett, 2003).

6A more general specification with increasing unit costs introduces uneccessary complica-
tions without yielding any further insights.
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2.1 Non-cooperative equilibrium
Riparian i chooses an optimal level of water input q∗i to maximise profit πi

subject to a water availability constraint qi, where qu = Q and qd = Q − q∗u.
The upstream riparian chooses q∗u first thereby affecting the constraint of the
downstream riparian qd

7 . The optimisation problem of riparian i is:

max
qi

{πi = pyi(qi)− ciqi | qi ≤ qi}, i = (u, d) (1)

which yields the necessary and sufficient Kuhn-Tucker first-order conditions:

py0i(q
∗
i )− ci ≥ 0, q∗i ≤ qi, (2)

(py0i(q
∗
i )− ci) (qi − q∗i ) = 0 (3)

At an interior solution for optimal water we get q∗i = y
0−1
³
ci
p

´
. To simplify

let p = 1 and get q∗i = y0−1 (ci) ≡ g(ci) where g (·) > 0, g0 (·) < 0, g00 (·) >
0. Since we are only interested in relative unit costs, we normalise the cost
differential by assuming cu = 1 and cd = c. Thus, for c > 1 the upstream
riparian has the relative cost advantage, while the opposite is the case for c <
1. Table 1 gives an overview of the noncooperative solution for the three
possible scenarios NH , NM and NL8. In scenario NH water is abundant and
the riparians coexist peacefully without any need for cooperation. To some
extent, this reflects the historical situation in many river basins decades ago.
In scenarios NM and NL water is scarce relative to demand and this introduces a
conflict of interest which most riparians are familiar with today. In this model,
the upstream riparian imposes a negative unidirectional externality upon the
downstream riparian by preventing the latter from reaching an unconstrained,
profit maximising water input level (see also Mäler, 1990)9. In scenario NL
water is so scarce that the upstream riparian leaves a volume insufficient for
the downstream riparian to engage in any agricultural irrigation10. Table 2
presents a more precise definition of the three noncooperative scenarios as sets
in (c,Q)-space.

7Note that the geographical reality of who is upstream and downstream is sometimes
secondary to the strategic reality of who moves first (or has done so historically). Consider
the River Nile, for instance, where the downstream riparian and hegemon Egypt was first to
develop its water infrastructure, to the regret of many latecomers upstream.

8We adopt the following labelling convention: N stands for Noncooperation and the sub-
script refers to the water level (High, Medium or Low).

9Note that the externality enters in the optimisation constraint rather than the objective
function.
10Zero input refers to a situation where irrigation is commercially nonviable - not necessarily

to one where the downstream river is dried out.
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Table 1. Noncooperative equilibria
NH NM NL

q∗u g(1) g(1) Q
q∗d g(c) Q− g(1) 0
π∗u y (g(1))− g(1) y (g(1))− g(1) y

¡
Q
¢−Q

π∗d y (g(c))− cg(c) y
¡
Q− g(1)¢− c ¡Q− g(1)¢ 0

Table 2. Definition of noncooperative scenarios
NH =

©
c > 0 | g(1) + g(c) ≤ Qª

NM =
©
c > 0 | g(1) < Q < g(1) + g(c)ª

NL =
©
c > 0 | 0 < Q ≤ g(1)ª

Figure 1 illustrates the noncooperative equilibrium for two identical ripar-
ians at different levels of water availability Q. The width of the diagram is
determined by the size of Q. The water use by the upstream riparian qu is mea-
sured from left to right and that of the downstream riparian qd in the opposite
direction. The two lines are the respective agricultural production functions.
When water is abundant both riparians can choose their unconstrained optimal
water use levels where marginal product equals marginal cost (points A and B
in panel NH). As water becomes increasingly scarce the diagram contracts. In
NM , the upstream riparian chooses an unconstrained level of water at A0, but
there is insufficient water in the basin for the downstream riparian to choose its
optimum B0, so it chooses the constrained optimum C. Finally, in NL when
water is very scarce, the upstream riparian is also constrained at D, while the
downstream riparian is forced to a situation of zero water input (E).

2.2 Pareto efficiency
There is broad agreement in the water resources management literature that

the most appropriate unit of analysis is the river basin itself rather than the
territory of any individual riparians11. Integrated river management effectively
internalises all externalities within the planning area (Sadoff et. al., 2002). A
Pareto efficient allocation is thus defined as a feasible water allocation that
maximises basinwide profit12. We can write the social planner’s problem as:

max
qu,qd

©
Π = πu + πd = y(qu)− qu + y(qd)− cqd | qu + qd ≤ Q

ª
(4)

At an interior solution the first-order conditions of the associated Lagrangian
yields ∂yu

∂qu
= 1 and ∂yd

∂qd
= c, i.e. each riparian must equalise marginal product

and marginal cost. Moreover, marginal products must also equal marginal cost
across riparians. Thus, we get the following condition for Pareto efficiency:

∂yu
∂qu

=
∂yd
∂qd

+ (1− c). (5)

11An important exception is Just and Netanyahu (1998) who favour a less ambitous man-
agement concept.
12Note that we refer to productive efficiency rather than social efficiency. The latter would

neccessitate the maximisation of a social welfare function.
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What are the efficiency properties of noncooperation? We consider here
the simple case of identical riparians. The Pareto condition then states that
marginal products must be equalised. If water is abundant (NH) then noncoop-
eration is also efficient. Basinwide profit is maximised by letting each riparian
maximise their individual profits. However, the noncooperative solution is not
efficient when water is scarce (NM and NL) because the marginal product of
the upstream riparian is lower (because its water use is higher) than for the
downstream neighbor. Basinwide profit can thus be increased by transferring
water units from the upstream to the downstream riparian until the marginal
product is equalised across riparians. We therefore have the following result:

Proposition 1 Suppose two identical riparians (one upstream and one down-
stream) share a transboundary river and there are diminishing returns to scale,
constant marginal costs and an exogenous output price. The equal quota allo-
cation is Pareto efficient.

Proof. (by contradiction). Denote riparian profit as πi = pyi(qi)− cqi, i =
(j, k), basinwide profit as Π = πj + πk and qj = qk = q as the equal quota
allocation where qj + qk ≤ Q. We must show that Π(q, q) > Π(qj , qk) (j 6= k).
Consider any allocation different from equal quota such as (eqj , eqk) where eqj > eqk
and assume that this allocation maximises Π. This proposition leads to a logical
contradiction. Because of diminishing returns to scale we have ∂yi

∂qi
> 0 and

∂2yi
∂q2i

< 0. This implies that p∂yj(eqj)∂qj
< p∂yk(eqk)∂qk

and therefore that ∂πj(eqj)
∂qj

<
∂πk(eqk)
∂qk

. Suppose that we redistribute a small quantity of water ε > 0 from j to k
so that eqj−ε > eqk+ε. This implies that πj(eqj)−πj(eqj−ε) < πk(eqk+ε)−πk(eqk).
Rearranging yields Π(eqj, eqk) < Π(eqj − ε, eqk + ε) which is a contradiction to the
statement that (eqj , eqk) maximises Π.
2.3 Equity and equal quota
The noncooperative equilibrium emerges as an undesirable solution to the

water conflict if water is scarce (NM and NL) for two reasons. First, it is
productively inefficient, i.e. it does not maximise basinwide profit. This result
was demonstrated for identical riparians in proposition 1 and will be generalised
later in the paper. Secondly, recall the tendency observed by Wolf (1999)
that international water negotiations are now focusing more on needs-based
allocations. Apart from differences in location and cost structure, our model
assumes that riparians are identical, i.e. they have the same population size,
geographical area etc. They also therefore have the same need for water for
agricultural production. This begs the question why one riparian should be
granted a larger share of the water than the other. In light of the undesirable
properties of the noncooperative solution one must identify alternative criteria
which can enhance basinwide economic efficiency and satisfy reasonable notions
of equity. In the absence of a supra-national authority, any such criteria would
need to be embodied in a cooperative agreement which the two parties sign up
to voluntarily.
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The criterion of equal quota emerges, on efficiency grounds, as a superior
alternative to noncooperation, at least if riparians are identical. Is the equal
quota allocation equitable? We shall not attempt a definitive answer to this dif-
ficult philosophical question here. Rather, we are interested in making explicit
the value judgments that are embodied in an affirmative answer. Equal quota
can be supported by adopting an appropriate theory of distributive justice13 ,
such as the egalitarian standard of equal treatment of equals14. But ‘equality of
what?’ to paraphrase Sen (1982). In practice, negotiators have had to decide
between sharing the water or sharing the benefits of the water (Wolf, 1999). We
choose water as the equity metric in this paper for the following reasons. First,
water is more easily measured in practice than benefits. Secondly, and possibly
related to the first point, equal water sharing is relatively more common in ex-
isting international agreements15. Thirdly, it is trivial to analyse the efficiency
implications of benefit sharing since the principle implies separability between
equity and efficiency. In an effective benefit sharing agreement, riparians would
aim to maximise efficiency first and distribute benefits afterwards.

Alternative theories of distributive justice, such as equality of opportunity
can also be adopted in support equal quota. Foley’s (1967) principle of no-
envy would support equal quota if water (not benefits) is accepted as the equity
metric. Even if benefits was the metric, a move from noncooperation to equal
quota would often imply more fairness, i.e. less envy. A similar argument can
be made in the case of Rawls’ (1971) Maximin Rule and the utilitarian principle
of Pareto optimality, i.e. the maximisation of basinwide profit16. On a final
note, Nozick’s (1974) Entitlement Theory would be inapplicable in this case
since it deals with the rights to private rather than public goods. In sum, by
interpreting equal quota as an equitable allocation, we implicitly subscribe to
principles of egalitarianism and equality of opportunity.

2.4 The equal quota allocation
In the remainder of this paper we focus our attention on the efficiency

properties of equal quota vis-a-vis noncooperation, particularly when unit costs
are allowed to differ. It should be emphasised, however, that the theoretical
framework presented here is sufficiently flexible to deal with a wide range of
exogenously defined sharing rules. Under equal quota each riparian choose an
optimal level of water input q∗i to maximise profit πi subject to the constraint
13See Roemer (1996) for an introduction.
14There is some empirical support for choosing an egalitarian standard as an equity principle

in water disputes. A household survey undertaken in the urban areas of Western Australia
where groundwater allocation was an ongoing salient issue found relatively strong support for
this principle (Syme et. al., 1999). However, the universality of this finding to other types of
water disputes and locations remains to be tested.
15Only 33 out of 149 international water agreements specify an explicit sharing rule. Nine

hereof use the principle ‘half of flow to each of the two’ while two agreements specify ‘equal
allocation of benefits’. All, but one, of the nine ‘equal water sharing agreements’ relate to
boundary waters with Niagara (US and Canada) being the only exception (Wolf, 1999).
16Rawls’ least advantaged riparian often benefits from equal quota. As shown later, equal

quota does sometimes (but not always) coincide with Pareto optimality.
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qi =
Q
2 . The optimisation problem of riparian i is otherwise similar to (1). We

note how the equal quota entitlement has neutralised the strategic first-mover
advantage of the upstream riparian.

An important tool of the analysis is the definition of the various scenarios.
We define nine possible scenarios for the equal quota allocation in (c,Q)-space17 .
Scenarios EHU , EHD and EHI all refer to Equal quota allocations where there
is sufficient water for both riparians to maximise profits unconstrained. Sce-
narios EMU and EMD, where one of the two riparians is constrained, differ
from each other because costs differ. The riparian with the cost advantage
will choose higher levels of input/output and will thus be the first to become
constrained under an equal quota allocation. Finally, both riparians are con-
strained in ELU , ELD, ELI and EMI (identical riparians become constrained
simultaneously). Table 3 gives an overview of the equal quota allocation and
table 4 summarises the nine definitions.

Table 3. The equal quota allocation
EHU , EHD, EHI EMU EMD ELU , ELD, ELI , EMI

q∗u g(1) Q
2 g(1) Q

2

q∗d g(c) g(c) Q
2

Q
2

π∗u y (g(1))− g(1) y
³
Q
2

´
− Q

2 y (g(1))− g(1) y
³
Q
2

´
− Q

2

π∗d y (g(c))− cg(c) y (g(c))− cg(c) y
³
Q
2

´
− cQ2 y

³
Q
2

´
− cQ2

Table 4. Equal quota definitions
EHU =

©
c > 1 | 2g(1) ≤ Qª

EMU =
©
c > 1 | 2g(c) < Q < 2g(1)ª

ELU =
©
c > 1 | 0 < Q ≤ 2g(c)ª

EHD =
©
c < 1 | 2g(c) ≤ Qª

EMD =
©
c < 1 | 2g(1) < Q < 2g(c)ª

ELD =
©
c < 1 | 0 < Q ≤ 2g(1)ª

EHI =
©
c = 1 | 2g(1) < Qª

EMI =
©
c = 1 | Q = 2g(1)ª

ELI =
©
c = 1 | 0 < Q < 2g(1)ª

2.5 Water loans
We shall make an additional assumption about the nature of possible in-

teraction between the two riparians. If one riparian has an unutilised water
quota which is in demand by the other riparian then the former can lend the
unutilised water units to the latter against a lump-sum interest payment. This
arrangement is in accordance with existing practices as discussed by Wolf (1996)
in the case of the 1959 Nile River Waters Treaty: This Treaty allocated 55.5

17We label the Equal quota scenarios as follows: Subscript U refers to a situation where
the U pstream riparian has the relative cost advantage (c > 1), D when Downstream has the
lowest cost and I when the riparians have I dentical unit cost.
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billion cubic meter (BCM) per year for Egypt and 18.5 BCM per year for Su-
dan. Since Sudan could not absorb that much water at the time, the treaty
provided for a Sudanese water loan to Egypt of up to 1.5 BCM per year through
1977. Water loans have also been made from the US to Mexico in 1966 on the
Colorado River (Wolf, 1998). According to the original treaty texts18 , Egypt
was not required to make any interest payments to Sudan, while Mexico agreed
to reimburse the United States. This difference can be explained by considering
the marginal value of water to the lending riparian (in both cases located up-
stream). Sudan could not make use of its entitlement - a fact which weakened
its bargaining position fundamentally and resulted in zero payment from Egypt.
In the Colorado River case, the US was already making productive use of its
water entitlement. Thus, when Mexico made a plea for a water loan due to a
serious drought, the US could effectively charge Mexico at market value for any
decrease in US power generation. In what follows we define a water loan in the
context of the model and highlight some of its properties.

Definition 1 Let (qj , qk) be the water entitlement of two riparians (j 6= k). Ifbqj denotes the unconstrained profit maximum of riparian j then δ = max{bqj −
qj , 0} expresses riparian j’s demand for a water loan. The supply of water loans
from k is given by σ = max{qk− q∗k, 0}. A water loan transaction is a transfer
of ∆ = min{δ,σ} units of water from riparian k to riparian j in exchange for a
lump sum interest payment i∆ ∈ [0;πj(qj +∆)− πj(qj)] determined as a result
of mutual bargaining.

Lemma 1 A water loan transaction will only take place if the water constraint
of riparian j is binding while that of riparian k is non-binding and if the ripari-
ans are non-identical. In the case of equal quota this implies that the riparians
are in scenario EMU or EMD.

Proof. Neither riparian has a demand (δ = 0) in scenarios EHU , EHD and
EHI since they are both unconstrained. In scenarios ELU , ELD and ELI both
riparians are constrained so σ = 0. In scenarios EMU and EMD one of the two
have unutilised water units which is in demand by the other and a transaction
can occur. If riparians are identical (EMI) they will both face a simultaneous
constraint so σ = 0.

Lemma 2 A water loan transaction increases basinwide profit.

Proof. Ignore the transfer payment i∆ since it does not affect the size of
basinwide profit - only its distribution. We must show that Π(qj+∆, qk−∆) >
Π(qj , qk) when ∆ > 0. If riparian k lends water to j its profit (excluding the
transfer payment) is unaffected by the transaction, hence πk(qk −∆) = πk(q

∗
k).

It is therefore sufficient to show that πj(qj + ∆) > πj(qj). If there is excess
supply then ∆ = δ = bqj − qj so πj(qj + bqj − qj) > πj(qj) which is true sincebqj > qj and ∂πj(qj)

∂qj
> 0 on the relevant interval. If there is excess demand then

18Available at http://www.transboundarywaters.orst.edu/
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∆ = σ = qk − q∗k then πj(qj + qk − q∗k) > πj(qj) which is true since qk > q
∗
k and

∂πj(qj)
∂qj

> 0 on the relevant interval.

The water loans institution is essentially a tradeable quota scheme with
upper bounds on transferable quantities. Riparians are only allowed to trade
their unutilised water entitlement but not the entire quota they already use. We
are therefore assuming that they possess enough information to realise a mutual
interest in engaging in a water loan, but that they do not have the information
necessary to realise how the total amount of water Q is most efficiently allocated
between them. The lump sum interest payment is determined on the basis of a
process of mutual bargaining not specified explicitly in the model. The marginal
value of water to the lending country and its ability to make credible threats in
terms of alternative use of the water are important determinants of the interest
payment. Finally, we note that water loans only apply to a situation where a
riparian has an unutilised quota to which it is entitled by bilateral agreement.
Notably, it does not allow the upstream riparian to hold back all the water in a
noncooperative situation and subsequently lend it to the downstream riparian
in exchange for payment.

2.6 An illustration
We conclude this section by illustrating how the equal quota allocation works

in the presence of cost differences and water loans. Consider figure 2 where
the downstream riparian has a relative cost advantage (c < 1). Both riparians

are unconstrained by the equal quota Q
2 when water is relatively abundant as

shown in panel EHD - upstream chooses A and downstream chooses B. As
water becomes more scarce (scenario EMD) the downstream riparian can no
longer choose its unconstrained optimum B0 but must initially suffice with C.
Upstream is at a sufficiently low input/output level not to be affected by the
water scarcity and chooses its optimum A0. In this situation the downstream
riparian would prefer to increase the scale of production while upstream only
uses a fraction of its entitlement. Allowing for water loans, upstream can supply
σ = Q

2 − q∗u units of water to meet downstream’s demand of δ = q∗d − Q
2 . In

this case there is excess supply on the water loans market (σ > δ) and the
two riparians efficiently transact ∆ = δ units. This enables downstream to
attain its preferred input/output level at B0 while upstream stays put. Note
that this transaction is efficiency enhancing (cf. Lemma 2) and that surplus
water remains in the basin which neither of the riparians can make productive
use of. In the third panel we consider the case where the water level Q is
further reduced (still in scenario EMD). The riparians are in a situation where
there is excess demand in the water loans market. In brief, downstream would
prefer B00, but must initially choose D and upstream chooses unconstrained at
A00. Downstream has an unmet demand of δ which is higher than the unused
quota σ of upstream. The water loan brings downstream to point E which is
lower than the preferred point B00. The final possibility is that where water is
so scarce that both riparians are constrained by their equal quota allocations
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(ELD). Both riparians must choose the point E which is inferior to their
preferred optima A000 and B000.

3. Results

3.1 Identical riparians
Proposition 1 established that the equal quota allocation is Pareto efficient

for identical riparians. Since the noncooperative equilibrium is efficient only
in NH , but inefficient when water is scarce (NM and NL) it follows that equal
quota is at least as efficient as noncooperation. (As shown later, identical
riparians implementing equal quota also generate a cooperative surplus when
water becomes scarce). To what extent does this result hold when riparians are
allowed to differ in cost? As demonstrated formally below, we find that equal
quota is at least as efficient as the noncooperative equilibrium when the down-
stream riparian has the relative cost advantage and that equal quota generates
a cooperative surplus when water is sufficiently scarce. When the upstream
riparian has the lowest unit cost, the results become less straightforward, and
will ultimately depend on the functional form of the production function.

To arrive at these results we need to consider all possible combinations of
noncooperative and equal quota scenarios. Recall the definitions of the non-
cooperative and equal quota sets in tables 2 and 4. The combination of the
two types of sets yield a number of joint sets, such as ELD ∩NM = {0 < c < 1,
g(1) < Q ≤ 2g(1)}. This reads as follows: The values of c and Q are such
that the two riparians would be in scenario NM in a noncooperative situation
(i.e. downstream is constrained) but in scenario ELD under equal quota (both
riparians constrained). As usual, subscript D refers to a situation where the
downstream riparian has the cost advantage. One can identify eleven joint sets,
as illustrated in figure 3 (for simplicity we have omitted the three sets for iden-
tical riparians EHI , EMI , ELI on the vertical line where c = 1). The purpose of
the diagram is to clearly identify the relevant combinations of noncooperation
and equal quota to aid the proof of the subsequent propositions.

3.2 Downstream riparian has the cost advantage

Proposition 2 Suppose the downstream riparian has the relative cost advan-
tage (c < 1) and a market for water loans exists. The equal quota allocation is
at least as efficient as the noncooperative allocation.

Proof. We must show that ΠE ≥ ΠN ∀(c,Q) on the relevant domain.
Using the definitions of the noncooperative and equal quota sets we identify five
relevant joint sets (see also figure 3): EHD∩NH , EMD∩NH , EMD∩NM , ELD∩
NM , ELD∩NL. Since the noncooperative equilibria and equal quota allocations
differ on each of these sets we must check five different (weak) inequalities. A
full proof is given in Appendix A.
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The intuition behind proposition 2 is straightforward. Equal quota essen-
tially implies a redistribution of water from upstream to downstream, and this
generates a relative productivity effect and an absolute cost effect. The first ef-
fect emerges as relative differences in marginal products across the riparians are
reduced by letting the downstream riparian reach a higher scale of production
while reducing the scales of production upstream. This effect is most substan-
tial when Q is relatively small since this is when differences in marginal profit
are large (the production function is steep). The second effect occurs because
more water is being used by the low cost riparian, thus the agricultural output
is produced more cost effectively.

A more careful analysis of each of the five possible cases reads as follows:
If water is sufficiently abundant then the riparians would be unconstrained by
equal quota, i.e. the noncooperative and equal quota basinwide profits are
identical (EHD∩NH). The second case is that where there is sufficient water in
the noncooperative situation, but where the downstream riparian is constrained
by the equal quota (EMD ∩NH). Here the downstream riparian borrows water
from its upstream neighbor to attain exactly the same profit level as under
noncooperation and basinwide profits again become identical. The third case
where the downstream riparian is constrained in the noncooperative as well
as the equal quota allocation yields the same qualitative result (EMD ∩ NM ).
Fourthly, if water is so scarce that the downstream riparian is constrained under
noncooperation but both riparians are constrained in equal quota (ELD ∩NM )
then the two parties generate a cooperative surplus by signing up to equal
quota. In the fifth and final case, the two riparians are constrained under
noncooperation as well as equal quota (ELD ∩ NL). The marginal profit of
the downstream riparian is very high under noncooperation - possibly infinite
depending on the functional specification of yi(qi) - because it is producing
zero output. By sharing the water in this situation the riparians can attain
substantial cooperative benefits.

Corollary 1 If the downstream riparian has the relative cost advantage and
water is sufficiently scarce (Q ≤ 2g(1)) then the equal quota allocation is more
efficient than noncooperation thus generating a cooperative surplus.

Proof. Follows from the proof of proposition 2.

3.3 Upstream riparian has the cost advantage

Proposition 3 Suppose the upstream riparian has the relative cost advantage
and a market for water loans exists. The efficiency effect of introducing equal
quota is ambiguous.

Proof. The proof follows that of proposition 2. We must show ΠE ≥ ΠN
∀(c,Q) on the relevant domain which consists of the following six joint sets:
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EHU ∩NH , EMU ∩NH , EMU ∩NM , EMU ∩NL, ELU ∩NM , ELU ∩NL. A full
proof is given in Appendix A.

It is the conflict between the relative productivity and absolute cost effects
which is causing this ambiguity. The relative productivity effect is positive,
however, the absolute cost effect is now negative, because the water recipient
is a high cost producer. To avoid this ambiguity more structure needs to be
introduced to the problem. We do this by making additional assumptions
about the functional form of the production function yi(qi). In what follows we
analyse two of the most relevant production functions. A brief survey of the
literature on water productions for irrigated agriculture suggests the theoretical
and empirical relevance of at least two functional forms: The Cobb Douglas and
the quadratic form (Hexem and Heady 1974, Caswell and Zilberman 1986).

3.3.1 Cobb Douglas
Suppose agricultural production can be described with a Cobb Douglas func-

tion of the form yi = q
α
i . The riparian profit expression is πi = pq

α − ciqi the
interior solution of which yields q∗i =

³
αp
ci

´ 1
1−α
. Applying the normalisations

introduced earlier (cu = p = 1, cd = c) we get the following noncooperative
equilibria and sets where D = {(c,α) | c > 0, 0 < α < 1}:
Table 5. Noncooperative equilibria (Cobb Douglas)

NH NM NL
q∗u α

1
1−α α

1
1−α Q

q∗d
¡
α
c

¢ 1
1−α Q− α

1
1−α 0

π∗u α
α

1−α − α
1

1−α α
α

1−α − α
1

1−α Q
α −Q

π∗d
¡
α
c

¢ α
1−α − c ¡αc ¢ 1

1−α
³
Q− α

1
1−α

´α
− c

³
Q− α

1
1−α

´
0

Table 6. Noncooperative domain (Cobb Douglas)

NH =
n
(c,α) ∈ D | α 1

1−α +
¡
α
c

¢ 1
1−α ≤ Q

o
NM =

n
(c,α) ∈ D | α 1

1−α < Q < α
1

1−α +
¡
α
c

¢ 1
1−α

o
NL =

n
(c,α) ∈ D | 0 < Q ≤ α

1
1−α

o
In a similar vein, we introduce equal quota allocations and definitions using

the same methodology as described previously.

Table 7. Equal quota allocation (Cobb Douglas)
EHU , EHD,

EHI

EMU EMD ELU , ELD,
ELI , EMI

q∗u α
1

1−α Q
2 α

1
1−α Q

2

q∗d
¡
α
c

¢ 1
1−α

¡
α
c

¢ 1
1−α Q

2
Q
2

π∗u α
α

1−α − α
1

1−α
³
Q
2

´α
− Q

2 α
α

1−α − α
1

1−α
³
Q
2

´α
− Q

2

π∗d
¡
α
c

¢ α
1−α − c ¡αc ¢ 1

1−α
¡
α
c

¢ α
1−α − c ¡αc ¢ 1

1−α
³
Q
2

´α
− cQ2

³
Q
2

´α
− cQ2
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Table 8. Equal quota domain (Cobb Douglas)

EHU =
n
0 < α < 1, c > 1 | 2α 1

1−α ≤ Q
o

EMU =
n
0 < α < 1, c > 1 | 2 ¡αc ¢ 1

1−α < Q < 2α
1

1−α
o

ELU =
n
0 < α < 1, c > 1 | 0 < Q ≤ 2 ¡αc ¢ 1

1−α
o

EHD =
n
0 < α < 1, c < 1 | 2 ¡αc ¢ 1

1−α ≤ Q
o

EMD =
n
0 < α < 1, c < 1 | 2α 1

1−α < Q < 2
¡
α
c

¢ 1
1−α
o

ELD =
n
0 < α < 1, c < 1 | 0 < Q ≤ 2α 1

1−α
o

EHI =
n
0 < α < 1, c = 1 | 2α 1

1−α < Q
o

EMI =
n
0 < α < 1, c = 1 | Q = 2α 1

1−α
o

ELI =
n
0 < α < 1, c = 1 | 0 < Q < 2α 1

1−α
o

Proposition 4 For a Cobb Douglas production function the equal quota is at
least as efficient as noncooperation except for the special case where the upstream
riparian has the relative cost advantage (c > 1), water is very scarce (Q ≤ α

1
1−α )

and α > 1
2 .

Proof. It follows from propositions 1 and 2 that this is true for c ≤ 1 for
Q > 0 and 0 < α < 1. However, as indicated by proposition 3 the result is not
obvious when the upstream riparian has the relative cost advantage (c > 1).
We must show ΠE ≥ ΠN ∀(c,Q) on the relevant domain which consists of the
same six joint sets as identified in proposition 3. A full proof is presented in
appendix A.

The result in proposition 4 can be explained by considering the two efficiency
effects of introducing equal quota: relative differences in marginal product and
absolute differences in cost. In the case of Cobb Douglas we note that the
difference in marginal product is a function of the parameter α. The marginal
productivity difference for the allocation (qi, qj) , qi 6= qj is relatively small
when α is high (the production function is a straight line if α = 1). Consider
the situation where the upstream riparian has the relative cost advantage. This
implies that the relative productivity effect is positive while the absolute cost
effect is negative (cf. proposition 3). As α increases, the productivity effect
diminishes and (since the negative cost effect is unchanged) the total effect
eventually becomes negative when water is sufficiently scarce. It emerges from
the proof of proposition 4 that this happens when the riparians are in NL.

Figures 4.1 - 4.5 give a graphical interpretation of proposition 4 where we
have assumed c = 2 and α = 1

2 , i.e. a situation where equal quota is at
least as efficient as noncooperation. Consider figure 4.1 which illustrates case
EHU ∩NH . Panel (a) illustrates agricultural output with A and B representing
unconstrained optima for each riparian. In panel (b) below the relevant riparian
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and basinwide profit curves have been depicted. Riparian profit is increasing in
qi until the optimum q∗i is reached after which it remains constant. Hence, we
assume free disposal whereby a riparian can release unused surplus water further
downstream thereby ignoring the possibility of flooding. The regional profit is
the vertical sum of riparian profits. We see that equal quota and noncooperative
profits are identical. Both allocations are, in fact, Pareto optimal as are all
other allocations on the horizontal part of the Π−curve. Finally, note that all
Pareto optimal states in the diagram have identical distributional implications.
Regional profit is distributed according to relative cost differences alone because
water is abundant.

Case EMU ∩ NH is illustrated in figure 4.2. The upstream riparian is
constrained by equal quota and must take a water loan to move from C to A.
Panel (b) illustrates how this loan leads to a small efficiency gain. We see that
ΠE = ΠN and since there is still unused water in the basin there are many other
Pareto optimal states with identical distribution of Π.

In figure 4.3 upstream chooses A under noncooperation and downstream is
left with E (EMU ∩NM ). Under equal quota upstream would choose C (and
D after a loan) while downstream can reach its optimum at B. In this case
the equal quota allocation (after the water loan) is a unique Pareto optimum.
This implies that a cooperative surplus is generated. It also follows that any
perpetuation of the equal quota would have distributional as well as efficiency
implications.

In scenario EMU ∩NL, illustrated in figure 4.4, Upstream is constrained in
the noncooperative, as well as the equal quota allocation. As a consequence, it
can never attain its unconstrained optimum A. It chooses F noncooperatively,
while downstream is left at zero input E. In equal quota (after loan) upstream is
atD and downstream at B. Equal quota is now substantially more efficient than
noncooperation. Despite this, the equal quota (after loan) is no longer Pareto
optimal. A marginal redistribution of water from downstream to upstream
would yield further, albeit small, efficiency improvements.

Situation ELU ∩ NM does not exist because we have assumed c = 2 (see
figure 3 to verify this). The final case to analyse is therefore ELU ∩ NL in
figure 4.5 which is qualitatively very similar to figure 4.4 apart from the fact
that water loans are no longer possible.

Figure 5 illustrates the cooperative surplus of introducing equal quota for a
Cobb Douglas production function with α = 1

2 (note that the horisontal axis is
inversed). We make a number observations. First, the cooperative surplus is
present when water is sufficiently scarce. Secondly, as Q decreases the surplus
reaches its maximum when the total amount of water available in the basin
equals the total water needs of the upstream riparian (Q = α

1
1−α ), i.e. at

the NM − NL border. Thirdly, it falls gradually thereafter as water becomes
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increasingly scarce. Finally, the cooperative surplus is increasing in the relative
cost advantage of the downstream riparian (decreasing in c) and decreasing in
the parameter α (not illustrated).

3.3.2 Quadratic form
The quadratic production function yi = aqi − bq2i satisfies yi(0) = 0 and

exhibits diminishing returns ∂yi
∂qi

> 0 and ∂2yi
∂q2i

< 0 on the interval 0 ≤ qi ≤ q∗i .
A riparian which uses more water than its unconstrained optimum experiences
declining production ∂yi

∂qi
< 0 for qi > q∗i . This would be the case if the

agricultural lands were flooded. We shall, however, ignore that possibility in
the following analysis by continuing to assume free disposal19 . Setting p = 1
we can write riparian profit as πi = (a− c)qi − bq2i where we assume a > c. At
the interior solution q∗i =

a−c
2b , b 6= 0. Suppose for simplicity that a − c = 1

for the upstream riparian and b = 1
2 so that riparians have identical production

technology (but differ in cost) then we get q∗u = 1 and q∗d = a − c. We then
have three situations:

A: a− c < 1 : upstream riparian has relative cost advantage.
B: a− c > 1 : downstream riparian has relative cost advantage.
C: a− c = 1 : identical riparians.

The noncooperative scenarios and equal quota allocations and domain are:

Table 9. Noncooperative equilibria (Quadratic)
NH NM NL

q∗u 1 1 Q
q∗d a− c Q− 1 0

π∗u
1
2

1
2 Q− 1

2Q
2

π∗d
1
2(a− c)2 (a− c)(Q− 1)− 1

2(Q− 1)2 0

Table 10. Noncooperative domain (Quadratic)
NH =

©
a− c > 0 | 1 + a− c ≤ Qª

NM =
©
a− c > 0 | 1 < Q < 1 + a− cª

NL =
©
a− c > 0 | 0 < Q ≤ 1ª

Table 11. Equal quota allocation (Quadratic)
EHU , EHD,

EHI

EMU EMD ELU , ELD,
ELI , EMI

q∗u 1 Q
2 1 Q

2

q∗d a− c a− c Q
2

Q
2

π∗u
1
2

Q
2 − Q

2

8
1
2

Q
2 − Q

2

8

π∗d
1
2(a− c)2 1

2(a− c)2 (a− c)Q2 − Q
2

8 (a− c)Q2 − Q
2

8

19 This assumption is reasonable since both riparians use water for irrigation. It would
have been less plausible if, say, the upstream riparian had a hydropower plant since this could
cause serious flow disruptions downstream, and possibly flooding.
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Table 12. Equal quota domain (Quadratic)
EHU =

©
0 < a− c < 1, 2 ≤ Qª

EMU =
©
0 < a− c < 1, 2(a− c) < Q < 2ª

ELU =
©
0 < a− c < 1, 0 < Q ≤ 2(a− c)ª

EHD =
©
a− c > 1, 2(a− c) ≤ Qª

EMD =
©
a− c > 1, 2 < Q < 2(a− c)ª

ELD =
©
a− c > 1, 0 < Q ≤ 2ª

EHI =
©
a− c = 1, 2 < Qª

EMI =
©
a− c = 1, Q = 2ª

ELI =
©
a− c = 1, 0 < Q < 2ª

The cooperative surplus for a quadratic production function is shown in
figure 6. We note a number of similarities with the Cobb Douglas form. First,
the surplus arises when water is sufficiently scarce. Secondly, it reaches it
maximum at the NM − NL border. Thirdly, it is increasing in the relative
cost advantage of the downstream riparian (decreasing in (a − c)). Finally,
a cooperative loss occurs from introducing equal quota when the downstream
riparian has a cost disadvantage (a− c < 1) and the water level in the basin is
very low (NL). More precisely we have the following result for the quadratic
production function:

Proposition 5 If the agricultural production function is quadratic then equal
quota is at least as efficient as noncooperation except for the special case where
the upstream riparian has the relative cost advantage (a − c) < 1 and water is
very scarce Q ≤ 1.

Proof. It follows from propositions 1 and 2 that this is true for (a− c) ≥ 1,
i.e. when downstream is more cost effective or when riparians are identical. We
must show ΠE ≥ ΠN ∀(a− c,Q) on the relevant domain which consists of five
joint sets derived from tables 10 and 12. A full proof is presented in appendix
A.

The major difference between the two functional forms is that equal quota is
more likely to have a positive efficiency impact if agricultural production can be
described with Cobb Douglas technology rather than a quadratic form. This is
because the marginal product at qi = 0 is infinite for a Cobb-Douglas function
and finite (equal to a) for the quadratic form. The size of the marginal product
at qi = 0 is important because the cooperative surplus is maximised at the
NM − NL border, i.e. when the downstream riparian is at zero output under
noncooperation.

3.4 Agreement stability
The principal analytical concern thus far has been whether equal quota rep-

resents a superior alternative to noncooperation in terms of its equity and effi-
ciency properties. As previously highlighted equal quota can only be attained
by means of a cooperative agreement between the two riparians. In the absence
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of a supranational body to enforce the agreement, neither of the signatories must
find it in their own interest to deviate and act unilaterally. In other words, the
agreement must be self-enforcing (Barrett, 1994b). Since equal quota implies a
redistribution of water, and hence profit, from upstream to downstream the key
question is whether the upstream riparian would find it individually rational to
enter the agreement. Clearly, were the downstream riparian to keep all its addi-
tional profits under an equal quota agreement then the upstream riparian would
never sign. The analysis therefore presupposes the possibility of lump sum side
payments payable from the winner of cooperation to the loser20. This is why
the size of the cooperative surplus matters. If the surplus is non-positive then it
would be undesirable from an efficiency point of view for any of the riparians to
enter the agreement although this could be justified on equity grounds provided
the trade-off is politically acceptable.

Suppose in the following example that there are benefits from cooperation.
The subsequent analysis gives an illustration of how a stable agreement can be
reached. We assume identical Cobb Douglas production functions where α = 1

2 ,
c = 2 (upstream riparian has the cost advantage) and Q = 1

5 which implies that
the riparians are in EMU ∩NL. For simplicity we set the interest payment for
the water loan equal to zero (i∆ = 0). Table 13 gives an overview:

Table 13. Example of a stable equal quota agreement
q∗u π∗u q∗d π∗d Π

1. Noncooperation 0.20 0.247 0.00 0.00 0.247
2. Equal quota (before loan) 0.10 0.216 0.06 0.125 0.341
3. Equal quota (after loan) 0.14 0.233 0.06 0.125 0.358
4. Stable agreement 0.14 0.247 0.06 0.111 0.358
5. Splitting the surplus 0.14 0.302 0.06 0.056 0.358

Given the noncooperative payoffs, the individual rationality constraint of the
upstream riparian is πEu ≥ πNu = 0.247, and, π

E
d ≥ πNd = 0 for the downstream

riparian. The downstream riparian gains substantially under equal quota (be-
fore loan) while downstream incurs a minor loss. By allowing for water loans
the upstream riparian can make productive use of the 0.04 units of water not
utilised by downstream. While equal quota (after loan) is more efficient than
noncooperation (ΠE = 0.358 > ΠN = 0.247) it is not individually rational
for the upstream riparian to cooperate. To make the upstream riparian sign
the agreement, the downstream riparian must pay a side payment of at least
πNu − πEu = 0.247− 0.233 = 0.014. This side payment is sufficient to guarantee
a stable agreement. Ultimately, the size of the side payment will be a matter of
negotiation between the two riparians. The Nash bargaining solution provides
a theoretical solution to this problem. Supposing both riparians are risk neutral
we must solve the following problem max

uu+ud≤0.358
{(uu − 0.247)(ud − 0)}. The

result embodies the popular notion of splitting the cooperative surplus.

20 It is exactly this type of transfer which Sadoff et. al. (2002) is sceptical about.
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To what extent can the final outcome of the Nash bargaining solution be
said to be equitable? After all, the upstream riparian gets 70 percent of the
water and 84.3 percent of basinwide profits. It is important here to reemphasise
that our notion of equity is the egalitarian standard of equal shares of water to
equals, or alternatively, equality of opportunity. The cooperative agreement
does indeed reflect these principles: Both countries were given an equal share
of the water. The reason why the downstream riparian only uses 30 percent
is not due to the agreement but rather to a lack of innate capability of making
productive use of its entitlement. Because our equity metric is water - not final
outcomes such as profits - we refrain from making any evaluative judgement of
the fairness of the basinwide profit distribution.

Before concluding the analysis of stability it is worth pointing out that ripar-
ians do sometimes sign (and respect) international agreements even though they
are unstable in a narrow economic sense. As pointed out in the international re-
lations literature such behavior can be entirely rational if one also considers the
broader political benefits from signing such an agreement (LeMarquand, 1977).
First, the signatories to an agreement may want to project a positive interna-
tional image of themselves as in the case of the decision by the US Government
to build a desalting plant on the Lower Colorado River in the 1970s. Secondly,
river sharing agreements are only one of many ways in which countries interact,
thus one country might accept a ‘bad deal’ if a linkage has been made to another
bilateral agreement on which it stands to gain more substantially (see Bennett
et. al., 1998). Finally, a reluctant upstream riparian may be downstream to
the same or other countries on other rivers and this produces a more flexible
stance (Sadoff et. al., 2002). On the other hand, there are also examples of
economically rational, but politically infeasible agreements, as exemplified by
Dinar and Wolf’s (1994) analysis of water markets for the Middle East.

4. Policy implications
Suppose the model presented in this paper gives a sufficiently reasonable

description of reality. How could it be used for practical purposes to guide
the negotiation of a water sharing agreement between two riparians? What
are the informational requirements? What are the policy implications? The
answers to these questions are best addressed by proposing a simple algorithm
that negotiators can adopt. Obviously, this solution represents a substantial
simplification of what in most cases would be a complex negotiation scenario.
Nevertheless, it constitutes a basic prescription of the steps necessary to de-
termine whether an equal quota agreement (or any other exogenous share) is
worth pursuing vis-à-vis noncooperation when riparians aspire for an efficient
and equitable solution.

In step 1 the riparians must collect all relevant information. First, this
includes an estimate of the water production functions of each riparian. The
paramount interest is to estimate the values of parameters such as α, a or b.
Secondly, riparian cost functions must be estimated. What matters here is the
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relative difference in unit costs between riparians. Thirdly, a reliable estimate
must be made over the mean annual water flow. The annual flow volume is
usually stochastic (affected by weather) and fluctuations of 25 percent above
or below the mean annual flow are quite common (Kilgour and Dinar, 1995).
Flow data is often (but not always) available to negotiators and can be estimated
more easily than production or cost functions. Step 2 involves a re-specification
of the theoretical model in light of the available data. For instance, it is highly
likely that riparians will have production or cost functions which are different
from those presented in this paper. On the basis of the data collected in step
1 negotiators must, in step 3, make an overall assessment of which of the many
possible scenarios the riparians are most likely to find themselves in. This
may not be a unique scenario, such as ELD∩NM , but rather a range of possible
scenarios. The uncertainty derives partly from the statistical uncertainty of the
parameter values of the production and cost functions, but most importantly
the substantial variation in annual water flow. Step 4 involves an estimation
of the expected cooperative surplus of introducing equal quota. This obviously
depends on the conclusions of step 3 and riparians could also account for possible
transaction costs. In step 5, the riparians must decide whether it is worthwhile
to share the water equally. If the cooperative surplus (net of transaction costs)
is positive then equal quota is a first-best policy. If the cooperative surplus is
negative then the equal quota is the second-best policy and riparians trade-off
efficiency to attain equity. Finally, in step 6 the riparians must embark on
negotiations of how to share the cooperative surplus.

5. Conclusion
Economic efficiency and social equity are both valid policy objectives in the

management of transboundary rivers. This paper has dealt with the question
of how these two objectives interrelate and whether, for instance, they are at
odds with each other. The theoretical results contain a relatively optimistic
policy message: Although equity and efficiency are inseparable objectives this
does not necessarily imply a trade-off. Under certain circumstance, cooperating
riparians can be rewarded with a cooperative surplus. Trade-offs do exist, but
they are predictable, less frequent and relatively small in magnitude.
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Appendix A. Proof of Propositions

Proof. (of proposition 2). Suppose the downstream riparian has
the relative cost advantage (c < 1).

1) ΠE ≥ ΠN ∀ (c,Q) ∈ EHD ∩NH ⇔
y (g(1))− g(1) + y (g(c))− cg(c) ≥ y (g(1))− g(1) + y (g(c))− cg(c)
which holds with equality.

2) ΠE ≥ ΠN ∀ (c,Q) ∈ EMD ∩NH ⇔
y (g(1))− g(1) + y

³
Q
2

´
− cQ2 ≥ y (g(1))− g(1) + y (g(c))− cg(c)⇔

y
³
Q
2

´
− cQ2 ≥ y (g(c))− cg(c)

Allowing for a water loan (downstream borrows) there is

excess supply (∆ = δ = g(c)− Q
2 ) which gives:

y
³
Q
2 +∆

´
− c

³
Q
2 +∆

´
≥ y (g(c))− cg(c)⇔

y (g(c))− cg(c) ≥ y (g(c))− cg(c)
which holds with equality.

3) ΠE ≥ ΠN ∀ (c,Q) ∈ EMD ∩NM ⇔
y (g(1))−g(1)+y

³
Q
2

´
− cQ2 ≥ y (g(1))−g(1)+y

¡
Q− g(1)¢− cQ+ cg(1)⇔

y
³
Q
2

´
− cQ2 ≥ y

¡
Q− g(1)¢− cQ+ cg(1)

Allowing for a water loan (downstream borrows) there is

excess demand (∆ = σ = Q
2 − g(1)) which gives:

y
³
Q
2 +∆

´
− c

³
Q
2 +∆

´
≥ y ¡Q− g(1)¢− cQ+ cg(1)⇔

y
¡
Q− g(1)¢− c ¡Q− g(1)¢ ≥ y ¡Q− g(1)¢− cQ+ cg(1)

which holds with equality.

4) ΠE ≥ ΠN ∀ (c,Q) ∈ ELD ∩NM ⇔
y
³
Q
2

´
− Q

2 + y
³
Q
2

´
− cQ2 ≥ y (g(1))− g(1) + y

¡
Q− g(1)¢− cQ+ cg(1)⇔

y
³
Q
2

´
− Q

2 + y
³
Q
2

´
+ cQ2 ≥ y (g(1))− g(1) + y

¡
Q− g(1)¢+ cg(1)⇔

2y
³
Q
2

´
+ (1− c)Q2 ≥ y (g(1)) + y

¡
Q− g(1)¢+ (1− c)g(1)

which is true with strict inequality since
2y
³
Q
2

´
> y (g(1)) + y

¡
Q− g(1)¢ cf. proposition 1 and

(1− c)Q2 > (1− c)g(1) since the upstream
riparian is unconstrained in NM .

5) ΠE ≥ ΠN ∀ (c,Q) ∈ ELD ∩NL ⇔
y
³
Q
2

´
− Q

2 + y
³
Q
2

´
− cQ2 ≥ y

¡
Q
¢−Q⇔

y
³
Q
2

´
+ Q

2 + y
³
Q
2

´
− cQ2 ≥ y

¡
Q
¢
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which holds with strict inequality since

2y
³
Q
2

´
≥ y ¡Q¢ and (1− c)³Q2 ´ > 0.

Proof. (of proposition 3). Suppose the upstream riparian has
the relative cost advantage (c > 1).

1) ΠE ≥ ΠN ∀ (c,Q) ∈ EHU ∩NH ⇔
y (g(1))− g(1) + y (g(c))− cg(c) ≥ y (g(1))− g(1) + y (g(c))− cg(c)
which holds with equality.

2) ΠE ≥ ΠN ∀ (c,Q,α) ∈ EMU ∩NH ⇔
y
³
Q
2

´
− Q

2 + y (g(c))− cg(c) ≥ y (g(1))− g(1) + y (g(c))− cg(c)⇔
y
³
Q
2

´
− Q

2 ≥ y (g(1))− g(1)
Allowing for a water loan (upstream borrows) we have
excess supply (∆ = δ = g(1)− Q

2 ) and can write:

y
³
Q
2 +∆

´
−
³
Q
2 +∆

´
≥ y (g(1))− g(1)⇔

y (g(1))− g(1) ≥ y (g(1))− g(1)
which holds with equality.

3) ΠE ≥ ΠN ∀ (c,Q,α) ∈ EMU ∩NM ⇔
y
³
Q
2

´
− Q

2 + y (g(c))− cg(c) ≥ y (g(1))− g(1) + y
¡
Q− g(1)¢− c ¡Q− g(1)¢

Allowing for a water loan (upstream borrows) we have

excess demand (∆ = σ = Q
2 − g(c)) and can write:

y
³
Q
2 +∆

´
−
³
Q
2 +∆

´
+ y (g(c))− cg(c) ≥

y (g(1))− g(1) + y ¡Q− g(1)¢− c ¡Q− g(1)¢⇔
y
¡
Q− g(c)¢− ¡Q− g(c)¢+ y (g(c))− cg(c) ≥

y (g(1))− g(1) + y ¡Q− g(1)¢− c ¡Q− g(1)¢
which is ambiguous without further assumptions.

4) ΠE ≥ ΠN ∀ (c,Q,α) ∈ EMU ∩NL ⇔
y
³
Q
2

´
− Q

2 + y (g(c))− cg(c) ≥ y
¡
Q
¢−Q

Allowing for a water loan (upstream borrows) we have
excess demand (∆ = σ = Q

2 − g(c)) and can write:
y
³
Q
2 +∆

´
−
³
Q
2 +∆

´
+ y (g(c))− cg(c) ≥ y ¡Q¢−Q⇔

y
¡
Q− g(c)¢− ¡Q− g(c)¢+ y (g(c))− cg(c) ≥ y ¡Q¢−Q⇔

y
¡
Q− g(c)¢+ g(c) + y (g(c))− cg(c) ≥ y ¡Q¢

which is ambiguous without further assumptions.

5) ΠE ≥ ΠN ∀ (c,Q,α) ∈ ELU ∩NM ⇔
y
³
Q
2

´
− Q

2 + y
³
Q
2

´
− cQ2 ≥ y (g(1))− g(1) + y

¡
Q− g(1)¢− cQ+ cg(1)⇔
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y
³
Q
2

´
+ y

³
Q
2

´
+ (c− 1)Q2 ≥ y (g(1)) + (c− 1)g(1) + y

¡
Q− g(1)¢

which is ambiguous since

2y
³
Q
2

´
> y (g(1)) + y

¡
Q− g(1)¢ cf. proposition 1, but also

(c− 1)Q2 < (c− 1)g(1) because we know that the
upstream riparian is constrained by equal quota.

6) ΠE ≥ ΠN ∀ (c,Q) ∈ ELU ∩NL ⇔
y
³
Q
2

´
− Q

2 + y
³
Q
2

´
− cQ2 ≥ y

¡
Q
¢−Q

which is ambiguous since we have that 2y
³
Q
2

´
> y

¡
Q
¢
, but also

(1− c)Q2 < Q.

Proof. (of proposition 4 - Cobb Douglas). Suppose the upstream
riparian has the relative cost advantage (c > 1).
1) ΠE ≥ ΠN ∀ (c,Q,α) ∈ EHU ∩NH ⇔
α

α
1−α − α

1
1−α +

¡
α
c

¢ α
1−α − c ¡αc ¢ 1

1−α ≥ α
α

1−α − α
1

1−α +
¡
α
c

¢ α
1−α − c ¡αc ¢ 1

1−α

which holds with equality.

2) ΠE ≥ ΠN ∀ (c,Q,α) ∈ EMU ∩NH ⇔³
Q
2

´α
− Q

2 +
¡
α
c

¢ α
1−α − c ¡αc ¢ 1

1−α ≥
α

α
1−α − α

1
1−α +

¡
α
c

¢ α
1−α − c ¡αc ¢ 1

1−α ⇔³
Q
2

´α
− Q

2 ≥ α
α

1−α − α
1

1−α

Allowing for a water loan (upstream borrows) we have

excess supply (∆ = δ = α
1

1−α − Q
2 ) and can write:³

Q
2 +∆

´α
−
³
Q
2 +∆

´
≥ α

α
1−α − α

1
1−α ⇔³

Q
2 + α

1
1−α − Q

2

´α
−
³
Q
2 + α

1
1−α − Q

2

´
≥ α

α
1−α − α

1
1−α

which holds with equality.

3) ΠE ≥ ΠN ∀ (c,Q,α) ∈ EMU ∩NM ⇔³
Q
2

´α
− Q

2 +
¡
α
c

¢ α
1−α − c ¡αc ¢ 1

1−α ≥
α

α
1−α − α

1
1−α +

³
Q− α

1
1−α

´α
− cQ+ cα 1

1−α

Allowing for a water loan (upstream borrows) we have

excess demand (∆ = σ = Q
2 −

¡
α
c

¢ 1
1−α ) and can write:³

Q
2 +∆

´α
−
³
Q
2 +∆

´
+
¡
α
c

¢ α
1−α − c ¡αc ¢ 1

1−α ≥
α

α
1−α − α

1
1−α +

³
Q− α

1
1−α

´α
− cQ+ cα 1

1−α ⇔³
Q− ¡αc ¢ 1

1−α
´α
−
³
Q− ¡αc ¢ 1

1−α
´
+
¡
α
c

¢ α
1−α − c ¡αc ¢ 1

1−α ≥
α

α
1−α − α

1
1−α +

³
Q− α

1
1−α

´α
− cQ+ cα 1

1−α ⇔
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³
Q− ¡αc ¢ 1

1−α
´α
+
¡
α
c

¢ α
1−α − α

α
1−α −

³
Q− α

1
1−α
´α
≥

Q− ¡αc ¢ 1
1−α + c

¡
α
c

¢ 1
1−α − α

1
1−α − cQ+ cα 1

1−α ⇔³
Q− ¡αc ¢ 1

1−α
´α
+
¡
α
c

¢ α
1−α − α

α
1−α −

³
Q− α

1
1−α
´α
≥

(c− 1)
³¡

α
c

¢ 1
1−α + α

1
1−α −Q

´
which is true as can be verified numerically.

4) ΠE ≥ ΠN ∀ (c,Q,α) ∈ EMU ∩NL ⇔³
Q
2

´α
− Q

2 +
¡
α
c

¢ α
1−α − c ¡αc ¢ 1

1−α ≥ Qα −Q
Allowing for a water loan (upstream borrows) we have

excess demand (∆ = σ = Q
2 −

¡
α
c

¢ 1
1−α ) and can write:³

Q
2 +∆

´α
−
³
Q
2 +∆

´
+
¡
α
c

¢ α
1−α − c ¡αc ¢ 1

1−α ≥ Qα −Q⇔³
Q− ¡αc ¢ 1

1−α
´α
−
³
Q− ¡αc ¢ 1

1−α
´
+
¡
α
c

¢ α
1−α − c ¡αc ¢ 1

1−α ≥ Qα −Q⇔³
Q− ¡αc ¢ 1

1−α
´α
+ (1− c) ¡αc ¢ 1

1−α +
¡
α
c

¢ α
1−α −Qα ≥ 0

which is true for α ≤ 1
2 and c > 1 as can be verified numerically.

5) ΠE ≥ ΠN ∀ (c,Q,α) ∈ ELU ∩NM ⇔
2
³
Q
2

´α
− Q

2 − cQ2 ≥ α
α

1−α − α
1

1−α +
³
Q− α

1
1−α

´α
− cQ+ cα 1

1−α ⇔
2
³
Q
2

´α
− Q

2 + c
Q
2 ≥ α

α
1−α − α

1
1−α +

³
Q− α

1
1−α

´α
+ cα

1
1−α ⇔

2
³
Q
2

´α
+ (c− 1)Q2 ≥ α

α
1−α +

³
Q− α

1
1−α
´α
+ (c− 1)α 1

1−α

which is true with strict inequality since

2
³
Q
2

´α
> α

α
1−α +

³
Q− α

1
1−α

´α
and

(c− 1)Q2 < (c− 1)α
1

1−α .

6) ΠE ≥ ΠN ∀ (c,Q,α) ∈ ELU ∩NL ⇔
2
³
Q
2

´α
− Q

2 − cQ2 ≥ Q
α −Q⇔

2
³
Q
2

´α
+ Q

2 − cQ2 ≥ Q
α ⇔

2
³
Q
2

´α
+ (1− c) Q2 ≥ Q

α ⇔
2Q

α

2α + (1− c) Q2 ≥ Q
α ⇔

21−α + (1− c) Q1−α

2 ≥ 1⇔
2(2−α) − 2 + (1− c)Q1−α ≥ 0⇔
Q
1−α ≤ 2−2(2−α)

1−c ⇔ (note the sign change since 1− c < 0)
Q ≤

³
2−2(2−α)
1−c

´ 1
1−α

Since ELU ∩NL = {Q ≤ α
1

1−α and Q ≤ 2 ¡αc ¢ 1
1−α } we get two conditions

(only one of which is binding at any one time):
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α
1

1−α ≤
³
2−2(2−α)
1−c

´ 1
1−α

and 2
¡
α
c

¢ 1
1−α ≤

³
2−2(2−α)
1−c

´ 1
1−α

which is true for α ≤ 1
2 and c > 1 as can be verified numerically.

It is, however, false for some values of c when α > 1
2 .

Proof. (of proposition 5 - quadratic). Suppose that the
upstream riparian has the relative cost advantage (a− c < 1):

1) ΠE ≥ ΠN ∀ (a, c,Q) ∈ EHU ∩NH ⇔
1
2 +

1
2 (a− c)2 ≥ 1

2 +
1
2(a− c)2 which holds with equality.

2) ΠE ≥ ΠN ∀ (a, c,Q) ∈ EMU ∩NH ⇔
Q
2 − 1

2

³
Q
2

´2
+ 1

2(a− c)2 ≥ 1
2 +

1
2(a− c)2 ⇔

Q
2 − 1

2

³
Q
2

´2
≥ 1

2

Allowing for water loans (upstream borrows) we have

excess supply (∆ = δ = 1− Q
2 ):³

Q
2 +∆

´
− 1

2

³
Q
2 +∆

´2
≥ 1

2 ⇔³
Q
2 + 1− Q

2

´
− 1

2

³
Q
2 + 1− Q

2

´2
≥ 1

2 ⇔
1− 1

2 ≥ 1
2 which holds with equality.

3) ΠE ≥ ΠN ∀ (a, c,Q) ∈ EMU ∩NM ⇔
Q
2 − 1

2

³
Q
2

´2
+ 1

2(a− c)2 ≥ 1
2 + (a− c)(Q− 1)− 1

2(Q− 1)2 ⇔
Allowing for water loans (upstream borrows) we have

excess demand (∆ = σ = Q
2 − (a− c)) and letting (a− c) = k:

Q− k − 1
2

¡
Q− k¢2 + 1

2k
2 ≥ 1

2 + k(Q− 1)− 1
2(Q− 1)2 ⇔

Q− k − 1
2

³
Q
2
+ k2 − 2Qk

´
+ 1

2k
2 ≥ 1

2 + kQ− k − 1
2(Q

2
+ 1− 2Q)⇔

Q− k − 1
2Q

2 − 1
2k

2 +Qk + 1
2k

2 ≥ 1
2 + kQ− k − 1

2Q
2 − 1

2 +Q⇔
−12k2 +Qk + 1

2k
2 ≥ kQ which holds with equality.

4) ΠE ≥ ΠN ∀ (a, c,Q) ∈ EMU ∩NL ⇔
Q
2 − 1

2

³
Q
2

´2
+ 1

2(a− c)2 ≥ Q− 1
2Q

2

Allowing for water loans (upstream borrows) we have
excess demand (∆ = σ = Q

2 − (a− c)) and letting (a− c) = k:
Q− k − 1

2

¡
Q− k¢2 + 1

2k
2 ≥ Q− 1

2Q
2 ⇔

Q− k − 1
2

³
Q
2
+ k2 − 2Qk

´
+ 1

2k
2 ≥ Q− 1

2Q
2 ⇔

Q− k − 1
2Q

2 − 1
2k

2 +Qk + 1
2k

2 ≥ Q− 1
2Q

2 ⇔
−k +Qk ≥ 0⇔
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k(Q− 1) ≥ 0 which is false ∀ (a, c,Q) ∈ EMU ∩NL since
Q < 1 on NL. Note, however, that EMU ∩NL does not exist
for 1

2 < (a− c) < 1.

5) ΠE ≥ ΠN ∀ (a, c,Q) ∈ ELU ∩NL ⇔
Q
2 − Q

2

8 + (a− c)Q2 − Q
2

8 ≥ Q− 1
2Q

2 ⇔
Q
2
+ 2Q(a− c− 1) ≥ 0 ⇔

Q ≥ Q(a− c) ≡ −2(a− c− 1)
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Figure 4.3 Upstream has cost advantage:
a) Agricultural Output
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Figure 4.4 Upstream has cost advantage:
a) Agricultural Output
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Figure 5. Cooperative Surplus (Cobb Douglas alfa=0.5)
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Figure 6. Cooperative Surplus (Quadratic Production Function)
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