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Abstract

The paper shows that there is a close connection between (con-
stant) consistent conjectures in a given game and evolutionary stabil-
ity of conjectures. Evolutionarily stable conjectures are consistent and
consistent conjectures are the only interior candidates for evolutionary
stability.

1 Introduction

Recently, in the context of a particular linear-quadratic duopoly model,
Muller and Normann (2003) showed that consistent conjectures are evolu-
tionarily stable, while Dixon and Somma (2003) demonstrated that an ex-
plicit evolutionary process converges to consistent conjectures. The purpose
of this note is to show that (constant) consistent conjectures and evolutionary
stability are closely connected in a general setting of two-player games.

∗I thank Daniel Seidmann, Kala Krishna and Bouwe Dijkstra for useful suggestions.
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2 The Model

2.1 The Game

Consider a two-player game G = ({1, 2}, {X1,X2}, {u1, u2}), where X1,X2 ⊂
R are convex strategy spaces and u1, u2 are payoff functions of the two players.
In what follows, i refers to either Player 1 or Player 2, and j to the other
player (j 6= i). The payoff functions are assumed to be twice continuously
differentiable.
The players have (constant) conjectures about the marginal reaction of

the opponent to a marginal change in strategy. Let rij ∈ Yi ⊂ R, where Yi
is a convex set, be this conjecture of Player i about Player j, that is, Player
i believes that

dxj
dxi
(xi, xj) = rij ∀xi, xj. I work with constant conjectures be-

cause they allow some selection; if conjectures depend on xi, xj many strategy
profiles can be supported by (weakly) consistent conjectures (Laitner, 1980;
Boyer and Moreaux, 1983).
Since Player i believes that xj depends on xi, Player i’s maximization

problem is maxXi ui(xi, xj(xi)). At an interior solution x
∗
i of this problem

∂ui
∂xi
(xi, xj(xi)) +

∂ui
∂xj
(xi, xj(xi))

dxj
dxi
= 0. Since the player does not attempt to

conjecture the whole reaction function xj(xi), but only its slope
dxj
dxi
= rij, xj

is an independent variable, so at x∗i
∂ui
∂xi
(xi, xj)+

∂ui
∂xj
(xi, xj)rij = 0. It follows

that for given xj and corresponding x
∗
i it holds that − ∂ui/∂xi(xi,xj)

∂ui/∂xj(xi,xj)
= rij,

when ∂ui
∂xj
(xi, xj) 6= 0 at x∗i .

Claim 1 For given rij and xj, at an interior best response x
∗
i of Player i it

holds that − ∂ui/∂xi(xi,xj)

∂ui/∂xj(xi,xj)
= rij, when

∂ui
∂xj
(x∗i , xj) 6= 0.

Condition 1 ∂ui
∂xj
(xi, xj) 6= 0 at x∗i .

Let Fi(xi, xj; rij) =
∂ui
∂xi
(xi, xj)+

∂ui
∂xj
(xi, xj)rij. At an interior solution x

∗
i of

Player i’s maximization problem Fi(xi, xj; rij) = 0. If the solution is unique
and interior for each xj, Fi(xi, xj; rij) = 0 implicitly defines the reaction
function x∗i (xj; rij) of Player i. To be able to use this reaction function I
require

Condition 2 For all rij ∈ Y, all xj ∈ Xj, problem maxXi ui(xi, xj(xi)) has
unique interior solution x∗i .

2



2.2 Consistent Conjectures

To distinguish the consistency notion I use from that in (some of) the liter-
ature (e.g. Bresnahan, 1981, where consistent conjectures are functions and
are required to coincide with all derivatives of the actual reaction function
in the neighborhood of equilibrium) I call a conjecture of Player i weakly
consistent if the conjectured reaction of Player j equals the actual slope of

the reaction function of Player j at best response, i.e. at x∗i rij =
dx∗j
dxi
(xi; rji).

Since the reaction function is determined implicitly by Fi(xi, xj; rij) = 0,

the slope of it is
dx∗i
dxj

= −∂Fi/∂xj(xi,xj)

∂Fi/∂xi(xi,xj)
, when ∂Fi

∂xi
(xi, xj) 6= 0. Therefore, a

conjecture rCij of Player i is weakly consistent when at the best response
x∗i (r

C
ij) of Player i

rCij =
dx∗j
dxi
(x∗i ; rji) = −

∂Fj/∂xi(x
∗
i , x

∗
j ; rji)

∂Fj/∂xj(x∗i , x
∗
j ; rji)

(1)

where x∗j is the interior best response of Player j when Player j’s conjecture
is rji and Player i’s strategy is x

∗
i .

Claim 2 For given rij, rji, at best responses (x
∗
i , x

∗
j), conjecture rij is weakly

consistent iff rij = − ∂Fj/∂xi(x∗j ,x
∗
i ,rji)

∂Fj/∂xj(x∗j ,x
∗
i ;rji)

, when
∂Fj
∂xj
(x∗i , x

∗
j ; rji) 6= 0.

Condition 3
∂Fj
∂xj
(x∗i , x

∗
j) 6= 0 for any rij ∈ Yi, rji ∈ Yj.

Conjectures rCij , r
C
ji are mutually consistent if r

C
ij =

dx∗j
dxi
(x∗i ; r

C
ji) and r

C
ji =

dx∗i
dxj
(x∗j ; r

C
ij). When the game is symmetric, the reaction functions are sym-

metric. Then a symmetric conjecture rC = rCij = rCji is consistent when

rC =
dx∗i
dxj
(x∗j ; r

C).

2.3 Evolutionary Stability of Conjectures

Suppose that conjectures is something a player is born with (one can inter-
pret them as optimism/pessimism attitudes). Consider a large population
of players who are repeatedly randomly matched. In a match, players ob-
serve the conjectures of each other and behave according to equilibrium of
the game with these conjectures. The (evolutionary) success of a given con-
jecture is determined by averaging of equilibrium payoffs of players with this
conjecture over all matches. The proportions of players with given conjecture
change according to their evolutionary success.
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For given conjecture rji of Player j, evolutionarily stable (ES) conjecture
of Player i is such conjecture rESij that no other conjecture rij perform bet-
ter or equally well in a population of Players i almost exclusively composed
of players with conjecture rESij (and the rest of the population have conjec-
ture rij). If in a monomorphic population of players with conjecture r

ES
ij a

small proportion of mutants with some other conjecture rij appears, evolu-
tionary forces will eliminate the mutants. This approach is a generalization
to asymmetric games of the indirect evolution approach of Guth and Yaari
(1992).
Given conjectures rij, rji, let ui(rij, rji) = ui(x

∗
i (rij, rji), x

∗
j(rij, rji)) be

the payoff of Player i when equilibrium x∗i (rij, rji), x
∗
j(rij, rji) is played. For

given conjecture r∗ji of Player j, conjecture r
ES
ij of Player i is evolutionarily

stable if ui(r
ES
ij , r

∗
ji) > ui(rij, r

∗
ji) for any rij 6= r∗ij (asymmetric games ESS,

Selten, 1980). A conjecture of Player i is evolutionarily stable against a given
conjecture of Player j if it is unique best response to that conjecture of Player
j in the game with payoffs ui(rij, rji).
Given conjectures rij, rji of the players, if the solutions of optimization

problems are interior, xi, xj satisfy Fi(xi, xj; rij) = 0, Fj(xi, xj; rji) = 0. Con-
sider the problem

max
xi,xj ,rij

ui(xi, xj) (2)

s.t. Fi(xi, xj; rij) = 0

Fj(xi, xj; rji) = 0

By the implicit function theorem, the system of equations Fi(xi, xj; rij) =

0, Fj(xi, xj; rji) = 0 determines functions x
∗
i (rij, rji), x

∗
j(rij, rji), when

∂Fi
∂xi

∂Fj
∂xj
−

∂Fi
∂xj

∂Fj
∂xi

6= 0 at rij, rji, x
∗
i (rij, rji), x

∗
j(rij, rji). Substituting the implicit func-

tions, problem (2) is equivalent to

max
rij

ui(x
∗
i (rij, rji), x

∗
j(rij, rji)) (3)

Problem (3) is exactly the problem to find a best response conjecture for
Player i, given conjecture rji of Player j.
Since problems (2) and (3) are equivalent, they have the same solution.

At an interior solution of problem (2) the following first order conditions
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hold:

∂ui
∂xi
− λ

∂Fi
∂xi
− µ∂Fj

∂xi
= 0 (4a)

∂ui
∂xj
− λ

∂Fi
∂xj
− µ∂Fj

∂xj
= 0 (4b)

∂ui
∂rij
− λ

∂Fi
∂rij
− µ∂Fj

∂rij
= 0 (4c)

where λ, µ are Lagrangean multipliers. Since ui does not depend directly on
rij,

∂ui
∂rij

= 0. Since Fj does not depend directly on rij,
∂Fj
∂rij

= 0. Furthermore,

since Fi =
∂ui
∂xi
+ ∂ui

∂xj
rij,

∂Fi
∂rij

= ∂ui
∂xj
. By Condition 1 ∂ui

∂xj
6= 0, thus ∂Fi

∂rij
6= 0.

Then from (4c) λ = 0, and from (4a) and (4b) it follows that ∂ui/∂xi
∂ui/∂xj

=
∂Fj/∂xi
∂Fj/∂xj

(since
∂Fj
∂xj

6= 0 by Condition 3).

Claim 3 At an interior solution of maxrij ui(x
∗
i (rij, rji), x

∗
j(rij, rji)) it holds

that ∂ui/∂xi
∂ui/∂xj

=
∂Fj/∂xi
∂Fj/∂xj

.

Condition 4 ∂Fi
∂xi

∂Fj
∂xj
− ∂Fi

∂xj

∂Fj
∂xi

6= 0 at rij, rji, x
∗
i (rij, rji), x

∗
j(rij, rji) for all

rij ∈ Yi, rji ∈ Yj.

By Claim 1 rij = − ∂ui/∂xi
∂ui/∂xj

. Combining with Claim 3, if interior conjecture

rij is evolutionarily stable, then rij = −∂Fj/∂xj
∂Fj/∂xi

. But by Claim 2 this means

that rij is weakly consistent. We have

Proposition 1 Suppose Conditions 1 to 4 are satisfied. If interior conjec-
ture rij is evolutionarily stable against given rji, then it is weakly consistent
for this rji.

A partial reverse of the proposition may be stated as following:

Proposition 2 Suppose Conditions 1 to 4 are satisfied. If interior conjec-
ture rij is not consistent for given rji, then it is not evolutionarily stable
against rji.

Additional conditions are needed for the full reverse. Condition 4 guar-
antees existence of equilibrium functions x∗i (rij, rji), x

∗
j(rij, rji). If sufficient

conditions for global unique optimum of problem (3) are satisfied, then weak
consistency of interior conjecture r∗ij implies that r

∗
ij is an ES conjecture. One

such sufficient condition is global concavity of the payoff function.
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Proposition 3 Suppose Conditions 1 to 4 are satisfied. If interior r∗ij is
weakly consistent for given rji and [ui(x

∗
i (r, rji), x

∗
j(r, rji)]

00
r < 0 for all r, then

r∗ij is evolutionarily stable against rji.

Another condition, often easier to check, is local concavity together with
the uniqueness of the critical point. Thus

Proposition 4 Suppose Conditions 1 to 4 are satisfied. If interior r∗ij is
weakly consistent, [ui(x

∗
i (r, rji), x

∗
j(r, rji)]

0
r = 0 has unique solution r∗ij, and

[ui(x
∗
i (r, rji), x

∗
j(r, rji))]

00
r |r=r∗ij < 0, then r∗ij is evolutionarily stable.

The analysis above is for Player i and for given conjecture rji of Player j.
Analogous analysis can be performed for Player j, keeping constant conjec-
ture rij of Player i. If interior conjectures r

∗
ij, r

∗
ji are mutually evolutionarily

stable, then they are mutually consistent. If interior conjectures are not
mutually consistent, then they are not mutually evolutionarily stable. Anal-
ogous extensions hold for the other propositions.
When the game is symmetric, it is natural to expect players to hold sym-

metric conjectures. Although in the symmetric case evolutionary stability is
not equivalent to strict best response, the propositions hold for the symmetric
case as well. An interior evolutionarily stable conjecture is a best response to
itself, so first order conditions have to hold, thus implying Propositions 1 and
2. Since a strict symmetric equilibrium is evolutionarily stable in the sym-
metric case, sufficient conditions of Propositions 3 and 4 imply evolutionary
stability in this case too.
The graphical illustration of the close connection between consistency and

evolutionary stability is given in the example in the next section. Intuitively,
rji determines the reaction function of Player j. By varying rij, Player i can
change his own reaction function and so can change its point of intersection
with the reaction function of Player j. Player i will choose such a point on
the reaction function of Player j where it is tangent to level curves of Player
i’s payoff function. But since rij by Claim 1 equals the slope of these level
curves, best response rij has to be equal to the slope of the reaction function
of Player j.
If conjecture rij is consistent, Player i ”knows” the reaction of Player

j to small changes in xi. Thus a player with consistent conjecture maxi-
mizes the ”correct” function ui(xi, xj(xi)), and so has higher payoff than if
conjecture is not consistent. Therefore the obtained result may look obvi-
ous. Nevertheless, Muller and Normann (2003) state ”the result that the
evolutionarily stable conjectures coincide with the consistent conjectures is
surprising as there is no obvious analogy between the two”, and the result
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was certainly also surprising for me. There was no reason to expect apriori
that ’more rationality’ (consistency) should lead to the same result as ’less
rationality’ (evolution); only after interpreting the result did the connection
appear obvious.

3 Examples

3.1 Linear-Quadratic Cournot Duopoly

Constant conjectures are justified when the reaction functions are indeed
linear. This is the case, for example, when in a duopoly the demand function
is linear and cost functions are quadratic. This is the case considered in
Muller and Normann (2003) and Dixon and Somma (2003).
Consider a symmetric Cournot duopoly with inverse demand function

P (qi, qj) = a − b(qi + qj), a > 0, b > 0 and cost function c(qi) = c
2
q2i , c > 0.

The strategy space is X = [0, b
a
). Let the conjecture space be Y = (−1, 1).

The payoff function is πi(qi, qj) = P (qi, qj)qi−ci(qi) = (a−b(qi+qj))qi− c
2
q2i .

Since ∂πi
∂qj
= −bqi 6= 0 in the interior of X, Condition 1 is satisfied. Player

i’s problem is maxqi(a− b(qi+ qj(qi)))qi− c
2
q2i , and

dqj
dqi
= rij. The first order

condition is Fi = a−2bqi− bqj− brijqi− cqi = 0. This implies q∗i = a−bqj
b(2+rij)+c

,

which is interior. Since the second order condition −2b(1 + rij) − c < 0 is
satisfied for all qi, Condition 2 is satisfied. Thus the reaction function is given
by Fi = 0.
Since ∂Fi

∂qi
= −b(2 + rij) − c 6= 0, Condition 3 is satisfied. Finally, since

∂Fi
∂qi

∂Fj
∂qj
− ∂Fi

∂qj

∂Fj
∂qi

= (−2b− c− brij) (−2b− c− brji) − b2 6= 0 when rij, rji ∈
(−1, 1), Condition 4 is also satisfied.
Consistent symmetric conjecture can be found from r =

dq∗i
dqj
= − ∂Fj/∂qi

∂Fj/∂qj
.

Then r = − b
2b+c+br

, or br2+(2b+ c)r+ b = 0. Let H(r) = br2+(2b+ c)r+ b.
Since H(−1) = −c < 0,H(0) = b > 0, and H(1) = 4b + c > 0, there is one
root on (−1, 1) and it is between −1 and 0. Thus there is unique consistent
conjecture rC ∈ (−1, 0). By Proposition 2 it is the unique interior candidate
for an evolutionarily stable conjecture.

The profit function can be written as πi(qi, qj) =
1
2
(qi)

2
³
2(a−b(qi+qj))

qi
− c
´
.

From the reaction functions (a − b(q∗i + q∗j )) − (b + brij)q∗i − cq∗i = 0, or
(a − b(q∗i + q∗j )) = (b + brij + c)q

∗
i . Therefore, at equilibrium πi(q

∗
i , q

∗
j ) =

1
2
(q∗i )

2 (2b(1 + rij) + c) and
∂πi(q∗i ,q

∗
j )

∂rij
= (q∗i )

2 b+ q∗i
∂q∗i
∂rij

(2b(1 + rij) + c).

The equilibrium for given rij, rji is q
∗
i =

a(b+c+brji)

(2b+c+brij)(2b+c+brji)−b2 . Then
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0
q1

q2

reaction function of Player 2

reaction functions of Player 1

level curves for profit of Player 1

Figure 1: Reaction functions and level curves

∂q∗i
∂rij

=
−bq∗i (2b+c+brji)

(2b+c+brij)(2b+c+brji)−b2 , and
∂πi(q∗i ,q

∗
j )

∂rij
= (q∗i )

2 b2(−(2b+c+brji)rij−b)
(2b+c+brij)(2b+c+brji)−b2 . The

unique solution of the first order condition
∂πi(q

∗
i ,q
∗
j )

∂rij
= 0 is rij = − b

2b+c+brji
.

When rji = r
C , the unique solution is rij = r

C ∈ (−1, 0).
Furthermore,

∂2πi(q
∗
i ,q
∗
j )

∂r2ij
=

b2(q∗i )
2
(2b+c+brji)

((2b+c+brij)(2b+c+brji)−b2)2 ((2b + c + brji)(−(2b +
c)+2brij)+4b

2). The sign of
∂2πi(q∗i ,q

∗
j )

∂r2ij
is determined by the sign of (2b+ c+

brji)(−(2b+ c) + 2brij) + 4b2. When rij = rji = rC , this expression becomes
− b
rC
(2brC − (2b+ c))+ 4b2 = 2b2+ (2b+c)b

rC
= 2b2(rC+1)+bc

rC
< 0. By Proposition

4

Proposition 5 In the linear-quadratic Cournot duopoly there exist unique
consistent conjecture and it is unique evolutionarily stable one.

To get the intuition behind the result, also for the general case of the
previous section, it is useful to consider a diagram. Conjecture r21 determines
a reaction function of Player 2, which is linear in this case. Varying r12 varies
reaction functions of Player 1, three of which are drawn on Figure 1. The
equilibrium is on the intersection of the reaction functions, thus varying r12
allows Player 1 to move along the given reaction function of Player 2. Some
level curves of Player 1 for the linear-quadratic duopoly are also drawn in
the figure. Profit is increasing in the south-east direction.
Since Player 1 can vary the equilibrium point by moving along the reaction

function of Player 2, the best profit Player 1 can achieve is at the point where
a level curve is tangent to the reaction function of Player 2. At this point
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the slope of the reaction function −∂F2/∂q1
∂F2/∂q2

equals the slope of the profit level

curve −∂π1/∂q1
∂π1/∂q2

. For Player 1, having a conjecture r12 means that the reaction
function of Player 1 cuts profit level curves at points where its slope equals
r12 (by Claim 1). Therefore, conjecture r12 equals the slope of the profit level
curves, which at the tangency point equals the slope of the reaction function
of Player 2, which means that r12 is consistent.

3.2 Differentiated Goods Bertrand Duopoly

Consider a symmetric differentiated goods Bertrand duopoly where the de-
mand of Firm i is given byDi(pi, pj) = A−pi+kpj, with A > 0 and k ∈ (0, 1).
Firms choose prices from the strategy set X = [0,∞). Suppose that costs are
zero. The profit of Firm i is πi(pi, pj) = pi(A− pi + kpj). Let Y = (−1, 1).
Since ∂πi

∂pj
= kpi 6= 0 in the interior of X, Condition 1 is satisfied. Given

conjecture rij, Player i’s problem is maxpi pi(A− pi+ kpj(pi)), and dpj
dpi
= rij.

The first order condition is Fi = A − 2pi + kpj + kpirij = 0, which implies
p∗i =

A+kpj
2−krij > 0. Since the second order condition 2(krij − 1) < 0 is satisfied

for all pi, Condition 2 is satisfied. Therefore the reaction function of Player
i is given by Fi = 0.
Condition 3 is satisfied since ∂Fi

∂pi
= −2 + krij 6= 0 on Y . Since ∂Fi

∂pi

∂Fj
∂pj
−

∂Fi
∂pj

∂Fj
∂pi
= (2− krij) (2− krji)− k2 6= 0 when rij, rji ∈ (−1, 1), Condition 4 is

satisfied too.
Consistent symmetric conjecture is found from r =

dp∗i
dpj
= −∂Fi/∂pj

∂Fi/∂pi
. Then

r = k
2−kr , or kr

2−2r+k = 0. The solutions of this equation are rC = 1±√1−k2
k

,

of which only the root rC = 1−√1−k2
k

> 0 is between−1 and 1. There is unique
consistent conjecture rC ∈ (0, 1). It is unique candidate for an evolutionarily
stable conjecture by Proposition 2.

The equilibrium for given rij, rji is p
∗
i =

A(2−krji+k)
(2−krij)(2−krji)−k2 . Then

∂πi(p∗i ,p
∗
j )

∂rij
=

∂πi
∂p∗i

∂p∗i
∂rij

+ ∂πi
∂p∗j

∂p∗j
∂rij

= (A − 2p∗i + kp∗j) kp∗i (2−krji)
(2−krij)(2−krji)−k2 + kp

∗
i

−Ak+p∗j (2−krji)k
(2−krij)(2−krji)−k2 .

From the reaction functions, p∗j =
A+kp∗i
2−krji and A − 2p∗i + kp∗j = −kp∗i rij, so

∂πi(p∗i ,p
∗
j )

∂rij
= (p∗i )

2 k2(k−rij(2−krji))
(2−krij)(2−krji)−k2 . The first order condition k−rij(2−krji) =

0 has unique solution rij =
k

2−krji for any rji.

For the second order condition,
∂2πi(p∗i ,p

∗
j )

∂r2ij
=

k2(p∗i )
2
(2−krji)

((2−krij)(2−krji)−k2)2 (3k(k −
rij(2 − krji)) − (2− krij) (2− krji) + k2). At rij = rji = rC 3k(k − rij(2 −
krji))− (2− krij) (2− krji) + k2 = k2(1− 1

rC
) < 0, therefore by Proposition

4
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Proposition 6 There exist unique consistent conjecture in the linear differ-
entiated goods Bertrand duopoly of this section and it is the unique evolu-
tionarily stable conjecture.

3.3 Semi-Public Good Games

Consider the following symmetric two player public good provision game.
Players have endowments of private good w. They can contribute xi to
the public good, and leave yi = w − xi of private good for consumption.
Let the strategy set be X = [−w,w], which is needed to guarantee interior
best response and can be interpreted as players having the opportunity to
contribute as well as to take out of a common pool of public good. The
contribution of Player j enters Player i’s utility with weight 0 < β < 1, thus
for Player i the total supply of public good is Xi = xi+ βxj. Players’ utility
functions are ui(yi,Xi). This is the model of semi-public goods considered
in Costrell (1991). Let Y = (−1, 1).
Suppose that the utility functions are ui(yi,Xi) = yαi X

1−α
i , where 0 <

α < 1. The payoff function of Player i is then ui(xi, xj) = (w − xi)α(xi +
βxj)

1−α. Given conjecture rij, the first order condition of the maximization

problem is Fi = −α
³
Xi
yi

´1−α
+ (1 − α)

³
yi
Xj

´α
(1 + βrij) = 0. Let v =

Xi
yi
. Then −αv1−α + (1 − α)v−α(1 + βrij) = 0 ⇒ v−α(−αv + (1 − α)(1 +

βrij)) = 0 ⇒ v = 1−α
α
(1 + βrij). This implies that

xi+βxj
w−xi =

1−α
α
(1 + βrij),

or xi + βxj =
1−α
α
(1 + βrij)(w − xi) ⇒ x∗i =

(1−α)(1+βrij)
1+(1−α)βrij w −

αβ
1+(1−α)βrij xj.

This x∗i is interior for all xj ∈ [−w,w]. Because second order conditions
−α(1 − α)

³
Xi

1−α
y2−αi

+ 2 1
Xα
i y

1−α
i

(1 + βrij) +
yαi

X1+α
i

(1 + βrij)
2
´
< 0 are satisfied,

reaction functions are given by Fi = 0, and Condition 2 is fulfilled.
From the reaction function

dx∗i
dxj

= − βα
1+(1−α)βrij . With a consistent sym-

metric conjecture r = − βα
1+(1−α)βr ⇒ (1 − α)βr2 + r + αβ = 0. Let G(r) =

(1− α)βr2 + r + αβ. Since G(−1) = β − 1 < 0 and G(0) = αβ > 0, there is
an r between −1 and 0 so that G(r) = 0. Such r is consistent, and let it be
denoted by rC . From rC = −∂Fi/∂xj

∂Fi/∂xi
it follows that rC = −β yi

Xi+yi
.

Equilibrium for given rij, rji is x
∗
i =

(1−α)[(1+βrij)(1+(1−α)βrji)−(1+βrji)αβ]
(1+(1−α)βrij)(1+(1−α)βrji)−α2β2 w

and analogous expression for x∗j . Though it is possible that x
∗
i < 0, it holds

that y∗i = w − x∗i > 0 and X∗
i = x

∗
i + βx∗j > 0.

It holds that ∂ui
∂xj

= (1−α)β
³
yi
Xi

´α
6= 0 in the interior, as required by Con-

dition 1. Also ∂Fi
∂xi
= α(1− α)(yi +Xi)[−

³
Xi
yi

´−α ³
1
y2i

´
−
³
yi
Xi

´α−1 ³
1
X2
i

´
(1 +
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βrij)] 6= 0 in equilibrium, thus Condition 3 is also fulfilled. Finally, ∂Fi
∂xi

∂Fj
∂xj
−

∂Fi
∂xj

∂Fj
∂xi

= α2(1 − α)2
(Xi+(1+βrij)yi)(Xj+(1+βrji)yj)

Xα+1
i y2−αi Xα+1

j y2−αj

[XiXj + Xiyj + yiXj + (1 −
β2)yiyj] 6= 0, satisfying Condition 4. By Proposition 2 the consistent conjec-
ture is the unique interior candidate for an evolutionary stable conjecture.
Since in equilibrium X∗

i = 1−α
α
(1 + βrij)y

∗
i , the utility function can

be rewritten as ui(x
∗
i , x

∗
j) =

¡
1−α
α

¢1−α
(1 + βrij)

1−αy∗i . Then
∂ui(x

∗
i ,x
∗
j )

∂rij
=¡

1−α
α

¢1−α
(1 + βrij)

−α
h
(1− α)βy∗i + (1 + βrij)

∂y∗i
∂rij

i
. It holds that

∂y∗i
∂rij

=

− ∂x∗i
∂rij

= − β(1−α)(1+(1−α)βrji)
(1+(1−α)βrij)(1+(1−α)βrji)−α2β2y

∗
i . Then

∂ui(x
∗
i ,x
∗
j )

∂rij
= − ¡1−α

α

¢1−α
(1 −

α)β2α
rij(1+(1−α)βrji)+αβ

(1+(1−α)βrij)(1+(1−α)βrji)−α2β2 (1 + βrij)
−αy∗i . The first order maximiza-

tion condition
∂ui(x

∗
i ,x
∗
j )

∂rij
= 0 has unique solution rij = − αβ

1+(1−α)βrji = rC ∈
(−1, 0) when rji = rC .
Let K = − ¡1−α

α

¢1−α
(1 − α)β2α < 0. For the second order condi-

tion,
∂2ui(x

∗
i ,x
∗
j )

∂r2ij
= K[ ∂

∂rij
((1 + βrij)

−αy∗i ) · rij(1+(1−α)βrji)+αβ
(1+(1−α)βrij)(1+(1−α)βrji)−α2β2 + (1 +

βrij)
−αy∗i · ∂

∂rij

rij(1+(1−α)βrji)+αβ
(1+(1−α)βrij)(1+(1−α)βrji)−α2β2 ]. At rij = rji = r

C the first term in

square brackets is 0. Since ∂
∂rij

rij(1+(1−α)βrji)+αβ
(1+(1−α)βrij)(1+(1−α)βrji)−α2β2 =

1+(1−α)βrC
(1+(1−α)βrC)2−α2β2

at rij = rji = r
C , the sign of the second term is determined by the signs of

1 + (1− α)βrC and (1 + (1− α)βrC)2 − α2β2. Since 1 + (1− α)βrC = −βα
rC
,

1 + (1 − α)βrC > 0 and (1 + (1 − α)βrC)2 − α2β2 = α2β2( 1
(rC)2

− 1) > 0.

Therefore
∂2ui(x∗i ,x

∗
j )

∂r2ij
< 0, and the consistent conjecture rC is also evolution-

arily stable.

Proposition 7 In the semi-public good game of this section the unique con-
sistent conjecture rC is unique evolutionarily stable conjecture.

4 Conclusion

The observations of Muller and Normann (2003) and Dixon and Somma
(2003) about evolutionary stability of consistent conjectures for a particular
duopoly case generalize to other games because they are based on coinci-
dence of first order conditions. Apart from the examples considered in the
paper, other games to which the results can be applied include common pool
resource exploitation games and rent-seeking games. Furthermore, it should
be possible to generalize the results to n-player aggregative games, i.e. games
in which payoffs depend on own strategy and on an aggregate of strategies
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of other players, treating the conjecture as conjecture about the aggregate
reaction of other players.
The intuition for evolutionary stability of consistent conjecture is that

a player with such conjecture correctly estimates the response of the other
player and thus maximizes the ”right” function, outperforming in evolution-
ary terms players with other conjectures. Though this result may appear
obvious, it certainly was not before the analysis. It is interesting that ’ra-
tional’ approach (consistency) and ’evolutionary’ approach lead to the same
outcome in many games. Evolutionary approach can provide a justification
for consistent conjectures as emerging from a dynamic process. Consistent
conjecture, on the other hand, is often easier to find, simplifying evolution-
ary analysis. Depending on the questions asked about a game, the two
approaches complement each other.
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