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Abstract

The paper proves that in two-player logit form symmetric contests
with concave success function, commitment to a particular strategy
does not increase a player’s payoff, while in contests with more than
two players it does. The paper also provides a contest-like game in
which commitment does not increase a player’s payoff for any number
of players.
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1 Introduction

It has been noted that in two-player symmetric contest games, locally com-
mitment to an action does not increase a player’s payoff (Dixit, 1987), while
in contests with more than two players it does. However, a proof of the global
result for general contests has not been provided (Kräkel, 2002, has a proof
of a related result for contests with linear success function).

The local result is based on the fact that the slope of the opponent’s
reaction function is zero at the symmetric equilibrium, and thus coincides
with the slope of the level curve of a player’s payoff function. This is a
necessary condition for the result but is not sufficient. A comment on Dixit’s
paper by Baye and Shin (1999) discusses an example of a contest game where
the result does not hold. They also provide a sufficient condition for there not
to be an increase in a player’s payoff for local deviations from equilibrium.
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This paper proves that when the contest probability of winning has the
logit form with concave success function, then the result holds globally, i.e.
a player does not increase payoff from commitment to any strategy, not
necessarily close to equilibrium.

Two-player contests may appear special as the result does not extend
to contests with more than two players. I present a game in which the
result holds for any number of players. The game is a modification of the
usual contest game in which each player participates in a contest against
the average effort of other players, making the game similar to a two-player
setup.

2 Two-player logit contests

Consider two-player symmetric contests in which Players 1 and 2 simultane-
ously choose an effort or investment levels xi ∈ [0,∞), i = 1, 2. The payoffs
are

u1(x1, x2) =
f(x1)

f(x1) + f(x2)
V − x1, (1)

where V > 0 is the value of the prize, f(x) ≥ 0 when x = 0, f ′(x) > 0 for all
x, f ′′(x) ≤ 0 for all x, and u2(x1, x2) = u1(x2, x1).

The first order conditions for Nash equilibrium are

∂u1

∂x1

=
f ′(x1)f(x2)

(f(x1) + f(x2))2
V − 1 = 0, (2)

∂u2

∂x2

=
f ′(x2)f(x1)

(f(x1) + f(x2))2
V − 1 = 0. (3)

The second order conditions ∂2ui/∂x2
i = f(xj)(f

′′(xi)(f(xi) + f(xj)) −
2(f ′(xi))

2)V/(f(xi)+f(xj))
3 < 0 are satisfied for all interior x1, x2. Therefore

the first order conditions define the reaction functions of the players, provided
that x1, x2 satisfying them are positive.

At a symmetric equilibrium x1 = x2 = x∗ the first order conditions
become f ′(x∗)V/(4f(x∗)) − 1 = 0. Since f ′(x) is decreasing and f(x) is in-
creasing, if limx→0 f ′(x)V/(4f(x)) > 1 and limx→∞ f ′(x)V/(4f(x)) < 1, then
there is unique interior symmetric equilibrium. The conditions are satisfied
for example by function f(x) = xr for r ≤ 1.

The second cross-derivative of the payoff function is

∂2ui

∂xi∂xj

=
f ′(xi)f

′(xj)(f(xi)− f(xj))

(f(xi) + f(xj))3
V. (4)
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From the first order conditions, the slope of the reaction function x̂i(xj) of
Player i is dx̂i/dxj = −(∂2ui/∂xi∂xj)/(∂2ui/∂x2

i ). Thus

dx̂i

dxj

= − f ′(x̂i)f
′(xj)(f(x̂i)− f(xj))

f(xj)(f ′′(x̂i)(f(x̂i) + f(xj))− 2(f ′(x̂i))2)
. (5)

Then dx̂i/dxj > 0 when x̂i > xj and dx̂i/dxj < 0 when x̂i < xj. Therefore
x̂i(xj) is decreasing when xj > x∗. It hits zero when f ′(0)V/f(xj) − 1 = 0,
thus the reaction function is defined by the first order condition when xj <
f−1(f ′(0)V ).

Suppose that Player 1 can commit to an action x1, observable by Player
2 who then chooses x2. Player 1 then maximizes u1(x1, x̂2(x1)). The first
order condition for maximization is

du1

dx1

=
∂u1

∂x1

+
∂u1

∂x2

dx̂2

dx1

= 0.

At the symmetric equilibrium x∗ the first term ∂u1/∂x1 = 0. From
equation (4), at this equilibrium dx̂2/dx1 = 0. Therefore du1/dx1 = 0 at x1 =
x∗. The necessary condition for maximization is satisfied at the simultaneous
move game equilibrium x∗. This is the result noted by Dixit (1987). However,
whether x1 = x∗ is indeed a global maximum is left open, although Dixit
notes that this depends on the curvatures of the best response function and
of level contours.

The second order condition for maximization is

d2u1

dx2
1

=
∂2u1

∂x2
1

+
∂2u1

∂x2∂x1

dx̂2

dx1

+

(
∂2u1

∂x1∂x2

+
∂2u1

∂x2
2

dx̂2

dx1

)
dx̂2

dx1

+
∂u1

∂x2

d2x̂2

dx2
1

< 0.

At symmetric equilibrium dx̂2/dx1 = 0, thus ∂2u1/∂x2
1+∂u1/∂x2 ·d2x̂2/dx2

1 <
0. From (5), and because at equilibrium d(dx̂2/dx1)/dx1 = ∂(dx̂2/dx1)/∂x1,

d2x̂2

dx2
1

(x∗) =
(f ′(x∗))3

2f(x∗)(f ′′(x∗)f(x∗)− (f ′(x∗))2)
.

Since ∂u1/∂x2 = −f(x1)f
′(x2)/(f(x1) + f(x2))

2, at symmetric equilibrium

d2u1

dx2
1

=
f ′′(x∗)f(x∗)− (f ′(x∗))2

4(f(x∗))2
V− f ′(x∗)

4f(x∗)
V

(f ′(x∗))3

2f(x∗)(f ′′(x∗)f(x∗)− (f ′(x∗))2)
.

The first term is negative while the second is positive, thus the sign
of the whole expression is unclear yet. From the first order conditions, at
equilibrium f ′(x∗)V = 4f(x∗). Then

d2u1

dx2
1

=
2(f ′′(x∗)V − 16f(x∗))2 − 162f(x∗)2

8(f ′′(x∗)f(x∗)− (f ′(x∗))2)
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Since f ′′ ≤ 0, the minimum of the numerator is achieved when f ′′ = 0. Then
the expression is positive, thus the numerator is positive for all x∗. Since the
denominator is negative, d2u1/dx2

1 < 0 at equilibrium. Therefore locally the
second order condition for a maximum is satisfied. This can also be checked
by using the condition in Baye and Shin (1999) on the derivatives of the
contest winning probability function.

It was not possible to sign d2u1/dx2
1 for all x1. To prove that x1 = x∗ is

global maximum, consider the following. The level curve of Player 1 passing
through the symmetric equilibrium x∗ where f ′(x∗)V = 4f(x∗) is

f(x1)

f(x1) + f(x2)
V − x1 =

1

2
V − x∗. (6)

The reaction function of Player 2 is given by equation (3). If one can show
that the level curve and the reaction function have only x∗ in common, then
the local second order condition proved above is sufficient for a global max-
imum because the reaction function is always on the side of the level curve
that represents a lower payoff for Player 1.

From the level curve, f(x1) + f(x2) = f(x1)V/(V/2− (x∗ − x1)), or

f(x2) = f(x1)
V/2 + (x∗ − x1)

V/2− (x∗ − x1)
. (7)

Substituted into the reaction function, f(x1)f
′(x2)V = (f(x1)V/(V/2−(x∗−

x1)))
2, or

f ′(x2) = f(x1)
V

(V/2− (x∗ − x1))2
. (8)

A point on both the reaction function of Player 2 and the equilibrium payoff
level curve of Player 1 satisfies the two equations (7) and (8).

The derivative of the right-hand side of (8) w.r.t. x1 is V (f ′(x1)(V/2 −
(x∗ − x1)) − 2f(x1))/(V/2 − (x∗ − x1))

3. Since V/2 − (x∗ − x1) > 0 (as
x∗ ≤ V/2, otherwise a player’s payoff would be negative in equilibrium), the
denominator is positive. Consider the numerator. Its derivative w.r.t. x1

is f ′′(x1)(V/2 − (x∗ − x1)) − f ′(x1) < 0. Since the numerator is zero when
x1 = x∗ and is decreasing, f(x1)V (1/(V/2− (x∗ − x1)))

2 is decreasing when
x1 > x∗ and increasing when x1 < x∗.

The derivative of the right-hand side of (7) w.r.t. x1 is (f ′(x1)(V
2/4 −

(x∗ − x1)
2) − V f(x1))/(V/2 − (x∗ − x1))

2. The derivative of the numerator
is f ′′(x1)(V

2/4 − (x∗ − x1)
2) + f ′(x1)(2(x∗ − x1) − V ). From equation (6),

x∗−x1 = (1/2−f(x1)/(f(x1)+f(x2)))V . For positive x1, x2, |x∗−x1| < V/2.
Therefore the derivative of the numerator is negative. Since the numerator is
zero when x1 = x∗, the same conclusion as in the previous paragraph follows:
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f(x1)(V/2 + (x∗ − x1))/(V/2 − (x∗ − x1)) is decreasing when x1 > x∗ and
increasing when x1 < x∗.

When x1 = x∗, then equation (7) becomes f(x2) = f(x∗). Since f is a
strictly increasing function, then x2 = x∗. Equation (8) becomes f ′(x∗) =
4f(x∗)/V , which is satisfied. Thus x1 = x2 = x∗ is one point satisfying the
two equations.

Consider x1 < x∗. Since the right-hand side of equation (7) is increasing,
f(x1)(V/2 + (x∗−x1))/(V/2− (x∗−x1)) < f(x∗). Then the x2 that satisfies
equation (7) is less than x∗. Then f ′(x2) ≥ f ′(x∗) = 4f(x∗)/V . Since the
right-hand side of equation (8) is also increasing, f(x1)V (1/(V/2 − (x∗ −
x1)))

2 < 4f(x∗)/V . Thus the second equation is not satisfied. A similar
reasoning shows that the two equations cannot be satisfied for x1 > x∗.
Therefore x1 = x2 = x∗ is the unique point that satisfies the two equations.

Since the local second order conditions are satisfied for x1 = x2 = x∗ and
this is the only point that the level curve passing through it has in common
with the reaction function of Player 2, any other points on the reaction
function lie on a lower level curve of Player 1. Thus

Theorem 1 Suppose that in two-player symmetric contests with payoff func-
tion (1), where the contest success function satisfies f(0) ≥ 0, f ′(x) >
0, f ′′(x) ≤ 0 for all x > 0, there exists a simultaneous move interior sym-
metric equilibrium x∗. Then the subgame perfect equilibrium outcome when
Player 1 can commit to an observable action before Player 2 is x1 = x2 = x∗.

As the equality of slopes of the reaction function and the level curve at
the simultaneous move equilibrium is necessary but not sufficient, Baye and
Shin (1999) discuss contest games where a player can gain by deviating from
equilibrium because the local second order condition do not hold. They show
that among such games are logit form contests with f(x) = xr for r ∈ (

√
2, 2].

3 Contests with more than two players

A symmetric n-player contest with the logit form probability of winning the
prize has payoff functions

ui(x1, . . . , xn) =
f(xi)∑n

j=1 f(xj)
V − xi, (9)

with the same assumptions on f(x) as in the previous section, f(0) ≥ 0,
f ′(x) > 0, f ′′(x) ≤ 0 for all x > 0.
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The derivatives of the payoff function are:

∂ui

∂xi

=
f ′(xi)

∑
k 6=i f(xk)

(
∑n

k=1 f(xk))
2 V − 1,

∂ui

∂xj

=
−f(xi)f

′(xj)

(
∑n

k=1 f(xk))
2V,

∂2ui

∂x2
i

=
(f ′′(xi)

∑n
k=1 f(xk)− 2(f ′(xi))

2)
∑

k 6=i f(xk)

(
∑n

k=1 f(xk))
3 V,

∂2ui

∂xi∂xj

=
f ′(xi)f

′(xj)(f(xi)−
∑

k 6=i f(xk))

(
∑n

k=1 f(xk))
3 V.

At an interior (x, . . . , x) ∂ui/∂xi = (n−1)f ′(x)/n2f(x)·V −1 and ∂2ui/∂x2
i <

0. A solution to (n − 1)f ′(x)V/(n2f(x)) − 1 = 0 and thus an interior sym-
metric equilibrium x∗ exists when limx→0(n − 1)f ′(x)V/(n2f(x)) > 1 and
limx→∞(n − 1)f ′(x)V/(n2f(x)) < 1. These conditions are satisfied e.g. by
f(x) = xr for r ≤ 1.

Suppose that Player 1 can commit to an action x1, observable by all
other players who then choose their actions simultaneously. The first order
condition for maximization of u1(x1, x̂2(x1), . . . , x̂n(x1)) is

du1

dx1

=
∂u1

∂x1

+
∂u1

∂x2

dx̂2

dx1

+ . . . +
∂u1

∂xn

dx̂n

dx1

.

Equilibrium reaction functions x̂i(x1) for i 6= 1 are given implicitly by the
first order conditions ∂ui/∂xi(x1, . . . , xn) = 0, i = 2, . . . , n. Differentiating
each of the equations w.r.t. x1 gives

∂2ui

∂x1∂xi

+
∂2ui

∂x2∂xi

dx̂2

dx1

+ . . . +
∂2ui

∂xn∂xi

dx̂n

dx1

= 0, i = 2, . . . , n.

At symmetric equilibrium xi = x∗ for all i = 1, . . . , n. Then ∂2ui/∂x2
i =

(n − 1)(nf ′′(x∗)f(x∗) − 2(f ′(x∗))2)V/(n3f(x∗)2) for all i = 2, . . . , n and
∂2ui/∂xj∂xi = (2 − n)(f ′(x∗))2V/(n3f(x∗)2) for all i, j 6= i. Summing up
the n− 1 equations in the above display gives

(n− 1)
∂2ui

∂xj∂xi

+

(
∂2ui

∂x2
i

+ (n− 2)
∂2ui

∂xj∂xi

)(
dx̂2

dx1

+ . . . +
dx̂n

dx1

)
= 0. (10)

Since at equilibrium ∂u1/∂xi = −f ′(x∗)V/(n2f(x∗)) 6= 0 for all i 6= 1, and
∂u1/∂x1 = 0, the first order condition for maximization becomes du1/dx1 =
∂u1/∂xi · (dx̂2/dx1 + . . . + dx̂n/dx1) = 0. However, from equation (10)
dx̂2/dx1+. . .+dx̂n/dx1 6= 0 for n > 2, since ∂2ui/∂xj∂xi 6= 0 then. Therefore
the symmetric equilibrium x∗ cannot be a part of subgame perfect equilib-
rium when Player 1 can commit to an action.

6



Proposition 1 In symmetric n-player contests with payoff function (9), the
subgame perfect equilibrium outcome when one player can commit to an ob-
servable action before other players is different from the simultaneous move
equilibrium x∗ when n > 2.

The result is a particular case of a result in Dixit (1987) where asym-
metric contests are also allowed. Note that the result hinges on whether
∂2ui/∂xj∂xi = 0 as this determines whether dx̂i/dx1 = 0.

The contests analyzed so far appear to have a difference between cases
n = 2 and n > 2. However, the payoff functions can be modified to construct
games in which commitment does not give an advantage for other values of
n or indeed for any value of n. Consider the payoff function

ui(x1, . . . , xn) =
kf(xi)

kf(xi) + m
∑

j 6=i f(xj)
V − xi.

The second cross-derivative of this payoff function is

∂2ui

∂xi∂xj

=
kmf ′(xi)f

′(xj)(kf(xi)−m
∑

j 6=i f(xj))(
kf(xi) + m

∑
j 6=i f(xj)

)3 V

and at symmetric equilibrium x∗

∂2u1

∂xi∂xj

=
km(f ′(x∗))2(k −m(n− 1))

(k + m(n− 1))3f(x∗)2
V.

This expression is zero when k = m(n − 1). For various values of n, one
can construct games so that the necessary condition for maximization of
u1(x1, x̂2(x1), . . . , x̂n(x1)) is satisfied. For example, when n = 3, then taking
m = 1/2 and k = 1 gives a game for which it is satisfied.

Taking m = 1 and k = n − 1 gives a game in which the slope of the
reaction function is zero at symmetric equilibrium for all n. Rewriting this
game’s payoff function as

ui(x1, . . . , xn) =
f(xi)

f(xi) + 1
n−1

∑
j 6=i f(xj)

V − xi (11)

gives an interpretation that each player engages in a bilateral contest against
the average effort of all other players. Since the chances to win the prize do
not always add up to 1 when summed over all players, the game can be seen
as a contest for a variable total prize. For this game, independently of n,
commitment may have no advantage.
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To show that there is a game in which the possibility of commitment by
Player 1 gives no advantage for any n, consider the case f(x) = x. The
symmetric interior equilibrium for this game is found from the first order
conditions

1
n−1

∑
j 6=i xj

(xi + 1
n−1

∑
j 6=i xj)2

V − 1 = 0.

When xi = xj = x∗, then x∗ = V/4.
For any x1 > 0, in an interior equilibrium for other players x̂i = x̂j.

To show this, note that from the first order condition of Player i, (x1 +∑
j 6=i x̂j)V/(n − 1) = (x̂i + (x1 +

∑
j 6=i x̂j)/(n − 1))2. Subtracting the first

order condition for Player j from the one of Player i gives (x̂j − x̂i)V/n =
(x̂j − x̂i)(1/(n− 1)− 1)(1 + 1/(n− 1)(x̂i + x̂j) + 2/(n− 1)(x1 +

∑
k 6=i,j x̂k)).

If x̂j 6= x̂i, then x̂j − x̂i can be cancelled from the two sides. But then the
left-hand side is positive while the right-hand side is negative. Therefore
x̂j = x̂i at an interior equilibrium.

When x̂i = x̂ for all i 6= 1, the level curve of Player 1 through the
symmetric equilibrium is

x1

x1 + x̂
− x1 =

V

4
(12)

and x̂ satisfies the first order condition for Players i, i 6= 1

1
n−1

(x1 + (n− 2)x̂)

(x̂ + 1
n−1

(x1 + (n− 2)x̂))2
V − 1 = 0. (13)

From the level curve x̂ = x1(3V/4−x1)/(V/4+x1). The first order condition
can be rewritten as F (x1, x̂) = (n−1)(x1+(n−2)x̂)V −((2n−3)x̂+x1)

2 = 0.
Substituting x̂ from the level curve, simplifying and factorizing the expression
gives (4x1−V )2(x1(4n2−4n+4)+V (8n−3n2−5)) = 0. The last parenthesis
is zero when x1 = V (3n2 − 8n + 5)/(4n2 − 4n + 4). The right-hand side is
larger than V/4 for n > 1 and then x̂ < 0 from the level curve. Thus the
only solution with both x1, x̂ positive is x1 = V/4 and x̂ = V/4.

Player 1 maximizes u1(x1, x̂(x1), . . . , x̂(x1)). The local second order con-
dition for maximum is d2u1/dx2

1 < 0. At equilibrium d2u1/dx2
1 = ∂2u1/∂x2

1 +
(n − 1)∂u1/∂x̂ · d2x̂/dx2

1. From the reaction function of the other players,
dx̂/dx1 = −(∂F/∂x1)/(∂F/∂x̂) and at equilibrium ∂F/∂x1 = 0. Then
d2x̂/dx2

1 = −(∂2F/∂x2
1)/(∂F/∂x̂). Evaluating the appropriate derivatives

at x1 = x̂ = V/4 gives d2u1/dx2
1 = (−4(n− 1) + 2)/(V (n− 1)) < 0 for n > 1.

Since the local second order condition is satisfied and the reaction function
of players i, i 6= 1 does not have common points with the level curve of Player
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1 other than the symmetric equilibrium point x1 = x∗ = V/4, choosing x1

different from V/4 cannot give Player 1 higher payoff. Therefore

Proposition 2 In the game with payoff function (11) with f(x) = x, the
outcome of the subgame perfect equilibrium when Player 1 can commit to an
observable action is the same as the outcome in the equilibrium of simulta-
neous move game x∗ = V/4 for any n.

4 Conclusion

This paper has proven that in two-player logit form symmetric contests
with concave success functions, the possibility of commitment does not give
advantage to the player who can commit. In strategic situations (when
∂ui/∂xj 6= 0), the necessary condition for this is that at equilibrium the
reaction function of the other player has the same slope as the player’s pay-
off level curve. This condition is not sufficient in general but in the contests
analyzed, commitment indeed does not lead to a higher payoff.

In n-player symmetric contests with n > 2 the possibility of commitment
is always advantageous. Modifying the payoff function to represent the game
as bilateral contest against the average effort of other players leads to a game
where commitment does not work for any n.

Commitment may have several interpretations apart from the direct com-
mitment to actions. For example, delegation (e.g. Vickers, 1985) or indirect
evolution of preferences (Güth and Yaari, 1992) can be seen as using commit-
ment. In those cases the committed player has a different reaction function
and therefore the outcome shifts along the reaction function of the opponent.
The results of this paper and of Possajennikov (2008) imply that in games
where commitment to an action does not increase a player’s payoff, prefer-
ences coinciding with material payoffs are stable, or delegates are provided
with incentives to maximize principal’s payoff. Two-player contests and bi-
lateral contests against the average effort of other players represent examples
of such games.

References

Baye, M.R., Shin, O. (1999) “Strategic Behavior in Contests: Comment”,
American Economic Review 89(3), 691–693.

Dixit, A. (1987) “Strategic Behavior in Contests”, American Economic Re-
view 77(5), 891–898.

9
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