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Abstract

It is well known that the competing risks model is identified if the dependence structure

between risks (the copula function) is known or assumed. Special cases include indepen-

dence of risks or independent censoring. If the copula function is not specified, parameters

of interest are only set identified. As these sets are often wide in applications, it is difficult

to obtain informative results. In this paper we strike a balance between imposing too much

and too little structure. By establishing a general link between observable changes in sub-

distributions (cumulative incidence curves) and the sign of changes in marginal distributions

(the causal treatment effect) we are able to show the identifiability of the latter if the copula

function is independent of the varying covariate. This has two important implications: First,

it is possible to obtain informative results even if the copula function is mainly unspecified

or unknown. Second, the sign of the covariate effect tends to be invariant with respect to

the chosen dependence structure. Our method is computationally very simple and our sim-

ulations suggest that it identifies and consistently estimates the sign of the treatment effect

for large sets of duration times. An application to unemployment duration data illustrates

the usefulness of our method for empirical research.

Keywords: dependent censoring, nonparametric estimation, bootstrap

JEL: C14, C24, C41

1 Introduction

The non-identifiability of the competing risks model (Cox, 1962; Tsiatis, 1975) implies that data

alone is only partly informative for the identification of the parameters of interest. If we are, for

example, interested in the marginal distribution of a latent competing variable, this functional

can only be bounded (Peterson, 1976). See also Manski (2003) for partially identified probability

distributions. Honoré and Lleras-Muney (2006) consider the accelerated failure time model and

obtain tighter bounds on the marginal effect from discrete covariates. Point identification can

be achieved by making assumptions on the marginal distributions and the dependence structure

between the competing risks (Abbring and van den Berg, 2003) or by fully specifying a the

dependence structure (a copula function) between the competing risks (Zheng and Klein, 1995). By

performing a sensitivity analysis, Lo and Wilke (2010) observe that the sign of a covariate effect -
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the causal treatment effect - is often the same for any assumed copula function while the magnitude

of the effect varies considerably. Basing on this observation we take a different route in this paper

by focusing on the identifiability of the sign of a covariate effect rather than its magnitude. Indeed,

we can show that it is identifiable by exploiting variation in the cumulative incidence curves (CIC)

and the survival function of the observed failure time under a mild condition. Our simulations

and illustrations with data suggest that our identification approach provides substantially more

informative results than the Peterson bounds. Our method is very simple and general as it is fast

to compute and it works with existing non-, semi- and parametric estimators for the CICs (e.g.

Jeong and Fine, 2007, and Peng and Fine, 2009). Although our approach is less informative than

point estimates, we claim that it still is very informative for research in various disciplines such

as biometrics, econometrics and social sciences. We therefore conceive our novel approach as a

useful tool for a wide research community.

The structure of this paper is as follows: the next section introduces the model and presents our

main identification results. Section 3 suggests nonparametric estimation and inference procedures.

Section 4 presents simulation results. Section 5 illustrates our method by estimating the effect of

various covariates on the job finding probability for unemployed individuals in Germany.

2 Identifiability

We first consider a model with two latent competing random variables T1 and T2 ∈ IT ⊂ R+.

A model with more than two competing risks is considered in Section 2.2. T1 and T2 are times

to failure or times to the events 1 and 2 respectively. While T1 and T2 are not observable,

T = min(T1, T2) and δ = argminjTj are observed. There is one observable binary covariate x

which takes values x = x0 (control group) and x = x1 (treatment group). Data on (T, δ, x) enable

the identifiability of the unknown cumulative incidence curves Qj(t; x) = Pr(T ≤ t, δ = j| x),

the unknown cause-specific crude hazard functions λj(t;x) = lim∆→0 Pr(t ≤ T ≤ t + ∆, δ =

j|T ≥ t, x)/∆ for risk j = 1, 2 and the unknown survival function S(t; x) = Pr(T > t| x) of

T = min(T1, T2) for all t. The marginal distribution functions Fj(t;x) = Pr(Tj ≤ t| x) and the

marginal survival functions Sj(t;x) = 1 − Fj(t;x) are also unknown for all j and t but they are

not identifiable from data alone (Cox, 1962; Tsiatis, 1975).

Assumption 1 Sj(t;x), 1 − Qj(t; x) and S(t;x) are continuous and strictly decreasing in t for
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all j.

Let be S−1 the inverse of the functional S. We denote ∆xFj(t) = Fj(t; x1) − Fj(t; x0) as the

covariate or treatment effect on Fj(t; x0) and its direction by sign |∆xFj(t)|. The operator sign |w|

equals to the sign of the variable w. It is +1, 0 or -1 if w is positive, zero or negative respectively.

In our model ∆xFj(t) is unknown and not identified. However, in the following we show that

sign |∆xFj(t)| can be identified from the CICs and the survival function for some duration time

under a very mild condition. Note that in contrast to popular semiparametric models such as the

proportional hazard model there is no restriction on the nature of the treatment effect acting on

the duration time as the sign of ∆xFj(t) can vary with t.

An integral part of the competing risks model is the dependence structure between the risks

which is determined by the survival copula C(s1, s2; x) = Pr(S1 ≤ s1, S2 ≤ s2;x). The competing

risks model is fully characterised by

Q1(t; x) =
∫ ζ21(s1;x)

0

∫ 1

S1(t;x)
C ′′(s1, s2;x) ds1 ds2;

S(t; x) = C{S1(t; x), S2(t;x); x},
(1)

where ζ21(s1;x) = S2{S−1
1 (s1; x); x} is a unique link function that defines the relationship between

S1(t;x) and S2(t;x) for all t and x (Lemma A1 of Zheng and Klein, 1995). For more details see also

Lo and Wilke (2010). The probability density function of the copula is denoted by C ′′(s1, s2;x) =

∂2C(s1, s2; x)/∂s1∂s2. Model (1) implies that S1(t; x) and S2(t;x) are determined jointly by the

copula function S(t; x) = C{S1(t;x), S2(t; x); x} and the link function S2(t; x) = ζ21{S1(t;x); x} as

Qj(t;x) and S(t; x) are directly identified from the data. When the copula function is known, the

link function is fixed by Q1(t;x). Then the two unknowns S1(t;x) and S2(t; x) can be determined

by solving the two equations for all t.

In this paper we consider a model with an unknown copula function C(s1, s2; x). For this reason

ζ21 and Fj for all j are not identified. Without imposing additional assumptions, the treatment

effect can only be bounded by using the Peterson bounds for the marginal distributions:

∆xQj(t)−Qi(t;x0) ≤ ∆xFj(t) ≤ ∆xQj(t) +Qi(t;x1) (2)

with ∆xQj(t) = Qj(t;x1) − Qj(t;x0) for j = 1, 2 and j ̸= i. We denote IPj as the nonparametric

identification set for sign |∆xFj(t)|. IPj consists of all t for which ∆xQj(t) − Qi(t;x0) > 0 or

∆xQj(t) +Qi(t; x1) < 0 or the two former being equal to zero. As the Peterson bounds are often
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wide, IPj is likely small and no informative result can be obtained in an application. In the following

we show that it is possible to obtain a considerably larger, although different, identification set by

imposing a restriction on the unknown copula function.

Assumption 2 C(s1, s2; x1) = C(s1, s2; x0) = C(s1, s2).

Despite being difficult to test in applications, most popular parametric, semi-, and non-parametric

duration models make stronger assumptions on the dependence structure which imply Assumption

2. This includes the Kaplan-Meier estimator, the accelerated failure time model and the (mixed)

proportional hazard model. For more details see Bond and Shaw (2006). In their paper they

derive bounds for covariate-time transformations under a condition which implies Assumption 2.

Although Assumption 2 limits the covariate effect to Fj(t; x) for all j, ζ21(s1; x) and S(t; x) still

change with x. Assumption 2 is a crucial condition for our approach to identification, as it builds

up observable linkages between the observable changes in the CICs and the unobserved changes in

the marginal distributions. It can be seen from (1) that, when the integrand C ′′ is unaffected by

the treatment, the direction of the covariate effect on Q1(t;x) and F1(t;x) can be analyzed by the

changes in the size of the two domains in the integration function of Q1(t;x). For the purpose of

illustration let us consider a special case where the treatment acts positively on F1(t) while keeping

F2(t) constant for all t. In this case, S1(t;x1) < S1(t;x0) for all t, and ζ21(s1;x1) > ζ21(s1;x0) for

all s1. Thus,

Q1(t;x1) =

∫ ζ21(s1;x1)

0

∫ 1

S1(t;x1)

C ′′ ds1 ds2 >

∫ ζ21(s1;x0)

0

∫ 1

S1(t;x1)

C ′′ ds1 ds2

>

∫ ζ21(s1;x0)

0

∫ 1

S1(t;x0)

C ′′ ds1 ds2 = Q1(t;x0).

Therefore, Q1(t;x) increases with F1(t;x) for all t. This special case illustrates that there is a link

between the direction of the covariate effect on Fj and the sign of the effect on Qj.

To fully develop this observation into a general result, we exploit the fact that S1(t; x) and

S2(t;x) are jointly determined by the copula function and the link function. We consider an

analytical 2-part decomposition of the change in the marginal distributions, where we isolate two

effects. The first part is the counterfactual movement of the marginal distributions due to the

change in the link function from ζ21(s1;x0) to ζ21(s1; x1) while keeping the copula function constant

at S(t; x0). S1 and S2 at t move from [S1(t; x0), S2(t;x0)] to [S1(t
c;x1), S2(t

c;x1)] at some tc, such
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that S1 and S2 become the solutions of (i) C{S1(t
c;x1), S2(t

c;x1)} = C{S1(t;x0), S2(t; x0)} or

S(tc;x1) = S(t;x0) (3)

and (ii) S2(t
c; x1) = ζ21{S1(t

c;x1); x1}. This is denoted as the copula effect.

Definition 1 The copula effect of a covariate change from x0 to x1 on the marginal distribution

in model (1) is defined by ∆c
xFj(t) = Fj(t

c;x1)− Fj(t;x0), with tc satisfying condition (3).

The difference between tc and t has an interpretation of a quantile treatment effect at the S(t;x0)-

quantile. tc and t are generally different if the link function ζ21(s1;x) changes in response to a

covariate change, except when t = tc = 0 at S(t;x0) = S(tc;x1) = 1.

The second part of the decomposition characterises the changes in the marginal distributions

to [S1(t, x1), S2(t, x1)] which are due to the change from S(t;x0) to S(t; x1) while keeping the link

function unchanged. S1 and S2 become solutions to (i) C{S1(t; x1), S2(t;x1)} = S(t; x1) and (ii)

S2(t;x1) = ζ21{S1(t; x1); x1}. We denote this as the marginal distribution effect.

Definition 2 The marginal distribution effect of a covariate change from x0 to x1 on the marginal

distribution Fj(t, x0) in model (1) is defined by ∆m
x Fj(t) = Fj(t;x1)− Fj(t

c;x1), with tc satisfying

condition (3).

A graphical presentation of ∆m
x Fj(t) and ∆c

xFj(t) is given in the supplemental material. We

obtain the following useful results.

Lemma 1 Under Assumptions 1 and 2 we have for all t ∈ IT in Model (1):

1. ∆c
xFj(t) and ∆m

x Fj(t) are unique for all j.

2.

∆xFj(t) = ∆c
xFj(t) + ∆m

x Fj(t) for all j. (4)

3. sign |∆c
xFj(t)| and sign |∆m

x Fj(t)| determine the sign of ∆xFj(t) for at least one j.

The uniqueness follows from the uniqueness of tc. The decomposition in (4) follows directly from

Definitions 1 and 2. For more details on the proof see the Appendix. As a next step we define

observable analogues of the marginal distribution effect and the copula effect.
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Definition 3 We define ∆c
xQj(t) = Qj(t

c;x1)−Qj(t; x0) as the copula effect on the CIC for risk

j = 1, 2 for all t in model (1), with tc satisfying the condition (3).

Definition 4 We define ∆m
x Qj(t) = Qj(t;x1) − Qj(t

c; x1) as the marginal distribution effect on

the CIC for risk j = 1, 2 for all t in model (1), with tc satisfying condition (3).

A graphical illustration of ∆m
x Qj(t) and ∆c

xQj(t) is also given in the supplemental material. The

following two lemmas establish systematic relationships between the unobserved sign |∆c
xFj(t)|

and sign |∆m
x Fj(t)| and the observable analogues based on the CICs.

Lemma 2 In model (1) under Assumptions 1 and 2, we have for j = 1, 2 and for all t

sign |∆m
x Fj(t)| = sign |∆m

x Qj(t)|. (5)

Lemma 2 can be proved by using Definitions 2 and 4. Fj(t;x) and Qj(t;x) are both strictly

increasing functions in t, and thus sign |∆m
x Fj(t; x)| equals sign |∆m

x Qj(t;x)| for any tc and t. As

the equivalent result for the copula effect does not hold for all t, we consider a restricted set only.

Definition 5 Let {t́k} for k = 0, 1, 2, . . . be a finite sequence of t ∈ IT such that ∆c
xQj(t́k) = 0

with t́0 = 0. Let {t̀k} for k = 1, 2, . . . be a finite sequence of t ∈ IT such that |∆c
xQj(t)| has its first

local maximum in the interval (t́k−1, t́k]. Moreover, IIj =
∪

k≥0[t́k, t̀k+1] ⊂ IT .

IIj is observable since t́k and t̀k are observed for all k. The following result suggests that IIj is the

identification set for the sign of the copula effect on the marginal distributions for risk j.

Lemma 3 In model (1) under Assumptions 1 and 2, we have for j = 1, 2 and for all t ∈ IIj

sign |∆c
xFj(t)| = sign |∆c

xQj(t)|. (6)

The proof of Lemma 3 can be found in the Appendix. The intuition behind Lemma 3 can be

illustrated by a special case where the link function ζ21(s1, x) is a monotone function in x. We

have for all s1 either (i) ζ21(s1, x1) ≤ ζ21(s1, x0) or (ii) ζ21(s1, x1) ≥ ζ21(s1, x0). Under Assumption

2, case (i) implies that the copula effect on F1(t) is negative and it is positive on F2(t) for all t.
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See also Lemma A3 in the Appendix for a formal derivation. This implies S1(t
c;x1) < S1(t;x0)

and S2(t
c; x1) > S2(t; x0) with C{S1(t

c;x1), S2(t
c;x1)} = C{S1(t;x1), S2(t; x1)}. It follows that

Q1(t
c; x1) =

∫ ζ21(s1;x1)

0

∫ 1

S1(tc;x1)

C ′′ ds1 ds2 <

∫ ζ21(s1;x0)

0

∫ 1

S1(tc;x1)

C ′′ ds1 ds2

<

∫ ζ21(s1;x0)

0

∫ 1

S1(t;x0)

C ′′ ds1 ds2 = Q1(t; x0).

Analogous reasoning can be applied to case (ii). And thus the sign of the copula effect on Qj(t)

and Fj(t) are the same for all t. In the general case where ζ21(s1, x) is not a monotone function,

say, ζ21(s1, x1) and ζ21(s1, x0) cross each other at a sequence of duration time {ṫk} ∈ IT for

k = 0, 1, 2, . . ., the relationship between the sign of |∆c
xQj(t)| and |∆c

xFj(t)| can only be established

when {ṫk} is known. But as ζ21(s1, x) is unidentified, {ṫk} can only be bounded. We show in the

Appendix that ṫ is bounded by the observed interval [t̀k, t́k] for all k ≥ 0. The sign of |∆c
xQj(t)|

can therefore be identified for the observable sequence of sets [t́k, t̀k+1] for all k ≥ 0 which is IIj.

According to Lemmas 1, 2 and 3, sign |∆xFj(t)| is determined by sign |∆m
x Qj(t)| and sign |∆c

xQj(t)|

for all t ∈ IIj. Let us denote ∆xQj(t) = [∆c
xQj(t),∆

m
x Qj(t)]

′. ∆xQj(t)  0 means that both of

∆c
xQj(t) and ∆m

x Qj(t) are nonnegative but that at least one is non-zero. ∆xQj(t) � 0 is defined

analogously. Moreover, let IDj ⊂ IT consist of all t such that ∆c
xQj(t) ×∆m

x Qj(t) ≥ 0. Then IDj

consists of all t such that ∆m
x Qj(t) and ∆c

xQj(t) do not have an opposite sign. We are now able

to state our main identification result.

Proposition 1 Under Assumptions 1 and 2, the sign of the treatment effect in model (1) is

identified for all t ∈ IIj
∩
IDj. We have

sign |∆xFj(t)| =


+1 if ∆xQj(t)  0;

0 if ∆xQj(t) = 0;

−1 if ∆xQj(t) � 0.

(7)

Moreover, it is identified for at least one risk j = 1, 2 for all t ∈ IIj.

Proposition 1 follows directly from all previous results. It suggest that sign |∆xFj(t)| is identified

for t ∈ IIj if ∆
m
x Qj(t) and ∆m

x Qj(t) do not the have opposite sign.

2.1 Increasing the identification set

Proposition 1 suggests that the direction of the treatment effect is unidentified if ∆c
xQj(t) and

∆m
x Qj(t) have an opposite sign or if t /∈ IIj. We now suggest an approach which enlarges the
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identification set. As it does not require any additional assumption it should always be performed.

Rather than the treatment effect, we consider the reversed treatment effect

∆−xFj(t) = Fj(t;x0)− Fj(t; x1) = −∆xFj(t). (8)

The reversed treatment effect is the change in Fj(t;x) from x1 to x0 and, thus, has the opposite

sign than ∆xFj(t). It is obvious that Proposition 1 also holds for the reversed treatment effect by

exchanging the notation x1 and x0. We denote this property as independence of the decomposition

route. Let IIj(x)
∩
IDj(x) and IIj(−x)

∩
IDj(−x) be the identification sets for sign |∆xFj(t)| and

sign |∆−xFj(t)| respectively. We obtain the following useful result.

Corollary 1 IIj(x)
∩
IDj(x) ̸= IIj(−x)

∩
IDj(−x).

We prove Corollary 1 by showing that for some t the sign of the treatment effect is unidentified,

while the sign of the reversed treatment effect is identified. The proof is given in the Appendix.

Corollary 1 suggests that it is always better to compute both decomposition routes and take the

union of the two identification sets. Since the underlying identification approach of the Peterson

bounds in (2) and our method are also different, it is advisable to determine the identification sets

for all approaches and take the union of all sets for each risk

Qj = IPj

∪{
IIj(x)

∩
IDj(x)

}∪{
IIj(−x)

∩
IDj(−x)

}
⊂ IT.

For all t ∈ Qj\IPj we can also tighten the bounds for the magnitude. If the sign of the effect

is negative (positive) the lower (upper) bound for the magnitude is the lower (upper) Peterson

bound and the upper (lower) bound is 0.

2.2 Identifiability in a multi-risks model

In this section we extend the identification result of the previous section to a model with a finite

number of risks J > 2. The observed failure time becomes T = min(T1, . . . , TJ) and the indicator

function is δ = argminjTj. Model (1) becomes

Qj(t;x) =
∫ ζJj(sj ;x)

0
. . . ,

∫ ζj+1j(sj ;x)

0

∫ 1

Sj(t;x)

∫ ζj−1j(sj ;x)

0
. . .

∫ ζ1j(sj ;x)

0
∂JC(s1,...,sJ ;x)

∂s1...,∂sJ
ds1 . . . dsJ ;

S(t;x) = CJ(s1, . . . , sj, . . . , . . . , sJ ;x).
(9)
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The J-survival copula is

CJ(s1, . . . , sJ ; x) = Pr{S1(T1;x) ≤ s1, . . . , SJ(TJ ; x) ≤ sJ ;x}. (10)

To carry over the identification results of the last section with J = 2, we follow the risk pooling

approach by Lo and Wilke (2010). Suppose that we want to identify the sign of the treatment

effect on risk j. By conceptually pooling all other risks into a single risk, we generate an unobserved

new variable T−j = min(T1, . . . , Tj−1, Tj+1, . . . , TJ). This is then a two risks model with a 2-copula

C2(sj, s−j;x) = Pr{Sj(Tj;x) ≤ sj, S−j(T−j; x) ≤ s−j;x}. (11)

The unknown marginal survival function for the pooled variable T−j is S−j(t; x) = Pr(T−j > t;x).

The observed failure time is unaffected as T = min(Tj, T−j), and the indicator function is modified

as δj = j if the original δ = j and δj = −j if δ ̸= j. For any J-copula in (10), the existence of a

2-copula in (11) is guaranteed under the following assumption (Nelsen, 2006).

Assumption 3 In the competing risks model defined by (9) the survival copula belongs to the

Archimedean class.

In this case the multi-risk model can be reduced into a two risks model as (1):

Qj(t;x) =
∫ ζ−j,j(sj ;x)

0

∫ 1

Sj(t;x)
C ′′ dsj . . . ds−j;

S(t;x) = C2{Sj(t, x);S−j(t; x);x},
(12)

with s−j = ζ−j,j(sj;x) denotes the link function between Sj(t;x) and S−j(t; x). For more details

see Lo and Wilke (2010). Our identification approach for the two risks model can therefore be

subsequently applied to (12) for j = 1, . . . , J , where the order of application does not matter.

Note, however, that only one risk is of interest in the pooled risks model as the pooled risks are

generally uninformative.

3 Estimation

For simplicity we outline the estimation procedure for a two risks model. Suppose we have

for x0 and x1 two finite samples of observations of T = min{T1, T2} with latent failure time

identically and independently distributed as T1 ∼ F1(T1;x) and T2 ∼ F2(T2;x), δ = argminjTj

and a dependence structure C{S1(t;x), S2(t; x); x}. F1, F2 and C are unknown in an application
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and only (T, δ, x) is observed. We suggest an estimation procedure which involves several stages.

First, we estimate Qj(t; x) and S(t; x) with common nonparametric estimators (Kalbfleish and

Prentice, 2002), although any existing consistent (non-)parametric estimator could be used. These

estimators are then plugged into the equations of the previous section to obtain their sample

analogues. In what follows we list all steps of the estimation procedure:

1. Define an equally spaced grid {t0, t1, . . . , tM}.

2. Estimate Q̂j(t; xk) and Ŝ(t; xk) for j, k = 0, 1 nonparametrically at all t in {t0, t1, . . . , tM}.

3. Determine tc by solving the sample analogue of equation (3) for all t in {t0, t1, . . . , tM}. Since

the estimated survival curves are step functions, we assume left continuity of Ŝ(t;xk). Thus

for any value of ti, tj, tj+1 on the time grid such that Ŝ(tj, x1) > Ŝ(ti, x0) > Ŝ(tj+1, x1). The

solution to equation (3) is tci = tj+1.

4. Compute ∆m
x Q̂j(t) by plugging t

c into Q̂j(t; x) according to Definition 4, for all t in {t0, t1, . . . , tM}.

5. Compute ∆c
xQ̂j(t) by plugging t

c into Q̂j(t;x) according to Definition 3, for all t in {t0, t1, . . . , tM}.

6. For all j estimate IIj from the sequences {t́k} and {t̀k} according to Definition 5 by using

Q̂c
j(t; x). Estimate IDj by using sign |∆m

x Q̂j(t)| and sign |∆c
xQ̂j(t)| for all j.

7. The sign of the time-specific treatment effect is then determined by the sample analogues of

Proposition 1.

This procedure is applicable to both directions of the decomposition ∆x and ∆−x, which results in

different identification sets for each risk. Before we consider large sample properties and inference,

we briefly outline two modifications to improve the finite sample performance:

• Sampling variation in Q̂j(t) also implies some random variation in ∆c
xQ̂j(t). For this reason,

the estimated sequence {t̀k} has also some random variation. In particular since ∆c
xQ̂j(t) is

not smooth and has some peaks created by the noise in the data, the estimated first local

extreme value between {t́k}x and {t́k+1}x is likely to occur before the actual value of {t̀k+1}.

This implies that the estimated {t̀k+1} as well as the size of the identification region are often

downward biased in small samples. We suggest two alternative procedures to overcome this

issue:

11



– Employ a smoothing technique for Q̂j(t) in step 5 to eliminate small peaks in ∆c
xQ̂j(t).

Although it can eliminate peaks due to random sampling, it can also eliminate the true

extreme values if the chosen degree of smoothing is too large. As with any smoothing

technique there is some arbitrariness involved and it is difficult to determine the optimal

degree of smoothing.

– Impose an additional assumption that there are no multiple extreme values of ∆c
xQ̂j(t)

between {t́k} and {t́k+1}. In this case, we recommend in step 6 the use of the t corre-

sponding to the estimated global extreme value between {t́k} and {t́k+1} as an estimator

for the sequence {t̀k}. This method produces good results if the true copula effect does

not have multiple local extreme values. Otherwise, the estimated {t̀k} is upward biased.

3.1 Consistency

Proposition 2 Assume that Ŝ
p−→ S (convergence in probability) and Q̂j

p−→ Q for all j or

assume almost sure convergence. Then under Assumptions 1, 2 and 3 we have for model (12)

sign |∆xF̂j(t)| =


+1 if ∆xQ̂j(t)  0;

0 if ∆xQ̂j(t) = 0;

−1 if ∆xQ̂j(t) � 0.

(13)

converges in probability (or almost surely) to sign|∆xFj(t)| for all j and all t ∈ IIj
∩

IDj.

Whether we have weak or strong consistency depends on the choice of the estimators for Ŝ(t, x)

and Q̂j(t, x). The proof is a straightforward application of the continuous mapping theorem (Van

der Vaart, 1998, Theorem, 18.11) provided that S(t, x) and Qj(t, x) are continuous for all j.

Proof: For simplicity we only show weak consistency, i.e. sign|∆xF̂j(t)|
p−→ sign|∆xFj(t)|. First

note that provided Ŝ(t, x)
p−→ S(t, x) and S(t, x) is continuous, we have Ŝ−1(Ŝ(t, x0), x1) = t̂c

p−→

tc. Then, since Q̂j(t, x)
p−→ Qj(t, x), Qj(t, x) is continuous, and since t̂c

p−→ tc, we have ∆c
xQ̂j(t)

p−→ ∆c
xQj(t) and ∆m

x Q̂j(t)
p−→ ∆m

x Qj(t) for all j. Then all stochastic components in the right

hand side of equation (13) converge to their true values in probability, which completes the proof.

12



3.2 Inference

Under the assumption that observations are independent, we can perform a statistical test for the

sign of the treatment effect ∆xFj(t) for all j. Let us consider the case of the estimated treatment

effect being positive at t. In this case we test the null hypothesis (H0) that the treatment effect

∆xFj(t) is non-positive against the alternative hypothesis (H1) that it is positive:

H0 : ∆xQj(t) /∈ Ω1 and H1 : ∆xQj(t) ∈ Ω1, (14)

where ∆xQj(t) ∈ Ω1 if ∆xQj(t)  0. This set up is similar to the multiple end points problem,

in which the treatment and control groups are compared with more than one response variable.

For a review see Silvapulle and Sen (2005, Ch.9). There is one difficulty involved in implementing

this test as the parameter set in the null hypothesis does not include the boundary points which

are ∆xQj(t) = (0, R+) or ∆xQj(t) = (R+, 0). Thus the null hypothesis is not suitable for many

statistical tests. One way to overcome this problem is to define some non-negative number ϵ such

that the two response variables of a treatment are said to be practically positive if ∆xQj(t) > ϵ

and practically noninferior if ∆xQj(t) > −ϵ. In this spirit we define another parameter set of the

alternative hypothesis Ω2,

Ω2 = {∆xQj(t) ∈ R2 : [∆c
xQj(t) > −ϵ,∆m

x Qj(t) > −ϵ] ∩ [∆c
xQj(t) > ϵ ∪∆m

x Qj(t) > ϵ]}. (15)

The parameter set of the null is represented by the shaded region in Figure 1. It is easy to see

that the set Ω2 converges to Ω1 if ϵ → 0. The analytic joint distribution of ∆c
xQj(t) and ∆m

x Qj(t)

is complicated and difficult to derive. Moreover the null and alternative parameter space in (14)

and (15) are some complicated composite of different one-tailed tests. We therefore suggest the

convenient bootstrap test by Bloch et al. (2001) which is outlined in the supplemental material.

4 Simulations

In this section we present Monte Carlo results to demonstrate the applicability of the methods

outlined in the previous sections. We consider a two risks model with a known closed form

representation of the entire competing risks model, i.e. with known CICs, survival function of

the minimum, marginal survival functions and copula function. We use the closed form ex-

pression given in Rivest and Wells (2001) which bases on the known copula generator of the
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Figure 1: Parameter space of the null hypothesis, the alternative region and the rejection region
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Archimedean copula, ϕ(s), and the known cause-specific crude hazard functions, λj(t; x), j = 1, 2.

We have S(t;x) = exp
[
−
∫ t

0
λ1(u; x) + λ2(u;x) du

]
and Qj(t; x) =

∫ t

0
λj(u;x)S(u;x) du. Then

the marginal survival function is given by (Rivest and Wells, 2001)

Sj(t;x) = ϕ−1

[
−
∫ t

0

ϕ′[S(u;x)]S(u;x)λj(u; x) du

]
. (16)

We choose a Frank’s survival copula with parameter α. Note that the Frank’s copula has the

same function as its survival copula and it is the only Archimedean copula that possesses this

property (Georges et al., 2001). In our simulations, the survival copula and the copula generator

ϕ are specified as

C(s1, s2) =
1

α
ln

[
1 +

(ea(1−s1) − 1)(ea(1−s2) − 1)

ea − 1

]
;

ϕ(s) = ln

[
eαs − 1

eα − 1

]
;

ϕ−1(t) =
1

α
ln[1 + et(eα − 1)].

The cause-specific crude hazard functions follow log-logistic distributions with different parameters

for each j and x. The model parameters are given in Table 1. Since we know the true S, Sj and

Qj for all j, we can easily asses the performance of our identification strategy. We first apply

our identification method to the true values of S, Qj and Sj for all j. Then we asses finite

sample performance when we use nonparametric estimators for S and Qj for all j. Although, the

identification and estimation procedures outlined in the previous section can be applied for any

t ∈ R+, we restrict our analysis to grid points {0, 0.01, 0.02, . . . , 4.99, 5.00}.
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Table 1: Parameters of the simulated competing risks model.

Function Risks j =1 Risks j = 2

x = x0 x = x1 x = x0 x = x1

Crude hazard function: λj(t;x) =
θjγj(θjt)

(γj−1)

1+(θjt)
γj (γj , θj) (8, 1) (2, 0.5) (1, 2) (4, 1)

Copula generator: ϕ(s) = ln
[
eαs−1
eα−1

]
α 0.3 0.3 0.3 0.3

Identifiability Since we know Qj and Sj for all j, it is straightforward to compute (tc, t̀, t́),

∆c
xQj(t), ∆

m
x Qj(t), ∆

c
xFj(t), ∆

m
x Fj(t) and ∆xFj(t) for any t on our grid.

Panels (a) and (b) of Figure 2 show the treatment effect (∆xFj(t)), the Peterson bounds (PBj)

and the corresponding nonparametric identification sets IPj. It also shows IIj(x) and IDj(x) using

the copula effect and the marginal distribution effect. The sets IPj are plotted as horizontal lines

at -1.2, and IIj(x) and IDj(x) by horizontal lines at -1.3 and -1.4 respectively. The Figure also

contains the identified sign (ISj(x)) as horizontal lines at (1,0,-1) based on the union set of IIj(x),

IDj(x) and IPj. Panels (c) and (d) contain the same sets for the reversed treatment effect ∆−x to

illustrate that the method of Section 2.1 indeed increases the union of all identification sets.

It can be seen that the sign of the treatment effect for risk 1 cannot be identified from the

Peterson bounds for any t, while for risk 2 a negative treatment effect is identified from duration

time zero to one. It is also evident that the resulting identification sets of our procedure are larger

than the sets for the Peterson bounds. When we apply the procedure of Section 2.1 to increase the

identification set it becomes apparent that it results in rather different sets ISj, which indicates

the usefulness of this procedure. As the sets IP1 and IP2 are only small subsets of Q1 and Q2

respectively, we also gain more insights about the magnitude of the effect as this is bounded by 0

from above (below) for risk 1 (2) for t > 1.5.

Estimation Next we simulate data with sample size 500 and estimate Qj and S as outlined in

Section 3 For inference we perform the bootstrap test outlined in Section 3.2 with 500 bootstrap

samples and ϵ = 0.01. The estimation results are given in panels (e) and (f) of Figure 2. The

estimated sign (ESj) is plotted as a black horizontal line at (-1,0,1) if the estimate is significant

at the 5% level and it is plotted in grey otherwise. The sets ÎP j and Q̂j are plotted as horizontal

lines at -1.2 and -1.5 respectively. When we compare the estimation results with the true values

in panels (a)-(d), it is evident that there is no bias for the sign estimation and the identification
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Figure 2: Identified sign (IS) and estimated sign (ES) of the treatment effect in a known two risks

model.
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sets are very similar to the true values.

5 Application

In this section we present an illustrative application to unemployment duration data from Ger-

many. For the estimations we use a sample of the scientific use file version of the IAB employment

sample (IABS) 2001 of the Institute for Employment Research (IAB). These administrative data

are a 2% random sample of the German workforce subject to social security contributions in the

period 1975-2001. The IABS contains daily information about periods of dependent employment

and claim periods for unemployment compensation along with basic information about the in-

dividual (such as gender, wage, age and employment history) and the employing firm (such as

business sector and location). For more information on the IABS see Hamann et al. (2004). From

these data we extract all unemployment periods starting in 1998 or 1999 and having a foregoing

employment period. We define unemployment as receipt of unemployment compensation from the

German Federal Employment Agency. This leaves us with a sample of 107,522 observations. We

consider a model with two risks: employment and other exits. We analyse the effect of various

binary covariate changes such as gender, calendar time and employment history of individuals on

the job finding probability. Results for the second risk are not presented as it does not have a

direct interpretation.

Figures 3 and 4 present estimated nonparametric cumulative incidence curves, the resulting

Peterson bounds and the estimated sign (ES) of the covariate effects on the marginal distribution

of job finding. ES is plotted as horizontal lines at -1, 0 and 1 in dark grey if the estimate is

significant and in light grey if it is insignificant. It is apparent from the left panels of the figures

that estimated CICs change considerably in female, recall, previous unemployment, low wage

and winter while the effect of calender year 1999 (instead of 1998) is very small. The estimated

Peterson bounds in the right panels are often wide and only partly informative. In the case of

female, recall, low wage and winter the set ÎP 1 (horizontal line at -1.2) partly covers the interval up

to 150-250 days while it is (almost) empty for other variables. In the case of winter the Peterson

bounds suggest a change in the sign of the covariate effect at about 50 days. When applying

our identification and estimation approaches of Section 3 the identification set Q̂1 (horizontal line

at -1.5) is much larger than ÎP 1 for all variables. In particular it covers almost the entire set of
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durations in the case of female, recall, pervious unemployment and winter. This suggests that the

identification set is enlarged substantially by imposing Assumptions 1-3 while still allowing for

many different dependence structures. Due to the large sample size the estimated sign is mainly

significant. For the calendar time variables winter and year 1999 we find evidence for a change in

the sign of the covariate effect as unemployment duration progresses. Even though the estimated

CICs for the years 1998 and 1999 are extremely similar, the set Q1 contains almost one third of all

t. For all variables the set IPj is much smaller than the set Qj. For this reason the identification

of the sign of the effect can be also used to derive considerably tighter bounds for the magnitude

of the effects for many durations.
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Figure 3: Cumulative incidence for job finding (left) and estimated sign of covariate effects on the

marginal distribution (right).
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Figure 4: Cumulative incidence for job finding (left) and estimated sign of covariate effects on the

marginal distribution (right).
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ÎP1

Q̂1

20



Appendix: Proofs

Proof of Lemma 1: 1.(a) The copula effect and the marginal distribution effect in Definitions

1 and 2 are unique for all t if tc is unique. The latter is guaranteed by the invertibility of S(t).

1.(b) Result (4) follows from Definitions 1 and 2:

∆xFj(t) = ∆c
xFj(t) + ∆m

x Fj(t)

= Fj(t
c;x1)− Fj(t;x0) + Fj(t;x1)− Fj(t

c;x1)

= Fj(t; x1)− Fj(t; x0).

In order to prove 1.(c) we first state and prove two additional Lemmas:

Lemma A1 Under Assumptions 1 and 2 in model (1), we have sign |∆c
xF1(t)|= − sign |∆c

xF2(t)|

for all t.

We prove Lemma A1 by stating the condition for tc and t to satisfy Definitions 1 and 2:

S(t; x0) = C{S1(t;x0), S2(t; x0)} = C{S1(t
c; x1), S2(t

c;x1)} = S(tc; x1). (17)

A survival copula function is increasing in both of its arguments (see Theorems 2.2.7 and 2.4.4 in

Nelsen, 2006). Then the copula effect of risk 1 being positive, i.e. S1(t
c;x1) < S1(t;x0), implies

the copula effect of risk 2 being negative as S2(t
c;x1) < S2(t;x0) is required for condition (17) to

hold. Similar reasoning applies if the copula effect of risk 1 is negative and and the copula effect

of risk 2 is positive. This proves that the copula effects for risk 1 and risk 2 have different signs

for all t unless both are zero.

Lemma A2 Under Assumptions 1 and 2 in model (1), we have sign |∆m
x F1(t)| = sign |∆m

x F2(t)|

for all t.

Lemma A2 bases on Lemma A1 in Zheng and Klein (1995) which suggests that s2 = ζ21(s1;x)

is unique. This guarantees uniqueness of s2 = ζ21(s1; x) for any given value s1 and vice versa.

ζ21(s1; x) is therefore a strictly increasing function in s1 for all x. Suppose we have F1(ta;x) <

F1(tb;x) for any ta, tb ∈ IT and thus S1(ta;x) > S1(tb;x). Then by s2 = ζ21(s1;x) being strictly

increasing, we also have S2(ta;x) > S2(tb; x), and thus F2(ta;x) < F2(tb;x). The same reasoning

applies to the cases of F1(ta; x) > F1(tb;x) or F1(ta;x) = F1(tb;x), which completes the proof.

These results are now used to prove 1.3). According to (4), the sign of ∆xF1(t) is determined

by the sign of the copula and the marginal distribution effect if {sign |∆c
xF1(t)|, sign |∆m

x F1(t)|}
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belongs to one of the following combinations: {1,1}, {1,0}, {0,1}, {0,0}, {-1,-1}, {-1,0} or {0,-1}.

Otherwise ∆c
xF1(t) and ∆m

x F1(t) have opposite signs, and in these cases the sign of ∆xF1(t) is

undetermined (or ambiguous). In case ∆c
xFj(t) = 0 for j = 1, 2 or ∆m

x Fj(t) = 0 for j = 1, 2, the

sign of ∆xF1(t) and ∆xF2(t) are unambiguously determined. If both the copula and the marginal

distribution effects are nonzero, we first consider the case that both ∆c
xF1(t) and ∆m

x F1(t) have the

same sign. In this case, the sign of ∆xF1(t) is determined but not the sign of ∆xF2(t). It is because

− sign |∆c
xF2(t)| = sign |∆c

xF1(t)| = sign |∆m
x F1(t)| = sign |∆m

x F2(t)| according to Lemmas A1

and A2. Analogous reasoning applies if sign of ∆c
xF1(t) and ∆m

x F1(t) are different. As in this case,

the sign of ∆xF2(t) is determined but not the sign of ∆xF1(t). It follows that sign |∆xFj(t)| can

be always determined for at least one j from sign |∆m
x Fj(t)| and sign |∆m

x Fj(t)| for all t ∈ IT . �

Lemma A3 Under Assumptions 1 and 2 in model (1), if there is some subset of duration time

M ⊆ IT such that the link function is monotone in all t ∈ M , we have Z(t) = ζ{S1(t); x1 −

S1(t);x0} > 0 or Z(t) < 0 for all t ∈ M . Then Z(t) > 0 implies ∆c
xF1(t) > 0 and Z(t) < 0

implies ∆c
xF1(t) < 0 for all t ∈ M .

The proof of Lemma A3 uses Lemma A1 and Lemma A2. As the copula effect for risks 1 and

2 has an opposite sign for all t, we show that ∆c
xF1(t; x1) cannot be negative if Z(t) > 0. This

is because ∆c
xF1(t;x1) < 0 implies ∆c

xF2(t;x1) > 0, which means that S1(t
c;x1) > S1(t;x0) and

S2(t
c; x1) < S2(t;x0) at all t. For some t > tc we have S2(t; x1) < S2(t

c;x1). Moreover we know

from Lemma A2 that there exists a t such that S1(t;x1) < S1(t
c; x1) and fulfills the condition

S1(t;x1) = S1(t;x0). Putting this together,

ζ21(S1(t; x1); x1) = S2(t; x1) < S2(t;x0) = ζ21(S1(t;x0); x0) = ζ21(S1(t; x1); x0).

This contradicts the initial condition Z(t) > 0 which requires ζ21(s1; x1) > ζ21(s1;x0) for all s1. �

Proof of Lemma 3: The proof comprises several steps. First, we define a sequence {ṫk} and

state several useful properties of it in Lemma A4. Second, we show that sign of the copula effect

can be identified, if {ṫk} was known (Lemma A5). Third, the unobserved ṫ can be bounded

by intervals with observed endpoints [t̀k, t́k] (Lemma A6). Fourth, we use these results to prove

Lemma 3.

Definition A1 We denote {ṫk} ∈ IT for k = 0, 1, 2, . . . as a finite sequence of durations t at which

the link functions for the control group (x0) and the treatment group (x1) cross each other, i.e.
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Z(ṫk) = ζ21{S1(ṫk); x1} − ζ21{S1(ṫk); x0} = 0 and sign | limt→+ ṫk
Z(t)| ̸= sign | limt→− ṫk

Z(t)| for

all k > 0. We define ṫ0 = 0 and the corresponding sequence {ṫck} for the duration time tc defined

in Definition 1 such that S(ṫck;x1) = S(ṫk; x0) for all k.

Lemma A4 Under Assumptions 1 and 2, {ṫk} ∈ IT has the following properties:

1. The link function S2(t) = z21{S1(t);x} at any t ∈ (ṫk, ṫk+1) ≡ İT k, is a strictly monotone

function in x, i.e. either (i) Z(t) < 0 or (ii) Z(t) > 0 for t ∈ İT k and for all k. The link

function is, however, generally non-monotone at any t ∈ {ṫm, ṫn}, for any 1 < m+ 1 < n.

2. The copula effect at {ṫk} is zero for all k and all risks j, i.e.

∆c
xFj(ṫk) = Fj(ṫ

c
k; x1)− Fj(ṫk; x0) = 0;

thus Sj(ṫ
c
k; x1) = Sj(ṫk; x0). (18)

3. The copula effect on the CIC at {ṫk} is nonzero for any k > 0 and all risks j,

∆c
xQj(ṫk) = Qj(ṫk;x1)−Qj(ṫk;x0) ̸= 0. (19)

4. For any t ∈ (ṫk, ṫk+1) and k > 0,

A1(t) =

∫ ζ21(s1; x1)

0

∫ S1(ṫck; x1)

S1(tc; x1)

C ′′ ds1 ds2 −
∫ ζ21(s1; x0)

0

∫ S1(ṫk; x0)

S1(t; x0)

C ′′ ds1 ds2.

∝ ∆c
xF1(t;x). (20)

Lemma A4.1 holds for any link function s2 = ζ21(s1) that is strictly increasing in s1. According

to Definition A1 Z(t) changes its sign at all {ṫk}. Lemma A4.2 can be proved by Definitions 1 and

A1. [S1(ṫ
c
k; x1), S2(ṫ

c
k;x1)] is the solution to (i) C{S1(ṫ

c
k;x1), S2(ṫ

c
k;x1)} = C{S1(ṫk; x1), S2(ṫk;x1)},

(ii) S2(ṫ
c
k;x1) = ζ21{S1(ṫ

c
k;x1); x1}, and (iii) ζ21{S1(ṫ

c
k;x1);x1} = ζ21{S1(ṫk; x0); x0}. (ii) and (iii)

imply S2(ṫ
c
k;x1) = S2(ṫk; x0). As the copula function is strictly increasing in both of its arguments,
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equation (i) holds only if S1(ṫ
c
k;x1) = S1(ṫk;x1). This leads to equation (18) and completes the

proof of Lemma A4.2. Lemma A4.3 can be proved by rewriting ∆c
xQ1(ṫk) as

∆c
xQ1(ṫk) = Q1(ṫck;x1)−Q1(ṫk; x0)

=

∫ ζ21(s1;x1)

0

∫ 1

S1(ṫck;x1)

C ′′ ds1 ds2 −
∫ ζ21(s1;x0)

0

∫ 1

S1(ṫk;x0)

C ′′ ds1 ds2

=

∫ ζ21(s1;x1)

ζ21(s1;x0)

∫ 1

S1(ṫk;x0)

C ′′ ds1 ds2. (21)

The last equality follows from (18). As ζ21(s1;x0) equals to ζ21(s1;x1) only at ṫl and ṫcl, for all

0 ≤ l ≤ k, respectively, Z(t) is nonzero at all t ∈ [0, ṫk]. Th is completes the proof of Lemma A4.3.

Lemma A4.4 can be shown by using equation (18) and the monotonicity property in Lemma A4.1,

which implies that (i) Z(t) < 0 or (ii) Z(t) > 0 for all t ∈ (ṫk, ṫk+1). Case (i) implies a negative

∆c
xF1(t) as a result from Lemma A3 and A1(t) in (20) becomes

A1(t) =

∫ ζ21(s1; x1)

0

∫ S1(ṫk; x0)

S1(tc; x1)

C ′′ ds1 ds2 −
∫ ζ21(s1; x0)

0

∫ S1(ṫk; x0)

S1(t; x0)

C ′′ ds1 ds2

<

∫ ζ21(s1; x0)

0

∫ S1(ṫk; x0)

S1(tc; x1)

C ′′ ds1 ds2 −
∫ ζ21(s1; x0)

0

∫ S1(ṫk; x0)

S1(t; x0)

C ′′ ds1 ds2

<

∫ ζ21(s1; x0)

0

∫ S1(ṫk; x0)

S1(t; x0)

C ′′ ds1 ds2 −
∫ ζ21(s1; x0)

0

∫ S1(ṫk; x0)

S1(t; x0)

C ′′ ds1 ds2 = 0.

This completes the proof of Lemma A4.4.

Lemma A5 Under Assumptions 1 and 2, we have for any t with ṫk =sup{ṫl|ṫl ≤ t},

∆c
xQj(t) = ∆c

xQj(ṫk) + Aj(t); and (22)

sign |∆c
xFj(t)| = sign

∣∣∆c
xQj(t)−∆c

xQj(ṫk)
∣∣.

for j = 1, 2, where πc
j(t) > 0 and ṫl as in Definition A1.

In order to obtain (22), we rewrite the copula effect on the CIC for any t ∈ [ṫk, ṫk+1] by distin-
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guishing between the following two intervals for t ∈ (0, t] = (0, ṫk]
∪
(ṫk, t]. Then

∆c
xQ1(t) = Q1(t

c;x1)−Q1(t;x0)

=

∫ ζ21(s1; x1)

0

∫ 1

S1(tc; x1)

C ′′ ds1 ds2 −
∫ ζ21(s1; x0)

0

∫ 1

S1(t; x0)

C ′′ ds1 ds2;

=

∫ ζ21(s1; x1)

0

∫ S1(ṫck; x1)

S1(tc; x1)

C ′′ ds1 ds2 +

∫ ζ21(s1; x1)

0

∫ 1

S1(ṫck; x1)

C ′′ ds1 ds2

−
∫ ζ21(s1; x0)

0

∫ S1(ṫk; x0)

S1(t; x0)

C ′′ ds1 ds2 −
∫ ζ21(s1; x0)

0

∫ 1

S1(ṫk; x0)

C ′′ ds1 ds2;

= A1(t) + ∆c
xQ1(ṫk).

The last line follows from (19) and the definition of A1(t) in Lemma A4.4. According to Lemma

A4.4, the sign of A1(t) is equal to the sign of ∆c
xF1(t). And thus ∆c

xF1(t) has the same sign as

∆c
xQ1(t) −∆c

xQ1(ṫk) for any t such that ṫk =sup{ṫl|ṫl ≤ t}. This completes the proof of Lemma

A5.

Lemma A6 ṫl ∈ [t̀k, t́k] for l ≥ k and for all k.

In order to prove Lemma A6, we show that ∆c
xQj(t) has at least one local maximum (or minimum)

for all t ∈ IT . This is when the link function ζ21(S1(t);x) is not monotone in x for all t ∈ IT

according to Lemma A4.1.

First, we consider the interval t ∈ (0, ṫ1) ≡ ˙IT0. From (22), we have ∆c
xQ1(t) = A1(t). We

know from Lemma A4.4 that ∆c
xQ1(t) has the same sign as ∆c

xF1(t). Without lost of generality,

we consider the case Z(t) > 0 for all t ∈ ˙IT0. According to Lemma A3 we have ∆c
xF1(t) < 0, and

thus ∆c
xQ1(t) < 0 for all t in the first interval ˙IT0. The same is true for t = ṫ1 and ∆c

xQ1(ṫ1) < 0.

Next, we consider the interval t ∈ (ṫ1, ṫ2) ≡ ˙IT1. Using Definition A1, Z(t) changes its sign in ˙IT1,

and thus Z(t) < 0. It follows that ∆c
xF1(t) changes its sign and becomes positive. From (22) and

Lemma A4.4, at t ∈ IT1,

∆c
xQ1(t) = ∆c

xQ1(ṫ1) + A1(t) > ∆c
xQ1(ṫ1).

While we don’t know whether ∆c
xQ1(t) < 0 reaches its local minimum and starts to move up at

some t̀1 (see Definition 5) prior to ṫ1, t̀1 should be no later than ṫ1. We therefore have t̀1 ∈ (0, ṫ1]

and thus t̀1 ≤ ṫ1. At ṫ2, ∆
c
xQ1(ṫ2) = ∆c

xQ1(ṫ1) + A1(ṫ2). It is unclear whether |A1(ṫ2)| is large

enough to change the sign of ∆c
xQ1(t) from negative to zero or positive. We consider the simple
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case where |A1(ṫ2)| ≥ |∆c
xQ1(ṫ1)| and ∆c

xQ1(ṫ2) is positive. Since ∆
c
xQ1(ṫ1) < 0 and ∆c

xQ1(ṫ2) ≥ 0,

there exists a t́1 such that ∆c
xQ1(t́1) = 0 with t́1 ∈ (ṫ1, ṫ2]. It implies that ṫ1 < t́1.

Combining the above results ṫ1 can be bounded by an interval with observable endpoints

[t̀1, t́1). In the case where |A1(ṫ2)| < |∆c
xQ1(ṫ1)|, t́1 is only known to be in the interval ˙IT1, ˙IT3 or

, ˙IT5, . . . . This is because A1(t) is positive only in these intervals and thus only when t́1 is inside

these intervals that could turn ∆c
xQ1(t) to be positive. If, for instance, the actual t́1 is inside the

interval ˙IT3, the three unknowns ṫ1, ṫ2 and ṫ3 and not just ṫ1 are bounded by [t̀1, t́1). This, however,

does not affect the identifiability of t̀k and t́k for all k and the identification results of Lemma 3,

except that the identification region will be reduced. The above reasoning can be carried over to

all ṫk which completes the proof of Lemma A6.

We now prove Lemma 3 for different intervals of t by using Lemma A6. For simplicity we focus

on the case ṫk ∈ [t̀k, t́k] for all k. For t ∈ [0, ṫ1], sign |∆c
xFj(t)| = sign |∆c

xQj(t)| as already shown.

The lower bound of ṫ1 is t̀1 and t́0 = 0. Thus, Lemma 3 holds for t ∈ [t́0, t̀1]. For t ∈ [ṫ1, ṫ2],

we observe only the upper bound of ṫ1 and the lower bound of ṫ2 which is the interval [t́1, t̀2].

According to Definition 5, we have the following bounds for ∆c
xQ1(t) for t ∈ [t́1, t̀2]:

∆c
xQ1(t́1) < ∆c

xQ1(t) < ∆c
xQ1(t̀2) for ∆c

xQ1(t̀2) > 0;

∆c
xQ1(t́1) > ∆c

xQ1(t) > ∆c
xQ1(t̀2) for ∆c

xQ1(t̀2) < 0.

And with ∆c
xQ1(t́1) = 0 and Lemma A5, we have

0 < ∆c
xQ1(t) < ∆c

xQ1(ṫ1) + A1(t̀2) for ∆c
xQ1(t̀2) > 0;

0 > ∆c
xQ1(t) > ∆c

xQ1(ṫ1) + A1(t̀2) for ∆c
xQ1(t̀2) < 0.

Note that ∆c
xQ1(t) is zero at t́1 with t́1 ∈ (ṫ1, t̀2) and thus ∆c

xQ1(ṫ1) and ∆c
xQ1(t̀2), which are

nonzero, must have different directions. It follows that

0 < ∆c
xQ1(t) < A1(t̀2) for ∆c

xQ1(t̀2) > 0

0 > ∆c
xQ1(t) > A1(t̀2) for ∆c

xQ1(t̀2) < 0.

Using Lemma A4.4, completes the proof of Lemma 3 for t ∈ [t́1, t̀2]. The proof is analogous for all

other values of k. �

Proof of Corollary 1: We first state a Lemma that is required for the proof. As Fj(t; x) is

strictly increasing in t, we have the following useful property.
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Lemma A7 ∆m
x Fj(t) and ∆m

−xFj(t) have opposite signs for all t and j.

Similar to Lemma 1, the decomposition path of the reversed treatment effect is ∆−xFj(t) =

∆c
−xFj(t) +∆m

−xFj(t) with ∆c
−xFj(t) = Fj(t

b;x0)−Fj(t;x1), ∆
m
−xFj(t) = Fj(t;x0)−Fj(t

b;x0) and

tb such that S(tb, x0) = S(t, x1). We have either tc < t < tb or tc > t > tb because S(t, x) is a

strictly decreasing function in t. This implies

S(t; x0) = S(tc; x1) > S(t; x1) = S(tb;x0) if tc < t;

S(t; x0) = S(tc; x1) < S(t; x1) = S(tb;x0) if tc > t.

Suppose that sign|∆c
xFj(t)| = sign |∆m

x Fj(t)| = +1 for some t in IIj(x). sign |∆m
x Fj(t)| is then

identified and positive. Suppose also that the same t belongs to IIj(−x). We now show that the

sign of the reversed treatment effect cannot be positive then. According to Lemma A7, the sign

of ∆m
−xFj(t) at tk is then negative. This implies that the sign of the reversed treatment effect

is either negative (when the sign of ∆c
−xFj(t) is negative) or undetermined (when the identified

sign of ∆c
−xFj(t) is positive). This implies that the two decomposition routes produce different

identification sets. While this suggests different IDj(x) and IDj(−x), it is also possible to show

that IIj(x) and IIj(−x) differ. �
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