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Abstract

A new estimator of bid-ask spreads is presented. When the trade direction is

known, any estimate of the spread is associated with a unique series of conjec-

tural mid-prices derived by adjusting the observed transaction price by half the

estimated spread. It is shown that the covariance of successive conjectural mid-

price returns is maximised (or least negative) when the estimated spread is equal

to the true spread. A search procedure to maximise this covariance may therefore

be used to estimate the true spread. The performance of this estimator under var-

ious conditions is examined both theoretically and with Monte Carlo simulations.

The simulations confirm the theoretical results. The performance of the estimator

is good.
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1 Introduction

Bid-ask spread estimators can be divided into two groups: the Roll family of estimators

which are based on the serial correlation of transaction returns (Roll 1984, Glosten and

Harris 1988, Choi et al. 1988, Stoll 1989, George et al. 1991, Huang and Stoll 1997 and

Hasbrouck 2004, 2009), and other estimators such as Lesmond et al. (1999), Holden

(2009), Goyenko et al. (2009) and Corwin and Schultz (2012).

One issue that has received little attention is the effect on spread estimators of feed-

back trading (order flows reacting to price returns). Feedback trading has been empir-

ically recorded in stock markets by Hasbrouck (1991) and Nofsinger and Sias (1999),

and in foreign exchange markets by Danı́elsson and Love (2006). De Long et al. (1990)

provide a theoretical model of feedback trading. Huang and Stoll’s (1997) estimator is

biased in the presence of feedback trading, as is the entire family of Roll-type estima-

tors (Bleaney and Li 2013). As Danı́elsson and Love (2006) point out, feedback trading

is very likely to occur in time-aggregated data, and will bias estimates of the effect of

order flows on returns. Feedback trading may exist in tick-by-tick data as well.

In this essay we introduce a new trial-and-error method of estimating the spread

that has the same data requirements as the HS model (i.e. it uses trade direction as well

as return information) but which performs better than the HS model in the presence of

feedback trading. When transaction prices and the direction of transactions are known,

any estimate of the spread is associated with an estimate of the mid-price for each

transaction. The proposed method relies on the fact that, under certain assumptions,

the estimated covariance of current and lagged mid-price returns will be maximized

(or least negative) when the estimated spread is equal to the true spread. A search to

maximize this estimated covariance should therefore yield an accurate estimate of the

spread. The assumptions are that mid-price returns are independent of past, current

and future order flows. This happens if order flows do not react to returns (no feedback

trading), and returns do not react to order flows (no price adjustment by dealers for

inventory control or precautionary reasons). Once the estimate of the spread has been

obtained, the accuracy of these assumptions can be tested. As with the HS estimator,

information on transaction data and order flows is needed. Like the HS estimator,

our new estimator is biased in the presence of feedback trading, but substantially less

biased than the HS estimator.

When order flows are unknown, one may apply the method introduced in Has-

brouck (2004, 2009) to obtain order flows before using our estimator, as is the case with

the HS estimator. The combination of our new estimator and Hasbrouck’s method

should generate satisfactory estimates.
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2 Relevant Literature

Roll (1984) establishes a spread estimation model based on serial correlation of returns.

The Roll model considers the order processing cost only. The spread is estimated from

the auto-covariance of price returns. Glosten and Harris (1988) introduce a spread esti-

mation model where both the order processing cost and the adverse selection cost are

considered. A buy (sell) order will raise (decrease) the midpoint of bid and ask prices.

For the model to work, price returns and trade indicators which represent the direc-

tions of trades are needed. Choi et al. (1988) incorporate the correlation of order flows

into Roll’s model. Stoll’s (1989) model extends Roll’s model by incorporating the prob-

ability of price reversal. Stoll’s model can also be used to infer the components of the

spread. George et al. (1991) relax Roll’s assumption of a random walk of mid-prices.

When mid-prices contain positive correlation components, the Roll model will under-

estimate the true spread. Huang and Stoll (1997) develop a general model which incor-

porates previous spread estimation and decomposition models such as Roll’s, Glosten

and Harris’s (1988) and Stoll’s (1989) model. Huang and Stoll’s model requires price

returns and trade indicators. Hasbrouck (2004, 2009) extends Roll’s model by using the

Bayesian Gibbs sampler. Hasbrouck’s model performs better than Roll’s model.

Lesmond et al. (1999) (LOT) develop a spread estimator based on Kyle (1985) and

Glosten and Milgrom (1985). The LOT estimator assumes that informed trading will

move the price, and thus lead to a non-zero return, and that other trading will not move

the price, and thus lead to a zero return. This model requires data on price returns.

Holden (2009) and Goyenko et al. (2009) develop a spread estimator based on price

clustering. The estimator assumes that “price clustering is completely determined by

the spread size”. The spread is “a probability-weighted average of each possible spread

size” divided by the average price. The estimator is called “effective tick”. Holden

(2009) develops a spread estimator which is a hybrid of “effective tick” and the Huang

and Stoll (1997) model.

In Corwin and Schultz (2012), the spread is estimated by daily high-low prices.

Corwin and Schultz’s model assumes that the price follows a random walk and the

highest price of a day is an ask-price (at which a trader makes a buy order to the

market maker) and the lowest price of a day is a bid-price (at which a trader makes

a sell order to the market maker). This model requires data on price returns and daily

high-low prices.

2



3 A New Estimator

In this section, we introduce a new estimator based on conjectures about the spread.

The intuition is simple. We make a conjecture about the spread and calculate conjec-

tural mid-price returns according to the conjecture. The conjectural error influences

the covariance between two adjacent conjectural mid-price returns. It will be shown

that the series of true mid-price returns has the greatest covariance among all other

series of conjectural mid-price returns. Therefore, after trying conjectural spreads and

calculating the corresponding conjectural mid-price returns and the covariances, we

use the conjectural spreads which correspond to the series with the greatest covariance

as the estimate of the true spread.

The bid-ask spread is the difference between the ask price and the bid price. Let

st be the transaction price which is the ask (bid) price if a buy (sell) order is executed.

Transaction prices can be divided into two parts. One is the bid-ask spread and the

other is the unobserved mid-price. Formally, the price is given by:

st = Mt +
SP
2

· BSt

where Mt is the mid-price. SP is the effective bid-ask spread, and BS is the trade

indicator which shows the direction of the trade. BS = 1 if there is a buy order and

BS = −1 if there is a sell order. Then the transaction price return is given by:

∆st = ∆Mt +
SP
2
(BSt − BSt−1)

where ∆ is the first order difference operator. The spread will enlarge (reduce) the

observed return when the change of the trade direction has the same (opposite) sign

as the mid-price change. If the trade direction does not change (BSt − BSt−1 = 0 ), the

observed return is equal to the mid-price change.

We assume that returns are uncorrelated with past, current or future order flows.

This means that there is no feedback trading (order flows do not react to past returns),

and no adjustment of prices to order flows for inventory control or precautionary rea-

sons. These are the ideal conditions for the estimator. If we have a conjecture about the

spread, the error of the conjecture is given by:

Ωt = SPt − S̃Pt

where S̃Pt is the conjecture, and Ωt is the conjectural error. All the symbols with ∼
represent conjecture values.

We assume that the spread is fixed throughout the series. Thus the spread and its

conjecture and the conjectural error are fixed.

Ω = SP − S̃P (1)
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A conjectural mid-price series (M̃t) can be obtained from conjectural spreads.

M̃t = st − 1
2 S̃PBSt (2)

If we re-arrange the equation above, one can find that the difference between the true

mid-price and its conjecture is half the conjectural error:

M̃t = Mt +
1
2 SPBSt − 1

2 S̃PBSt

= Mt +
1
2 BSt(SP − S̃P)

= Mt +
1
2 BStΩ

(3)

Then the mid-price return is given by:

∆M̃t = ∆Mt +
1
2

ΩBSt −
1
2

ΩBSt−1

We now show that under ideal conditions a trial-and-error method can identify the

true spread.

Definition Let A be a set of all conjectures of the true spread A = {S̃P1, S̃P2, · · · , S̃Pn}

Definition Let B be a set of covariances of two adjacent conjectural mid-price returns

obtained according to the conjecture of the true spread B = {Cov1, Cov2, · · · , Covn},

where Covi = Cov[M̃(S̃Pi)t, M̃(S̃Pi)t−1].

Proposition 3.1 If there is no feedback trading, and no inventory control or asymmetric infor-

mation components of the spread, then the spread and its conjecture, and thus the conjectural

error, are serially independent or are fixed. If a conjecture of the spread S̃Pi ∈ A corresponds to

Covi = max(B), it equals the true spread i.e. S̃Pi = SP.

Proof The full proof is in the appendix. The covariance of two adjacent conjectures of

mid-price returns is:

Cov(∆M̃t, ∆M̃t−1)

= E{[∆M̃t − E(∆M̃t)][∆M̃t−1 − E(∆M̃t−1)]}
(4)

Assume the expectation of the conjectural mid-prices is zero. Thus, the equation above

can be written as:

Cov(∆M̃t, ∆M̃t−1)

= E[∆M̃t · ∆M̃t−1]

= E[(∆Mt +
1
2 ΩBSt − 1

2 ΩBSt−1)(∆Mt−1 +
1
2 ΩBSt−1 − 1

2 ΩBSt−2)]

(5)
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As shown in the Appendix, the assumptions imply that BS is independent of ∆M at

all dates, so many terms in (5) are zeros. The variable BS is a binary variable (1 or −1),

thus E(BS2
t−1) = 1. Then we can finally obtain:

Cov(∆M̃t, ∆M̃t−1)

= Cov(∆Mt · ∆Mt−1) +
1
4 Ω2 · [2E(BSt · BSt−1)− E(BSt · BSt−2)− 1]

(6)

The right hand side of the equation is a quadratic polynomial of the expectation of the

error of the conjecture. For a given series, the first term on the right hand side is a

constant. It is straightforward that when the error is zero (i.e. Ω = 0), the second term

is zero. Furthermore, when Ω = 0, there is a global extreme for the right hand side

polynomial, symmetrically, the left hand side of the equation Cov(∆M̃t, ∆M̃t−1) is also

at the extreme value:

arg max
Ω

Cov(∆M̃t, ∆M̃t−1) = 0 (7)

When the conjectural error is zero, the conjectural spread is the true spread:

Ω = SP − S̃Pi = 0 (8)

Therefore the conjectural spread which maximises the covariance equals the true spread.

arg max
S̃Pi∈A

Cov(∆M̃t, ∆M̃t−1) = SP (9)

Q.E.D

Proposition (3.1) sheds lights on the spread estimation. The most important point is

that at the extreme point, the expectation of conjectural spreads equals that of true

spreads. Therefore, one can apply exhaustive search to find the one which is closest to

the true spread.

More specifically, the first step of the estimation is to choose a conjectural spread

(S̃Pi). Secondly, calculate the conjectural mid-prices (M̃i), and then the conjectural re-

turns (∆M̃t,i) using the conjectural spread according to equation (2). Thirdly, calculate

the covariance of two adjacent returns of conjectural mid-prices (Cov(∆M̃t,i, ∆M̃t−1,i)i).

Fourthly, repeat the first three steps enough times to draw a curve of the covariance

against the conjectural spread. Finally, find the maximum point of the curve and the

conjectural spread corresponding to the maximum point is the estimate of the spread.

Because the curve is a negative parabola, there is no need to try all possible values of

the spread, instead, one can stop when the shape of a negative parabola appears.

Figure (1) presents the intuition underlying Proposition (3.1) for the simple case

where the true mid-price does not change over three periods. It shows the general
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relationships between the returns of true mid-prices and the returns of conjectural mid-

prices, when only transaction prices and the direction of transactions are known. The

conjectural spread here is less than the true spread (ω > 0). The conjectural mid-prices

are obtained from Equation (2) using transaction prices, given a conjectural spread.

The dotted lines are conjectural mid-prices and the solid lines are true mid-prices or

transaction prices. A and B represent the ask and bid prices respectively; these are

the prices that are actually observed. M and M̃ represent the true mid-price and the

conjecture of it respectively. ∆ is the first-order difference operator. Ω is the error of the

conjecture which is the difference between the true spread and the conjectural spread,

or equivalently, between the true mid-price and the conjectural mid-price.

There is a sell order in period t − 2, and, thus, the bid price is recorded. There is a

buy order in period t − 1, and thus the ask price is recorded. There is a sell order in

period t, and thus the bid price is recorded. Because the conjectural spread is less than

the true spread, in periods t − 2 and t, the conjectural mid-prices are 0.5 · Ω less than

the true ones, and in period t − 1, the conjectural mid-price is 0.5 · Ω greater than the

true one.

Between periods t − 2 and t − 1, the trade direction changes from selling to buying,

so the conjectural error makes the conjectural mid-price return greater than the true

mid-price return (∆M̃t−1 = ∆Mt−1 + Ω = Ω).

Between periods t − 1 and t, the trade direction switches back from buying to

selling, so the conjectural error partially cancels the true mid-price return (∆M̃t =

∆Mt − Ω = −Ω). When the trade direction does not change, the returns of the conjec-

tural mid-prices and of the true mid-prices are the same.

In the case shown in Figure (1), the covariance of two adjacent returns of true mid-

prices is zero because the mid-price is fixed. The covariance of two adjacent conjectural

mid-price returns is, however, negative. This is because, when the spread is underesti-

mated, the conjectural mid-price returns take on some of the negative serial correlation

of the transaction price series induced by the spread (as in the case of Roll’s (1984) anal-

ysis of the effect of the spread on the serial covariance of transaction price returns, the

cases where the trade direction does not switch make no difference).

Now consider the opposite case where the spread is over-estimated (but true mid-

price returns are still zero as in Figure 1). Then the conjectural mid-price would be

below the true mid-price in periods t − 2 and t, and above it in period t − 1, so in

this case also the conjectural mid-price series has negative serial covariance that is not

present in the true mid-price series.
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Figure 1: The Conjecture of the Spread
The figure show the general relationships between the returns of true mid-prices and the returns of conjectural mid-prices, when

only transaction prices and the directions of transactions are known. The conjectural spread here is less than the true spread.

The conjectural mid-prices are obtained from Equation (2) using transaction prices, given a conjectural spread. The dot-lines are

conjectural mid-prices and the solid lines are true mid-prices or transaction prices. A and B represent the ask and bid prices

respectively; these are the prices that are actually observed. M and M̃ represent the true mid-price and the conjecture of it

respectively. ∆ is the first-order difference operator. Ω is the error of the conjecture which is the difference between the true

spread and the conjectural spread, or equivalently, between the true mid-price and the conjectural mid-price.

There is a sell order in period t − 2, and, thus, the bid price is recorded. There is a buy order in period t − 1, and thus the ask price

is recorded. There is a sell order in period t, and thus the bid price is recorded. Because the conjectural spread is less than the true

spread, the in periods t − 2 and t, the conjectural mid-prices are 0.5 · Ω less than the true ones, and in period t − 1, the conjectural

mid-price is 0.5 · Ω greater than the true one.

Between periods t − 2 and t − 1, the trade direction changes from selling to buying, so the conjectural error makes the conjectural

mid-price return greater than the true mid-price return (∆M̃t−1 = ∆Mt−1 + Ω = Ω).

Between periods t − 1 and t, the trade direction switches back from buying to selling, so the conjectural error partially cancels

the true mid-price return (∆M̃t = ∆Mt − Ω = −Ω). When the trade direction does not change, the returns of the conjectural

mid-prices and of the true mid-prices are the same.
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4 Errors of the New Estimator

4.1 Feedback Trading and the New Estimator

In this section, we discuss the impact of feedback trading on the performance of the

estimator.

We assume that the mid-price returns can be written as follows:

∆Mt = ϵt

where ϵt is a shock which is not influenced by order flows.

If feedback trading exists, order flows are influenced by the shocks. Formally, the

covariance between order flows and the shocks is not zero:

Cov(ϵt−1 · BSt−1) = E(ϵt−1 · BSt−1) ̸= 0

Cov(ϵt−1 · BSt) = E(ϵt−1 · BSt) ̸= 0
(10)

We assume a quote-driven market in which traders receive price quotes, and there-

fore observe the shock (ϵt−1) before placing the order (BSt−1). Then we define the

covariance between ϵt−1 and BSt−1 as current feedback trading (one-period feedback

trading). The influence of the shock may persist in the next period, i.e. the shock ϵt−1

may influence the order flow in period t as well. We define the covariance between

ϵt−1 and BSt as lagged feedback trading (two-period feedback trading).

With the existence of feedback trading, the covariance between two adjacent con-

jectures of mid-price returns is (the detail of the deduction is presented in appendix 9

and 10.1):
Cov(∆M̃t, ∆M̃t−1)

= E(∆M̃t · ∆M̃t−1)

= E(ϵt · ϵt−1) + Π1 · Ω2 + Π2 · Ω

(11)

where
Π1 = 1

4 E [2BSt−1 · BSt−2 − BSt · BSt−2 − 1]

Π2 = 1
2 E [−BSt−1 · ϵt−1 + BSt · ϵt−1]

(12)

Equation (11) suggests that when there is feedback trading, the covariance of the con-

jectural mid-price returns (Cov(∆M̃t, ∆M̃t−1)) contains a linear term in the conjectural

errors (Ω) as well as a quadratic one, so the value of Ω which maximises the polyno-

mial is no longer zero.In other words, the estimator is biased.

We now discuss possible errors that arise if we still estimate the spread by maximis-

ing the covariance between two adjacent conjectures of mid-price returns Cov(∆M̃t, ∆M̃t−1),

as suggested in the previous section. The estimate is given by:

ŜP =

[
2Π1SP + Π2

2Π1

]
(13)
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where ŜP is obtained when Ω maximises Cov(∆M̃t, ∆M̃t−1), and is the estimate of the

true spread.

In the presence of feedback trading, the estimated spread should be (the detail of

the deduction is presented in appendix 10.1):

ŜP = SP − 4Π2

= SP + E(ϵt−1 · BSt−1)− E(ϵt−1 · BSt)
(14)

Equation (14) suggests the estimator will overestimate the spread if there is positive

feedback trading and vice versa. It is of interest that, unlike the other estimators, the

total influence of feedback trading on the estimator includes two period-feedback trad-

ing (E(ϵt−1 · BSt)). If order flows do not exhibit serial autocorrelation, which may be

because the influence of the mid-price shocks is persistent, there is only current feed-

back trading (E(ϵt−1 · BSt−1)). One may define the difference between current and

lagged feedback trading net feedback trading. Because the signs of current feedback

trading and lagged feedback trading in Equation (14) are different, the positive auto-

correlation of order flows can reduce the influence of feedback trading and vice versa.

Because of hot-potato trading, order flows, especially in the tick-by-tick case, tend to be

positively autocorrelated. Thus, the influence of net feedback trading on our estimator

is not as big as on the others.

When there is no feedback trading (Π2 = 0), and no autocorrelated order flows

(E(BSt−1 · BSt−2) = 0 and Π1 = −1), the equation above becomes:

ŜP = SP (15)

and thus,

Ω = 0

The equations above suggest that under the ideal conditions, equation (11) reduce to

the simple version of the estimator and in this circumstance, the estimator is unbiased.

Consider now the impact of feedback trading in the HS model. The HS model is

given by:

∆st =
SP
2 BSt − β SP

2 BSt−1 + ϵt

When there is feedback trading, the estimated value from the HS model ŜP
2 is as fol-

lows:
ŜP
2

=
SP
2

+ E(BSt, ϵt) (16)

Then, the HS model error will be

Error = 2 · E(BSt, ϵt) (17)
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Equation (17) suggests that when there is positive feedback trading, the HS estimator

overestimates the true spread and vice versa. In particular, when there is only current

feedback trading, the bias in the HS estimator is twice as large as that of our new

estimator.

4.2 Price impact and the New Estimator

In this section, we discuss the impact of inventory holding costs (IC) and asymmetric

information costs (AS) on the performance of the estimator. Under these conditions,

the HS estimator performs well, because it explicitly incorporates these effects.

When there are IC&AS components in the spread, the mid-price return is given by:

∆Mt =
1
2

ϱSPBSt−1 + ϵt

where mid-price returns are influenced by the past order flow (Evans and Lyons 2002),

ϱ is the fraction of the components of the spread and ϵt is a shock which is not influ-

enced by order flows. And the conjecture of the mid-price return is given by:

∆M̃t = ∆Mt +
1
2 ΩBSt − 1

2 ΩBSt−1

= 1
2(ϱ − 1)ΩBSt−1 +

1
2 ΩBSt +

1
2 ϱ(SP − Ω)BSt−1 + ϵt

Then the covariance between two adjacent conjectures of mid-price returns is (the de-

tail of the deduction is presented in appendix 9 and 10.2):

Cov(∆M̃t, ∆M̃t−1)

= E(∆M̃t · ∆M̃t−1)

= E(ϵt · ϵt−1) + Π1 · Ω2 + ϱΠ3 · (SP − Ω) · Ω

+1
4 ϱ2(BSt−1 · BSt−2) · [(SP − Ω)2]

(18)

where

Π1 = 1
4 E

[
(ϱ − 1)2(BSt−1 · BSt−2) + (ϱ − 1)BSt · BSt−2 + (ϱ − 1) + (BSt−1 · BSt−2)

]
Π3 = 1

4 E[1 + 2(ϱ − 1)(BSt−1 · BSt−2) + BSt · BSt−2]
(19)

Equation (18) suggests that when there are IC&AS components, the covariance of the

conjectural mid-price returns (Cov(∆M̃t, ∆M̃t−1)) is no longer a function of conjectural

errors (Ω) only but also a function of the true spread (SP).

Unlike the simple version of the estimator, the right hand side of equation (43) is

quadratic in (SP − Ω) and Ω instead of Ω only. The covariance of adjacent conjectural

mid-price returns will not be maximised when Ω = 0 In other words, the estimator

will be biased.

10



We now discuss possible errors if we still let (SP − Ω) which maximises the covari-

ance between two adjacent conjectures of mid-price returns Cov(∆M̃t, ∆M̃t−1) be the

estimate of the true spread. Thus, the estimate is given by:

ŜP = −

 −2Π1SP + Π3SPϱ

2
(

Π1 +
1
4 E(BSt−1 · BSt−2)ϱ2 − Π3ϱ

)
 (20)

where ŜP is the value of (SP − Ω) which maximises Cov(∆M̃t, ∆M̃t−1), and is the es-

timate of the true spread.

When there are IC&AS components of the spread. The estimated spread should be

(the detail of the deduction is presented in appendix 10.2):

ŜP =
(

1 − ϱ

2

)
· SP (21)

Equation (21) suggests that when the transaction cost is not the only component of the

spread, the estimator will underestimate the true spread. In the simulation section, an

adjustment will be introduced to overcome this issue.

When there are no IC&AS components of the spread (ϱ = 0) and no autocorrelated

order flows (E(BSt−1 · BSt−2) = 0 and Π1 = −1 and Π3 = 1), the equation above

becomes:

ŜP = SP (22)

and thus,

Ω = 0

The equations above suggest that under the ideal conditions, Equation (20) reduces to

the simple version of the estimator and in this circumstance, the estimator is unbiased.

It can be shown that the estimator will not be influenced by the autocorrelation of

order flows.

5 Simulation Experiments

In this section, simulated data are used to examine the performance of basic and ad-

justed versions of the new estimator. The aim of this section is to assess the effects of

the following factors on the performance of the estimators: mid-price changes caused

by order flows and lagged feedback trading.

There are 500 replications simulated for each case. There are 432000 periods in a

replication. Let one period represent one minute, and there is one trade per minute.

Thus there are 300 trading days (1440 minutes and 1440 trades per day). For each
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replication, data are considered in various sampling periods: tick-by-tick, five minutes,

fifteen minutes, one hour, four hours, twelve hours and 24 hours. Thus, there are eight

subgroups for each replication. For five-minute intervals, only every fifth trade is used

and the intervening trades discarded, and similarly for longer intervals.

Each replication includes data on order flows, bid-ask spreads, mid-prices, and

translation prices. Data are generated according to the following system. An order

has two possible values 1 and −1. Order flows are either random or positively corre-

lated with current and (possibly) lagged mid-price returns (the feedback-trading case).

Formally, the order flow series is given by

BSt = ψF(∆Mt + η∆Mt−1) + (1 − ψ)ϖt

ψ = 0 or 1
(23)

where BSt is the order flow, which is either random (ψ = 0) or a function F(∆Mt−1 +

η∆Mt) is a function of the past mid-price returns (ψ = 1), which suggests the existence

of feedback trading. η describes the existence of lagged feedback trading. For example,

η = 0.5 suggests that lagged feedback trading is 50% weaker than current feedback

trading. ϖt is a binomial random variable, which follows a binomial distribution with

one trial and 50% probability i.e. B(1, 0.5). It suggests that order flows are drawn

from a binomial distribution randomly and both the buy and sell orders carry the same

weight in the series. The function F(·) reflects the following relationship between order

flows and past mid-price returns.

BSt ∼
{

B(1, κ) i f ∆Mt > 0

B(1, 1 − κ) i f ∆Mt < 0
(24)

where B(1, κ) is a binomial distribution with one trial and κ probability. When κ = 0.5,

there is no feedback trading, and when κ > 0.5, there is positive feedback trading and

vice versa.

Mid-price returns are generated using the following equation,

∆Mt = ϱ BSt−1 ·SPt
2 + ϵt (25)

where ϵt follows a normal distribution with zero mean and standard deviation σ; SPt

is the bid-ask spread which is assumed fixed. ϱ is the fraction of the spread that is

caused by inventory control and asymmetric information, and thus (1 − ϱ) represents

the order-processing part of the spread. When ϱ = 0, the order-processing part is the

only component of the spread, and mid-price follow a random walk process.

Transaction prices are generated by

st = Mt +
SPt

2
· BSt (26)

where st is the transaction price.
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5.1 Ideal Conditions

In this section, the ideal case for the estimators is considered, where order flows are

random; mid-prices follow a random walk process and the spread is fixed. Under

these circumstances, both the basic and adjusted estimators are unbiased. Formally,

the standard deviations of mid-price returns is σ = 0.0002, which is similar to that

observed for major currencies in foreign exchange markets. Let ψ = 0 in equation

(23), which suggests that order flows are random. Let ϱ = 0 in equation (25), which

suggests that the mid-price follows a random walk process and the spread is fixed at

0.0003. The system is given by,

BSt = ϖt

ϖt ∼ B(1, 0.5)

∆Mt = ϵt

ϵt ∼ N(0, 4 × 10−8)

SPt = 0.0003

st = Mt +
SPt

2 · BSt

(27)

Five hundred replications, each of which has 432000 periods, are generated accord-

ing to the system above. Each replication has eight subgroups according to various

sampling periods.

Transaction returns and order flows are used for estimations. The standard devi-

ation of mid-price returns is also calculated. Thus, for every subgroup, there are 500

estimated spreads for each estimator and 500 standard deviations of mid-price returns.

The results are presented in Table (1). The first column shows the results when ev-

ery transaction is used (tick-by-tick data). The other columns show the results when

the transactions are sampled at increasingly long intervals, from five minutes to 24

hours. There are four panels which report the summary statistics and the results of

the estimators respectively. The rows in each panel are as follows. Midstd reports the

average of the standard deviations of mid- price returns over the relevant interval.

Estimates indicates the average of estimated spreads, and Relative Estimates shows the

ratio of this to the true spread. Est-Std reports the standard deviations of the estimated

spreads. RMSE is the root mean square error, or the standard deviation of the esti-

mates about the true spread, so it incorporates the effect of bias as well as the standard

deviation of the estimates about their own mean. It is the best indicator of the likely

error in an estimate of the spread from an individual series.

The row of Midstd shows the time interval and the standard deviation of mid-price

returns have a positive relationship, as a result of the random walk in returns. In the

13



tick-by-tick case, the average standard deviation of mid-price returns is 2× 10−4 which

is the same as the setting of the system. In the 24-hour case, the standard deviation is

7.58 × 10−3. Thus the ratio of the spread to the standard deviation varies from 1.5 in

the tick-by-tick case to 0.0396 at 24 hours. Spreads are harder to estimate when this

ratio is smaller, and hence the standard deviation and RMSE increase with the time

interval.

It can be seen from Table 1 that both the new estimator and the HS estimator are

highly accurate in tick-by-tick data, with an RMSE of less than 0.25% of the true spread

of 0.0003. As the sampling frequency falls, the RMSE rises quickly, exceeding 12%

of the true spread in one-hour samples. The performance of the two estimators is

extremely similar.

Table 1: Ideal Conditions
Tick 5-Min 15-Min 30-Min 1-Hour 4-Hour 12-Hour 24-Hour

Midstd ×10−2 0.0200 0.0447 0.0775 0.110 0.155 0.310 0.536 0.758
The New Estimator

Estimates ×10−3 0.300 0.300 0.300 0.300 0.298 0.310 0.289 0.278

Relative Estimates 1 1 1 1 0.993 1.033 0.963 0.927

Est-Std ×10−3 0.000658 0.00302 0.00884 0.0177 0.0375 0.123 0.423 0.850

RMSE ×10−3 0.000658 0.00302 0.00884 0.0177 0.0376 0.123 0.423 0.850

Huang and Stoll 1997
Estimates ×10−3 0.300 0.300 0.301 0.301 0.301 0.301 0.282 0.280

Relative Estimates 1 1 1.003 1.003 1.003 1.003 0.94 0.933

Est-Std×10−3 0.000622 0.00289 0.00898 0.0169 0.0371 0.146 0.414 0.865

RMSE×10−3 0.000622 0.00289 0.00904 0.0169 0.0371 0.146 0.414 0.865

There are 500 replications. There are 432000 periods, each of which represents one minute, in each replication.

Data of each replication are generated according to the following system. The order flow is drawn from

a binomial distribution, i.e. BSt ∼ B(1, 0.5). The mid-price return is drawn from a normal distribution of

which the mean is zero and the variance is 4 × 10−8, i.e. ∆Mt ∼ N(0, 4 × 10−8). The spread is fixed and

equals to 0.0003, i.e. SPt = 0.0003. The transaction price is the mid-price plus or minus a half spread, i.e.
st = Mt +

SPt
2 · BSt. Each replication is also sampled into longer time intervals: five-minute, fifteen-minute,

thirty-minute, one-hour, four-hour, twelve-hour and twenty-four- hour, and only the close observations are

kept. Thus, there are eight subgroups for each replication. For each subgroup, the standard deviation of

mid-price returns, and the estimated spread are collected.

Midstd is the average of the standard deviations of mid-price returns.

Estimates is the average of the estimated spreads.

Relative Estimate represents the average of estimated spreads divided by the true spread. It is one if the estimate

equals the true spread.

Est-Std is the standard deviation of the estimated spreads.

RMSE is the Root Mean Square Error.
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5.2 One-Period Feedback Trading

In this section, most settings are the same as the ones in section (5.1) except that now

order flows are assumed to be influenced by the latest mid-price returns. Thus all

the differences of the performance of the estimators can be imputed to the existence

of feedback trading. Let ψ = 1 and η = 0, which suggests that there is only current

feedback trading. Under these circumstances, all the estimators are biased. However,

the new estimator should have the least error and the HS estimator should have the

greatest error. Formally, let ψ = 1 and η = 0 in equation (23), which suggests that

order flows affected by the past period mid-price returns. Let κ = 0.65, which implies

that there is positive net feedback trading. As in the previous case, the spread is fixed

at 0.0003. The system is given by,

BSt ∼
{

B(1, 0.65) i f ∆Mt > 0

B(1, 0.35) i f ∆Mt < 0

∆Mt = ϵt

ϵt ∼ N(0, 9 × 10−12)

SPt = 0.0003

st = Mt +
SPt

2 · BSt

(28)

The results are shown in Table 2. The bias in the estimators can be seen in the relative

estimate for the tick-by-tick case (a bias of +16% for the new estimator, and +32% for the

HS estimator). Since the standard deviation of the estimates is very small at short time

intervals, the RMSE is dominated by the bias in these cases (up to 30-minute intervals).

The bias is slightly larger at longer time intervals for both estimators. Clearly, however,

the new estimator outperforms the HS estimator in the presence of feedback trading,

as predicted by our earlier analysis.
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Table 2: One-period Feedback Trading
Tick 5-Min 15-Min 30-Min 1-Hour 4-Hour 12-Hour 24-Hour

Mid-price returns SD ×10−3 0.200 0.447 0.774 1.09 1.55 3.09 5.36 7.58

Spread/(returns SD) 1.5 0.671 0.387 0.273 0.194 0.0968 0.0560 0.0396

Cov(∆Mt, BSt) ×10−3 0.0479 0.0479 0.0479 0.0480 0.0477 0.0447 0.0584 0.0544

The New Estimator
Estimation ×10−3 0.348 0.348 0.348 0.346 0.350 0.349 0.359 0.388

Relative Estimate 1.16 1.16 1.16 1.15 1.17 1.16 1.20 1.29

Est-Std×10−3 0.000683 0.00305 0.00923 0.0180 0.0373 0.139 0.439 0.879

RMSE×10−3 0.0480 0.0481 0.0489 0.0494 0.0624 0.147 0.443 0.883

Huang and Stoll 1997
Estimates ×10−3 0.396 0.396 0.395 0.395 0.398 0.400 0.408 0.422

Relative Estimate 1.32 1.32 1.32 1.32 1.33 1.33 1.36 1.41

Est-Std×10−3 0.000579 0.00304 0.00889 0.0175 0.0369 0.145 0.446 0.876

RMSE×10−3 0.0960 0.0960 0.0954 0.0966 0.105 0.176 0.459 0.884

There are 500 replications. There are 432000 periods, each of which represents one minute, in each replication. Data

of each replication are generated according to the following system. The order flow is positively autocorrelated. The

mid-price return is drawn from a normal distribution of which the mean is zero and the variance is 4 × 10−8, i.e.

∆Mt ∼ N(0, 4 × 10−8). Order flows is positively correlated to mid-price returns. The probability of a buy (sell) order

being after a positive (negative) return is 65%. i.e. The spread is fixed and equals to 0.0003, i.e. BSt ∼ B(1, 0.65) if

∆Mt > 0 and BSt ∼ B(1, 0.35) if ∆Mt < 0. SPt = 0.0003. The transaction price is the mid-price plus or minus a half

spread, i.e. st = Mt +
SPt

2 · BSt. Each replication is also sampled into longer time intervals: five-minute, fifteen-minute,

thirty-minute, one-hour, four-hour, twelve-hour and twenty-four- hour, and only the close observations are kept. Thus,

there are eight subgroups for each replication. For each subgroup, the standard deviation of mid-price returns, and the

estimated spread are collected.

Cov(∆Mt, BSt) is the covariance of mid-price returns and order flows, which reflects the existence of feedback trading.

The other settings are the same as Table (1)
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5.3 Two-Period Feedback Trading

In this section, most settings are the same as the ones in section (5.2) except that now

e add lagged feedback trading. Let ψ = 1 and η = 0.5 which implies that there is

both current and lagged feedback trading, with lagged feedback trading in the same

direction as but 50% weaker than current trading. Net feedback trading is the summa-

tion of them: ∆Mt +0.5 ∆Mt−1. In this section, order flows are random; order flows

are influenced by the past mid-price returns; and the spread is fixed. Under these cir-

cumstances, all the estimators are biased. However, the new estimator should have the

least error and the HS estimator should have the greatest error. Formally, let ψ = 1 and

η = 0.5 in equation (23), which suggests that order flows affected by past two periods

mid-price returns. Let κ = 0.65, which suggest there is positive net feedback trading.

The spread is still fixed at 0.0003. The system is given by,

BSt ∼
{

B(1, 0.65) i f ∆Mt +0.5 ∆Mt−1 > 0

B(1, 0.35) i f ∆Mt +0.5 ∆Mt−1 < 0

∆Mt = ϵt

ϵt ∼ N(0, 9 × 10−12)

SPt = 0.0003

st = Mt +
SPt

2 · BSt

(29)

The results are presented in Table 3. The HS estimator performs slightly better than

it did in Table 2 (current feedback trading only) in the tick-by-tick case, with a bias of

+28.7% compared with +32% in Table 2. However it performs worse than in Table 2

at any longer time interval (for example at five minutes the bias for the HS estimator

rises to +42.7%, compared with +32% in Table 2). The new estimator, by contrast,

performs even better than in Table 2 in the tick-by-tick case, because of the offsetting

effect of current and lagged feedback trading shown in equation (14). The bias of the

new estimator is only +7.3% in the tick-by-tick case, compared with +16% in Table 2.

At longer time intervals the new estimator, like the HS estimator, performs worse in

Table 3 than in Table 2, but its bias is substantially less at all time intervals than that of

the HS estimator.
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Table 3: Two-Period Feedback Trading
Tick 5-Min 15-Min 30-Min 1-Hour 4-Hour 12-Hour 24-Hour

Midstd ×10−3 0.200 0.447 0.775 1.10 1.55 3.10 5.36 7.59
Cov(∆Mt, BSt) ×10−4 0.428 0.428 0.428 0.429 0.430 0.427 0.427 0.430
Cov(∆Mt−1, BSt) ×10−5 2.14 0.00421 -0.00239 -0.00424 -0.00943 0.0472 -0.0322 -0.0317

The New Estimator
Estimates ×10−3 0.322 0.364 0.365 0.365 0.362 0.364 0.372 0.358

Relative Estimates 1.073 1.213 1.217 1.217 1.207 1.213 1.24 1.193

Est-Std×10−3 0.000592 0.00291 0.00948 0.0193 0.0359 0.145 0.460 0.896

RMSE ×10−3 0.0220 0.0641 0.0657 0.0678 0.0716 0.158 0.466 0.898

Huang and Stoll 1997
Estimates ×10−3 0.386 0.428 0.429 0.429 0.428 0.435 0.455 0.449

Relative Estimates 1.287 1.427 1.43 1.43 1.427 1.45 1.517 1.497

Est-Std×10−3 0.000556 0.00299 0.00868 0.0180 0.0347 0.150 0.461 0.919

RMSE ×10−3 0.0860 0.128 0.129 0.130 0.133 0.202 0.486 0.931

There are 500 replications. There are 432000 periods, each of which represents one minute, in each replication. Data

of each replication are generated according to the following system. The order flow is positively autocorrelated.

The mid-price return is drawn from a normal distribution of which the mean is zero and the variance is 4 × 10−8,

i.e. ∆Mt ∼ N(0, 4 × 10−8). Order flows is positively correlated to past mid-price returns. The probability of a buy

(sell) order with positive (negative) net feedback trading is 65%. i.e. The spread is fixed and equals to 0.0003, i.e.

BSt ∼ B(1, 0.65) if ∆Mt +0.5 ∆Mt−1 > 0 and BSt ∼ B(1, 0.35) if ∆Mt +0.5 ∆Mt−1 < 0. SPt = 0.0003. The transaction

price is the mid-price plus or minus a half spread, i.e. st = Mt +
SPt

2 · BSt. Each replication is also sampled into longer

time intervals: five-minute, fifteen-minute, thirty-minute, one-hour, four-hour, twelve-hour and twenty-four- hour,

and only the close observations are kept. Thus, there are eight subgroups for each replication. For each subgroup, the

standard deviation of mid-price returns, and the estimated spread are collected.

Midstd is the average of the standard deviations of mid-price returns.

Cov(∆Mt, BSt) is the covariance of mid-price returns and order flows, which reflects the existence of current feedback

trading.

Cov(∆Mt−1, BSt) is the covariance of mid-price returns and order flows, which reflects the existence of lagged feedback

trading.

The other settings are the same as Table (1)
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5.4 Inventory Control and Asymmetric Information Components

In this section, most settings are the same as the ones in section (5.1) except that the

mid-price return is now assumed to be influenced by the past order flow, and thus

there are inventory control and the asymmetric information components to the spread.

Order flow is assumed to be random, so there is no feedback trading. Let ϱ = 1
3 , which

suggests that the inventory control and asymmetric information parts contribute one

third of the total spread. Under these circumstances, the new estimator is biased, but

the HS estimator is unbiased. Formally, let ψ = 0 in equation (23), which suggests that

order flows are random.The spread is 0.0003, as before. The system is given by:

BSt = ϖt

ϖt ∼ B(1, 0.5)

∆Mt =
1
3 BSt−1 ·SPt

2 + ϵt

∆Mt =
2
3 BSt−1 ·SPt

2 + ϵt

ϵt ∼ N(0, 4 × 10−8)

SPt = 0.0003

st = Mt +
SPt

2 · BSt

(30)

The results are presented in Table (4), in which the second row (ϱ) reports the co-

efficient of equation (25) and represents the proportion of the IC & AS components of

the spread.

The standard deviation of mid-price returns is slightly greater than in the previous

cases (2.06 × 10−4 for tick-by-tick data, rising to 7.80 × 10−3 for 24-hour intervals).

Thus the ratio of the spread to the standard deviation ranges from 1.46 to 0.0385. The

estimated ϱ is close to 1
3 , which is the same as the setting, when the time interval is

short. When the time interval is longer than one hour, ϱ becomes unstable, because

in relatively long runs the microstructure effects are weaker. While the HS estimator

remains accurate, the new estimator underestimates the spread by 16.7%, or half of ϱ,

as predicted in our earlier theoretical discussion.
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Table 4: Inventory Control and Asymmetric Information Components
Tick 5-Min 15-Min 30-Min 1-Hour 4-Hour 12-Hour 24-Hour

Midstd ×10−2 0.0206 0.0461 0.0798 0.113 0.160 0.319 0.552 0.780
0.333 0.333 0.333 0.333 0.328 0.312 0.247 0.200

The New Estimator
Estimates ×10−3 0.250 0.250 0.250 0.250 0.252 0.254 0.254 0.347

Relative Estimates 0.833 0.833 0.833 0.833 0.84 0.847 0.847 1.157

Est-Std×10−3 0.000656 0.00305 0.00886 0.0182 0.0374 0.153 0.457 0.917

RMSE×10−3 0.0500 0.0501 0.0508 0.0532 0.0609 0.160 0.459 0.918
Huang and Stoll 1997

Estimates ×10−3 0.300 0.300 0.300 0.300 0.303 0.302 0.311 0.350

Relative Estimates 1 1 1 1 1.01 1.007 1.037 1.167

Est-Std×10−3 0.000626 0.00312 0.00862 0.0173 0.0391 0.155 0.441 0.927

RMSE×10−3 0.000626 0.00312 0.00862 0.0173 0.0392 0.155 0.441 0.928

There are 500 replications. There are 432000 periods, each of which represents one minute, in each replication.

Data of each replication are generated according to the following system. The order flow is drawn from a

binomial distribution, i.e. BSt ∼ B(1, 0.5). The mid-price return is influenced by the past order flow and

a random shock drawn from a normal distribution of which the mean is zero and the variance is 4 × 10−8.

Thus there are the inventory control and the asymmetric information components in the spread. Formally,

the mid-price returns are given by, ∆Mt = 1
3 BSt−1 · SPt

2 + εt where εt ∼ N(0, 4 × 10−8). The spread is fixed

and equals to 0.0003, i.e. SPt = 0.0003. The transaction price is the mid-price plus or minus a half spread, i.e.
st = Mt +

SPt
2 · BSt. Each replication is also sampled into longer time intervals: five-minute, fifteen-minute,

thirty-minute, one-hour, four-hour, twelve-hour and twenty-four- hour, and only the close observations are

kept. Thus, there are eight subgroups for each replication. For each subgroup, the standard deviation of

mid-price returns, and the estimated spread are collected.

The other settings are the same as Table (1)
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5.5 Both Feedback Trading and Price Impact

In this section, we investigate the performance of the two estimators in the presence

of both feedback trading (which favours the new estimator) and inventory control and

asymmetric information components of the spread (which favours the HS estimator).

We assume two-period feedback trading, as in section (5.3), and we investigate two

separate settings for ϱ: one-third, as in section (5.4), and a larger one of two-thirds.

Thus ψ = 1, η = 0.5 and ϱ = 1
3 or 2

3 . The system is given by:

BSt ∼
{

B(1, 0.65) i f ∆Mt +0.5 ∆Mt−1 > 0

B(1, 0.35) i f ∆Mt +0.5 ∆Mt−1 < 0

∆Mt =
1
3 BSt−1 ·SPt

2 + ϵt in table 5

∆Mt =
2
3 BSt−1 ·SPt

2 + ϵt in table 6

ϵt ∼ N(0, 9 × 10−12)

SPt = 0.0003

st = Mt +
SPt

2 · BSt

(31)

Table (5) shows the results for ϱ = 1
3 . As in the case of two-period feedback trading

alone (Table 3), the HS estimator overestimates the spread considerably: by 28.7% in

tick-by-tick data and by rather more in time-aggregated data. In fact the numbers for

the HS estimator are very similar to those in Table (3); the price impact makes virtually

no difference. For the new estimator the picture is very different. The underestimation

associated with price impact offsets the overestimation caused by feedback trading. In

tick-by-tick data the new estimator underestimates by 9%, but overestimates slightly in

time-aggregated data (by about 5% up to four hours, and by quite a bit more at longer

intervals).

When ϱ = 2
3 , the simulation results are as show in Table (6). The HS results are

very close to those shown in Table (5). For the new estimator, the higher value of ϱ

reduces the estimates, as expected. In tick-by-tick data the new estimator now under-

estimates by 25.7%, and by 12% in five-minute data and by 10% in four-hour data, only

overestimating at longer intervals.

21



Table 5: Inventory Control and Asymmetric Information Components and Two-Period

Feedback Trading
Tick 5-Min 15-Min 30-Min 1-Hour 4-Hour 12-Hour 24-Hour

Midstd ×10−2 0.0206 0.0535 0.0881 0.123 0.173 0.344 0.594 0.839
ϱ 0.333 0.341 0.342 0.338 0.334 0.329 0.360 0.319
Cov(∆Mt, BSt) ×10−4 0.440 0.440 0.440 0.439 0.440 0.443 0.447 0.444
Cov(∆Mt−1, BSt) ×10−5 2.14 -0.00369 -0.00163 -0.00717 -0.0370 -0.0164 -0.0311 -0.00629

The New Estimator
Estimates ×10−3 0.273 0.314 0.314 0.315 0.317 0.316 0.359 0.443

Relative Estimates 0.91 1.047 1.047 1.05 1.057 1.053 1.197 1.477

Est-Std×10−3 0.000602 0.00343 0.00993 0.0197 0.04 0.161 0.332 0.426

RMSE×10−3 0.0270 0.0144 0.0172 0.0248 0.0435 0.162 0.337 0.449
Huang and Stoll 1997

Estimates ×10−3 0.386 0.431 0.431 0.431 0.432 0.432 0.430 0.413

Relative Estimates 1.287 1.437 1.437 1.437 1.44 1.44 1.433 1.377

Est-Std×10−3 0.000615 0.00329 0.0105 0.0197 0.0428 0.171 0.485 0.93

RMSE×10−3 0.0860 0.131 0.131 0.132 0.139 0.216 0.502 0.937

There are 500 replications. There are 432000 periods, each of which represents one minute, in each replication. Data of

each replication are generated according to the following system. The order flow is drawn from a binomial distribution,

i.e. BSt ∼ B(1, 0.5). The mid-price return is influenced by the past order flow and a random shock drawn from a normal

distribution of which the mean is zero and the variance is 4 × 10−8. Thus there are the inventory control and the asym-

metric information components in the spread. Formally, the mid-price returns are given by, ∆Mt = 1
3 BSt−1 · SPt

2 + εt

where εt ∼ N(0, 4 × 10−8). The spread is fixed and equals to 0.0003, i.e. SPt = 0.0003. The transaction price is the

mid-price plus or minus a half spread, i.e. st = Mt +
SPt

2 · BSt. Each replication is also sampled into longer time

intervals: five-minute, fifteen-minute, thirty-minute, one-hour, four-hour, twelve-hour and twenty-four- hour, and only

the close observations are kept. Thus, there are eight subgroups for each replication. For each subgroup, the standard

deviation of mid-price returns, and the estimated spread are collected.

The other settings are the same as Table (1)
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Table 6: Inventory Control and Asymmetric Information Components and Two-Period

Feedback Trading
Tick 5-Min 15-Min 30-Min 1-Hour 4-Hour 12-Hour 24-Hour

Midstd ×10−2 0.0224 0.0577 0.0983 0.138 0.195 0.390 0.675 0.954
ϱ 0.667 0.682 0.683 0.681 0.666 0.670 0.709 0.702
Cov(∆Mt, BSt) ×10−4 0.452 0.452 0.453 0.453 0.453 0.457 0.461 0.46
Cov(∆Mt−1, BSt) ×10−5 2.14 -0.00296 -0.00992 -0.0132 -0.00441 -0.0295 -0.0374 -0.0908

The New Estimator
Estimates ×10−3 0.223 0.264 0.264 0.264 0.269 0.270 0.356 0.422

Relative Estimates 0.743 0.880 0.880 0.880 0.897 0.900 1.187 1.407

Est-Std×10−3 0.00124 0.00425 0.0108 0.0232 0.0461 0.167 0.356 0.425

RMSE×10−3 0.077 0.036 0.038 0.043 0.056 0.170 0.360 0.442
Huang and Stoll 1997

Estimates ×10−3 0.386 0.433 0.433 0.433 0.434 0.448 0.465 0.409

Relative Estimates 1.287 1.443 1.443 1.443 1.447 1.493 1.550 1.363

Est-Std×10−3 0.000615 0.00329 0.0105 0.0197 0.0428 0.171 0.485 0.93

RMSE×10−3 0.086 0.133 0.133 0.135 0.143 0.242 0.582 1.105

There are 500 replications. There are 432000 periods, each of which represents one minute, in each replication. Data of

each replication are generated according to the following system. The order flow is drawn from a binomial distribution,

i.e. BSt ∼ B(1, 0.5). The mid-price return is influenced by the past order flow and a random shock drawn from a normal

distribution of which the mean is zero and the variance is 4 × 10−8. Thus there are the inventory control and the asym-

metric information components in the spread. Formally, the mid-price returns are given by, ∆Mt = 2
3 BSt−1 · SPt

2 + εt

where εt ∼ N(0, 4 × 10−8). The spread is fixed and equals to 0.0003, i.e. SPt = 0.0003. The transaction price is the

mid-price plus or minus a half spread, i.e. st = Mt +
SPt

2 · BSt. Each replication is also sampled into longer time

intervals: five-minute, fifteen-minute, thirty-minute, one-hour, four-hour, twelve-hour and twenty-four- hour, and only

the close observations are kept. Thus, there are eight subgroups for each replication. For each subgroup, the standard

deviation of mid-price returns, and the estimated spread are collected.

The other settings are the same as Table (1)
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6 Discussion

Our new spread estimator, based on a trial-and-error procedure, was shown to perform

almost as well as the HS estimator in ideal conditions of no price impact or feedback

trading (Table 1). A little-recognised weakness of the HS estimator is that it is prone

to overestimate the spread in the presence of (positive) feedback trading. Our new

estimator also overestimates the spread in the presence of feedback trading, but by

considerably less than the HS estimator does. With only current feedback trading, the

overestimation bias of the new estimator is only half that of the HS estimator in tick-by-

tick data (Table 2). With lagged feedback trading as well, the bias in the new estimator

is even smaller, both absolutely and relative to the HS estimator (Table 3).

In the presence of inventory control and asymmetric information components of the

spread, the HS estimator remains unbiased, because these elements are built into the

HS estimation procedure (Table 4). The new estimator, however, underestimates to the

tune of half of ϱ, where ϱ is the proportion of the spread attributable to price impact.

When both feedback trading and price impact effects are present (Tables 5 and 6), the

new estimator benefits from the offsetting effects of the tendency to overestimate in the

feedback trading case and to underestimate in the price impact case. It therefore tends

to outperform the HS estimator, which performs as poorly in this case as in the pure

feedback trading case.

7 Conclusions

We have proposed a new bid-ask spread estimator based on the principle that the co-

variance of successive mid-price returns tends to be maximised at the true value of the

spread. A grid search or trial-and-error procedure for maximising this covariance over

alternative conjectures about the spread may therefore be used to estimate the true

spread. The information requirements are the same as for Huang and Stoll’s (1997) es-

timator: transaction prices and trade direction. Theoretically it was shown that the new

estimator overestimates the spread in the presence of positive feedback trading (a rise

in price making a buy order more likely), but by considerably less than the Huang-Stoll

estimator. Price impact causes the new estimator to underestimate the spread, with a

bias equal to half the proportion of the spread represented by price impact. Simulation

results confirm the theoretical findings. Simulation results for the combination of feed-

back trading and price impact show that the bias effects identified in the separate cases

are approximately additive. This means that the Huang-Stoll estimator performs as

poorly in the combined case as in the pure feedback trading case, whereas the new es-
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timator tends to perform better in the combined case than in the pure price impact case,

because the two biases offset one another (assuming that feedback trading is positive).
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Appendix

8 Proof of Proposition (3.1)

Definition Let A be a set of all conjectures of the true spread A = {S̃P1, S̃P2, · · · , S̃Pn}

Definition Let B be a set of covariances of two adjacent conjectural mid-price returns

obtained according to the conjecture of the true spread B = {Cov1, Cov2, · · · , Covn},

where Covi = Cov[M̃(S̃Pi)t, M̃(S̃Pi)t−1].

One can find that sets A and B are one to one mapping.

Proposition (3.1): If there is no feedback trading, and no inventory control or asym-

metric information components of the spread, then the spread and its conjecture, and

thus the conjectural error, are serially independent or are fixed. If a conjecture of the

spread S̃Pi ∈ A corresponds to Covi = max(B), it equals the true spread i.e. S̃Pi = SP.

Proof The covariance of two adjacent conjectures of mid-price returns is:

Cov(∆M̃t, ∆M̃t−1)

= E{[∆M̃t − E(∆M̃t)][∆M̃t−1 − E(∆M̃t−1)]}
(32)

Assume the conjectural errors are fixed, expectations of errors are given by:

E(Ωt) = E(Ωt−1) = E(Ωt−2) = Ω

and the exceptions of the multiplication of the conjectural errors are given by:

E(ΩtΩt−1) = E(ΩtΩt−2) = E(Ωt−1Ωt−2) = Ω2

Furthermore, assume the expectation of the conjectural mid-prices is zero. Thus, the

covariance can be written as:

Cov(∆M̃t, ∆M̃t−1)

= E[∆M̃t · ∆M̃t−1]

= E[(∆Mt +
1
2 ΩBSt − 1

2 ΩBSt−1)(∆Mt−1 +
1
2 ΩBSt−1 − 1

2 ΩBSt−2)]

= E[(∆Mt +
1
2 ΩBSt − 1

2 ΩBSt−1)∆Mt−1

+1
2 ΩBSt−1(∆Mt +

1
2 ΩBSt − 1

2 ΩBSt−1)

−1
2 ΩBSt−2(∆Mt +

1
2 ΩBSt − 1

2 ΩBSt−1)]

= E[(∆Mt∆Mt−1 +
1
2 ΩBSt∆Mt−1 − 1

2 ΩBSt−1∆Mt−1)

+(∆Mt
1
2 ΩBSt−1 +

1
2 ΩBSt

1
2 ΩBSt−1 − 1

2 ΩBSt−1
1
2 ΩBSt−1)

−(∆Mt
1
2 ΩBSt−2 +

1
2 ΩBSt

1
2 ΩBSt−2 − 1

2 ΩBSt−1
1
2 ΩBSt−2)]

(33)
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Re-arrange the equation further, we have:

= E[(∆Mt∆Mt−1 +
1
2 ΩBSt∆Mt−1 − 1

2 ΩBSt−1∆Mt−1)

+(1
2 ∆MtΩBSt−1 +

1
4 Ω2BStBSt−1 − 1

4 Ω2BSt−1
2)

−(∆Mt
1
2 ΩBSt−2 +

1
4 Ω2BStBSt−2 − 1

4 Ω2BSt−1BSt−2)]

= E(∆Mt∆Mt−1)

+E(1
2 ΩBSt∆Mt−1 − 1

2 ΩBSt−1∆Mt−1 +
1
2 ∆MtΩBSt−1 − ∆Mt

1
2 ΩBSt−2

+1
4 Ω2BStBSt−1 − 1

4 Ω2BSt−1
2 − 1

4 Ω2BStBSt−2 +
1
4 Ω2BSt−1BSt−2)

(34)

Because the variable BS is a binary variable (1 or −1), then:

E(BS2
t−1) = 1

Furthermore, because we assume there is no feedback trading, then:

E(BSt∆Mt−1) = 0

E(BSt−1∆Mt−1) = 0

Because we assume there is no IC&AS components, then:

E(BSt−1∆Mt) = 0

E(BSt−2 · ∆Mt) = 0

Equation (34) can be written as:

Cov(∆M̃t, ∆M̃t−1)

= E(∆Mt∆Mt−1)

+E(1
4 Ω2BStBSt−1 − 1

4 Ω2 − 1
4 Ω2BStBSt−2 +

1
4 Ω2BSt−1BSt−2)

= Cov(∆Mt · ∆Mt−1) +
1
4 Ω2 · [2E(BSt · BSt−1)− E(BSt · BSt−2)− 1]

(35)

The right hand side of the equation is a quadratic polynomial of the expectation

of the error of the conjecture. For a given series, the first term on the right hand side

is a constant. It is straightforward that when the expectation of the error is zero (i.e.

E(Ω) = 0), the second term is zero. Furthermore, when E(Ω) = 0, there is a global

extreme for the right hand side polynomial, symmetrically, the left hand side of the

equation Cov(∆M̃t, ∆M̃t−1) is also at the extreme value:

arg max
Ω

Cov(∆M̃t, ∆M̃t−1) = 0 (36)

When the conjectural error is zero, the conjectural spread is the true spread:

Ω = SP − S̃Pi = 0 (37)
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Therefore the conjectural spread which maximises the covariance equals the true spread.

arg max
S̃Pi∈A

Cov(∆M̃t, ∆M̃t−1) = SP (38)

Q.E.D

9 Simplify equations (11) and (18)

This section shows the detail of the simplification of equations (11) and (18). Feedback

trading, inventory holding costs and asymmetric information costs are considered to-

gether.

Considering the inventory control and asymmetric information components of the

spread, the true mid-price returns are given by:

∆Mt =
1
2

ϱSPBSt−1 + ϵt

The covariance of the two adjacent conjectural mid-price returns is given by,

Cov(∆M̃t, ∆M̃t−1)

= E{[∆M̃t − E(∆M̃t)][∆M̃t−1 − E(∆M̃t−1)]}
(39)

Assume the expectation of conjectural mid-price returns to be zero. Thus the equation

above can be written as:

Cov(∆M̃t, ∆M̃t−1)

= E[∆M̃t · ∆M̃t−1]

= E
{[

1
2(ϱ − 1)ΩBSt−1 +

1
2 ΩBSt +

1
2 ϱS̃Pt−1BSt−1 + ϵt

]
·
[

1
2(ϱ − 1)ΩBSt−2 +

1
2 ΩBSt−1 +

1
2 ϱS̃Pt−2BSt−2 + ϵt−1

]}
= E

{
1
2(−1 + ϱ)ΩBSt−2

[
1
2(−1 + ϱ)ΩBSt−1 + ϵt +

1
2 ΩBSt +

1
2 ϱS̃Pt−1BSt−1

]
+ϵt−1

[
1
2(−1 + ϱ)ΩBSt−1 + ϵt +

1
2 ΩBSt +

1
2 ϱS̃Pt−1BSt−1

]
+1

2 ΩBSt−1

[
1
2(−1 + ϱ)ΩBSt−1 + ϵt +

1
2 ΩBSt +

1
2 ϱS̃Pt−1BSt−1

]
+1

2 ϱS̃Pt−2BSt−2

[
1
2(−1 + ϱ)ΩBSt−1 + ϵt +

1
2 ΩBSt +

1
2 ϱS̃Pt−1BSt−1

]}
= E

{[
1
2 ·

1
2(−1 + ϱ)ΩBSt−2(−1 + ϱ)ΩBSt−1 +

1
2(−1 + ϱ)ΩBSt−2ϵt

+1
2 ·

1
2(−1 + ϱ)ΩBSt−2ΩBSt +

1
2 ·

1
2(−1 + ϱ)ΩBSt−2ϱS̃Pt−1BSt−1

]
+

[
1
2(−1 + ϱ)ΩBSt−1ϵt−1 + ϵtϵt−1 +

1
2 ΩBStϵt−1 +

1
2 ϱS̃Pt−1BSt−1ϵt−1

]
+

[
1
2 ·

1
2 ΩBSt−1(−1 + ϱ)ΩBSt−1 +

1
2 ΩBSt−1ϵt +

1
2 ·

1
2 ΩBSt−1ΩBSt

+1
2 ·

1
2 ΩBSt−1ϱS̃Pt−1BSt−1

]
+

[
1
2 ·

1
2 ϱS̃Pt−2BSt−2(−1 + ϱ)ΩBSt−1

+1
2 ϱS̃Pt−2BSt−2ϵt +

1
2 ·

1
2 ϱS̃Pt−2BSt−2ΩBSt +

1
2 ·

1
2 ϱS̃Pt−2BSt−2ϱS̃Pt−1BSt−1

]}
(40)
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Re-arrange the equation further, we have:

Cov(∆M̃t, ∆M̃t−1)

= E
{[

1
4(−1 + ϱ)2Ω2BSt−1BSt−2 +

1
2(−1 + ϱ)ΩBSt−2ϵt

+1
4(−1 + ϱ)Ω2BStBSt−2 +

1
4 ϱ(−1 + ϱ)S̃PBSt−1BSt−2Ω

]
+

[
1
2(−1 + ϱ)ΩBSt−1ϵt−1 + ϵtϵt−1 +

1
2 ΩBStϵt−1 +

1
2 ϱS̃PBSt−1ϵt−1

]
+

[
1
4(−1 + ϱ)Ω2BSt−1

2 + 1
2 ΩBSt−1ϵt +

1
4 Ω2BStBSt−1

+1
4 ϱS̃PBSt−1

2Ω
]
+

[
1
4 ϱ(−1 + ϱ)ΩBSt−1BSt−2S̃P + 1

2 ϱS̃PBSt−2ϵt

]
+1

4 ϱS̃PΩBStBSt−2 +
1
4 ϱ2S̃P

2
BSt−2BSt−1

]}
= E(ϵtϵt−1) + E

[
1
4(−1 + ϱ)2Ω2BSt−1BSt−2 +

1
4(−1 + ϱ)Ω2BStBSt−2

+1
4(−1 + ϱ)Ω2BSt−1

2 + 1
4 Ω2BStBSt−1 +

1
2(−1 + ϱ)ΩBSt−2ϵt

+1
2(−1 + ϱ)ΩBSt−1ϵt−1 +

1
2 ΩBStϵt−1 +

1
2 ΩBSt−1ϵt

+1
4 ϱ(−1 + ϱ)S̃PBSt−1BSt−2Ω + 1

4 ϱS̃PBSt−1
2Ω

+1
4 ϱ(−1 + ϱ)ΩBSt−1BSt−2S̃P + 1

4 ϱS̃PΩBStBSt−2

+1
2 ϱS̃PBSt−1ϵt−1 +

1
2 ϱS̃PBSt−2ϵt +

1
4 ϱ2S̃P

2
BSt−2BSt−1

]
= E(ϵtϵt−1) + E

{[
1
4(−1 + ϱ)2BSt−1BSt−2 +

1
4(−1 + ϱ)BStBSt−2

+1
4(−1 + ϱ)BSt−1

2 + 1
4 BStBSt−1

]
Ω2 +

[
1
2(−1 + ϱ)BSt−2ϵt

+1
2(−1 + ϱ)BSt−1ϵt−1 +

1
2 BStϵt−1 +

1
2 BSt−1ϵt

]
Ω

+
[

1
4(−1 + ϱ)BSt−1BSt−2 +

1
4 BSt−1

2

+1
4(−1 + ϱ)BSt−1BSt−2 +

1
4 BStBSt−2

]
ϱS̃PΩ

+
[

1
2 BSt−1ϵt−1 +

1
2 BSt−2ϵt

]
ϱS̃P

+1
4 ϱ2S̃P

2
BSt−2BSt−1

}

(41)

Let following symbols to represent some parts of the equation above, because we as-

sume order flows do not influence the mid-price shocks following parts are zeros.

E(BSt−2ϵt) = E(BSt−1ϵt) = 0

Because the variable BS is a binary variable and with a mean of zero, then:

E(BS2
t−1) = 1
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Π0 = E(BSt−1BSt−2)

Π1 = E
[

1
4(−1 + ϱ)2BSt−1BSt−2 +

1
4(−1 + ϱ)BStBSt−2 +

1
4(−1 + ϱ) + 1

4 BStBSt−1

]
= 1

4 E
[
(−1 + ϱ)2Π0 + (−1 + ϱ)BStBSt−2 + (−1 + ϱ) + Π0

]
Π2 = E

[
1
2(−1 + ϱ)BSt−2ϵt +

1
2(−1 + ϱ)BSt−1ϵt−1 +

1
2 BStϵt−1 +

1
2 BSt−1ϵt

]
= 1

2 E [(−1 + ϱ)BSt−1ϵt−1 + BStϵt−1]

Π3 = E
[

1
4(−1 + ϱ)BSt−1BSt−2 +

1
4 BSt−1

2 + 1
4(−1 + ϱ)BSt−1BSt−2 +

1
4 BStBSt−2

]
= 1

4 E[2(−1 + ϱ)Π0 + 1 + BStBSt−2]

Π4 = E(1
2 BSt−1ϵt−1 +

1
2 BSt−2ϵt)

= 1
2 E(BSt−1ϵt−1)

(42)

Substitute above equations into equation (41), we have:

Cov(∆M̃t, ∆M̃t−1)

= E(ϵtϵt−1) + Π1Ω2 + Π2Ω + Π3ϱS̃PΩ

+Π4ϱS̃P + 1
4 ϱ2S̃P

2
Π0

(43)

Equation (43) suggests that when there are IC&AS components and feedback trading,

the covariance of the conjectural mid-price returns (Cov(∆M̃t, ∆M̃t−1)) is no longer

a function of conjectural errors (Ω) only but also a function of the conjecture of the

spread (S̃P). Furthermore, because the true spread (SP) is certain for a given series,

the conjectural errors (Ω) is a function of the conjecture of the spread. To investigate

the relationship between the true spread and the conjecture of it, we re-arrange the

equation to make S̃P be the only variable of the equation. Replace the conjectural error

(Ω) by the true spread (SP) and the conjectural spread (S̃P), we have:

Cov(∆M̃t, ∆M̃t−1)

= E(ϵtϵt−1) + Π1(SP − S̃P)
2
+ Π2

(
SP − S̃P

)
+Π3

[
ϱS̃P(SP − S̃P)

]
+ Π4ϱS̃P + 1

4 Π0ϱ2S̃P
2

= E(ϵtϵt−1) + Π1SP2 − 2Π1S̃PSP + Π1S̃P
2
+ Π2SP

−Π2S̃P + Π3ϱS̃PSP − Π3ϱS̃P
2
+ Π4ϱS̃P + 1

4 ϱ2S̃P
2
Π0

= E(ϵtϵt−1) + Π1SP2 + Π2SP − 2Π1S̃PSP − Π2S̃P

+Π3ϱS̃PSP + Π4ϱS̃P + Π1S̃P
2
+ 1

4 ϱ2S̃P
2
Π0 − Π3ϱS̃P

2

= (Π1 +
1
4 ϱ2Π0 − ϱΠ3) · S̃P

2
+ [ϱΠ3 · SP + ϱΠ4 − 2Π1 · SP − Π2]

·S̃P + E(ϵt · ϵt−1) + Π1 · SP2 + Π2 · SP

(44)

We now discuss possible errors that if we still let (SP − Ω) which maximises the co-

variance between two adjacent conjectures of mid-price returns Cov(∆M̃t, ∆M̃t−1) to
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be the estimate of the true spread. Thus, the estimate is given by:

ŜP = −

−2Π1SP − Π2 + Π3SPϱ + Π4ϱ

2
(

Π1 +
1
4 Π0ϱ2 − Π3ϱ

)
 (45)

where ŜP is the value of (SP − Ω) which maximises Cov(∆M̃t, ∆M̃t−1), and is the esti-

mate of the true spread. When there are no IC&AS components of the spread (ϱ = 0),

no feedback trading (Π2 = Π4 = 0), and no autocorrelated order flows (Πo = 0 and

Π1 = −1 and Π3 = 1), the equation above becomes:

ŜP = SP (46)

and thus,

Ω = 0

The equations above suggest that under the ideal conditions, equation (45) reduce to

the simple version of the estimator and in this circumstance, the estimator is unbiased.

10 Errors of the estimator

10.1 Feedback trading

Assume there is feedback trading and there are no inventory control and asymmetric

information components of the spread, thus ϱ = 0, then Equation (43) becomes,

Cov(∆M̃t, ∆M̃t−1)

= E(∆M̃t · ∆M̃t−1)

= E(ϵt · ϵt−1) + Π1 · Ω2 + Π2 · Ω

(47)

where
Π0 = E(BSt−1 · BSt−2)

Π1 = 1
4 E [Π0 − BSt · BSt−2 − 1 + Π0]

Π2 = 1
2 E [−BSt−1 · ϵt−1 + BSt · ϵt−1]

(48)
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Because the covariance of order flows are usually very small compare to 1, it is safe to

take approximation that let Π1 = −1
4 . From (48) into equation (45), it becomes:

ŜP

= −−2Π1SP−Π2
2(Π1)

= SP + Π2
2Π1

= SP +
1
2 E(BStϵt−1−BSt−1ϵt−1)

−2· 1
4

= SP + E(BSt−1ϵt−1)− E(BStϵt−1)

(49)

10.2 Inventory Control and Asymmetric Information Components

Assume there are inventory control and asymmetric information components of the

spread and there is no feedback trading, then Equation (43) becomes,

Cov(∆M̃t, ∆M̃t−1)

= E(∆M̃t · ∆M̃t−1)

= E(ϵt · ϵt−1) + Π1 · Ω2 + ϱΠ3 · (SP − Ω) · Ω

+1
4 ϱ2Π0 · [(SP − Ω)2]

(50)

where
Π0 = E(BSt−1 · BSt−2)

Π1 = 1
4 E

[
(ϱ − 1)2Π0 + (ϱ − 1)BSt · BSt−2 + (ϱ − 1) + Π0

]
Π3 = 1

4 E[1 + 2(ϱ − 1)Π0 + BSt · BSt−2]

(51)

And equation (45) becomes:

ŜP = − −2Π1SP+Π3SPϱ

2(Π1+
1
4 Π0ϱ2−Π3ϱ)

= (2Π1−Π3ϱ)

2(Π1+
1
4 Π0ϱ2−Π3ϱ)

· SP (52)
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The numerator of equation (52) can be simplified:

(2Π1 − Π3ϱ)

= 2(−1 + ϱ)2Π0 + 2(−1 + ϱ)BStBSt−2

+2(−1 + ϱ) + 2Π0 − 2(−1 + ϱ)Π0ϱ − ϱ − BStBSt−2ϱ

= 2(−1 + ϱ)2Π0 + 2Π0 − 2(−1 + ϱ)Π0ϱ

+2(−1 + ϱ)BStBSt−2 − BStBSt−2ϱ

+2(−1 + ϱ)− ϱ

= 2Π0ϱ2 − 4Π0ϱ + 4Π0 − 2Π0ϱ2 + 2Π0ϱ

+2ϱBStBSt−2 − 2BStBSt−2 − BStBSt−2ϱ

−2 + ϱ

= 4Π0 − 2Π0ϱ + ϱBStBSt−2 − 2BStBSt−2 − 2 + ϱ

= 4BSt−1BSt−2 − 2BStBSt−2 − 2 + (BStBSt−2 + 1 − 2BSt−1BSt−2)ϱ

(53)

The dominator of equation (52) can be simplified:

2(Π1 + Π0ϱ2−Π3ϱ)

= 2([(−1 + ϱ)2Π0 + (−1 + ϱ)BStBSt−2 + (−1 + ϱ) + Π0]

+Π0ϱ2−[2(−1 + ϱ)Π0 + 1 + BStBSt−2]ϱ)

= 2(Π0ϱ2 − 2Π0ϱ + Π0 + (−1 + ϱ)BStBSt−2 − 1 + ϱ + Π0

+Π0ϱ2 + 2(1 − ϱ)Π0ϱ − ϱ − BStBSt−2ϱ)

= 2(2BSt−1BSt−2 − BStBSt−2 − 1)

+2(Π1 + Π0ϱ2−Π3ϱ)

= 2([(−1 + ϱ)2Π0 + (−1 + ϱ)BStBSt−2 + (−1 + ϱ) + Π0]

+Π0ϱ2−[2(−1 + ϱ)Π0 + 1 + BStBSt−2]ϱ)

= 2(Π0ϱ2 − 2Π0ϱ + Π0 + (−1 + ϱ)BStBSt−2 − 1 + ϱ + Π0

+Π0ϱ2 + 2(1 − ϱ)Π0ϱ − ϱ − BStBSt−2ϱ)

= 2(2BSt−1BSt−2 − BStBSt−2 − 1)

(54)

Substitute the results of the simplification back to equation (52), the equation becomes,

ŜP

= (2Π1−Π3ϱ)

2(Π1+
1
4 Π0ϱ2−Π3ϱ)

· SP

= 3BSt−1BSt−2−2BStBSt−2−2+(BStBSt−2+1−2BSt−1BSt−2)ϱ
(4BSt−1BSt−2−2BStBSt−2−2) · SP

=
[
1 + (BStBSt−2+1−2BSt−1BSt−2)ϱ

(4BSt−1BSt−2−2BStBSt−2−2)

]
· SP

=
(

1 − 1
2 ϱ

)
· SP

(55)
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