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Abstract

The standard of living of an agent is viewed as her capability of achieving various
functionings (Sen (1985, 1987)). An agent is thus characterized by her capability set
that consists of different functioning vectors. The task of measuring the standard of
living of an agent formally is therefore to rank different capability sets. This paper
explores the problem of ranking capability sets in terms of the standard of living of-
fered to an agent. For this purpose, I consider capability sets that are non-degenerate,
compact, comprehensive and convex subsets of the n-dimensional real space, propose
several intuitively plausible properties for the ranking and give characterizations of
several rules that have some interesting features. Alternative interpretations of some
of the results in the paper, for example, in terms of social welfare functions and of

optimality of bargaining solutions in bargaining theory, are also discussed.
JEL Classification Numbers: C78, D63, D71, D74, 113, O10
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1 Introduction

Comparisons of the standard of living have traditionally taken either the opulence or
utility approach. In the opulence view, an agent’s living standard is judged by her
commanding of wealth and income. In the utility view of the standard of living, an
agent’s standard of living is based on the utility generated by her consumption of
commodities. Both views have come under critical scrutiny from Sen (1985, 1987)
recently. Sen argues that neither comes close to the issue of measuring the standard
of living. Instead, he proposes a functioning-capability approach. In this paper, I use
Sen’s view to approach the problem of measuring the standard of living.

With the functioning-capability approach, an agent is characterised by the func-
tioning of the agent and the extent of various functionings. A functioning is what
the agent “succeeds in doing with the commodities and characteristics at his or her
command” (Sen (1985), pp. 10). Tt is “different both from (1) having goods (and the
corresponding characteristics), to which it is posterior, and (2) having utility (in the
form of happiness resulting from that functioning), to which it is, in an important
way, prior” (Sen (1985), pp. 11). For example, life expectancy, whether well-clothed,
adult literacy rate, child mortality, attending social activities, or well-nourished, are
some examples of an agent’s functiongings. The extent of various functionings is re-
ferred to as the capability set and reflects the various combinations of functionings
the agent can achieve when the resource allocation is given. The living standard is
then viewed as the set of available capabilities of the agent to function.

Given this characterization of an agent and given that functionings are closely
connected with actual living, it may be argued that in assessing the living standard,
one should concentrate on functionings and pay little, if any, attention to capabilities.
This way of viewing the standard of living may initially sound appealing, it does
not, however, survive a closer examination. To see why capabilities may play a
direct role along with functionings in assessing the living standard, let us consider
the following situation. Suppose an agent’s functionings are represented by various
life styles a, b, c,d, and e. Suppose further that she can choose one from these five
different life styles and she chooses c. Consider now that the life styles a,b,d and e
become unavailable to the agent, but she can still choose c. It can be argued that
the agent’s standard of living has been reduced due to the curtailment of the freedom

of choice offered to the agent, even though the life style ¢ is what the agent would



choose.! This suggests that in the assessment of the standard of living of an agent,
one should look for both functionings and capabilities. Recall that the capability
set of an agent consists of various combinations of functionings the agent can achieve
when the resource allocation is given. It is therefore clear that the capability set of an
agent summarizes the relevant information about both functionings and capabilities
for the agent. The exercise of assessing the agent’s standard of living under different
situations can thus be viewed as ranking alternative capability sets arising from these
different situations. I will adopt this framework to address the issue of measuring the
standard of living.

According to Sen (1987), in evaluating the standard of living for an agent, it is
useful to make a distinction between two approaches, viz., the standard-evaluation
and the self-evaluation. The standard-evaluation focuses on some general valuation
function that reflects widely shared standards in the society. It relies on some unifor-
mity of judgements on the respective importance of different functionings and places
an agent’s living conditions in a general ranking in terms of some social standards.
The self-evaluation, on the other hand, concentrates on the relevant valuation func-
tion that of the agent whose living standard is being assessed. It is concerned with the
agent’s assessment of her own living standard and tells us what the agent judges to be
her living standard in comparisons with other situations. As such, the self-evaluation
places an important emphasis on the agent’s actual living chosen by her, whereas the
standard-evaluation places an important emphasis on the agent’s living as perceived
by the society according to some widely shared standards among the members of the
society (henceforth, it will be called the agent’s perceived living). Depending on the
context, each approach has its own merit. In this paper, I will try to address both
approaches: Sections 3 and 6 deals with both the self-evaluation and the standard-
evaluation, Section 4 deals with the standard-evaluation only and the self-evaluation
is left in Section 5.

The plan of the paper is as follows. In Section 2, I lay down the basic notation and
definitions. Section 3 gives an axiomatic characterization of the superset-dominance-

based quasi ordering for ranking capability sets in terms of the standard of living. The

1 The issue of measuring freedom of choice has been extensively examined in the recent literature.
See, among others, Arrow (1995), Bossert, Pattanaik and Xu (1994), Foster (1992), Gravel (1994,
1998), Jones and Sugden (1982), Pattanaik and Xu (1990, 1998, 1999), Puppe (1996), Sen (1991,
1992), Steiner (1983), Sugden (1998), van Hees (1998) and Xu (1999).



analysis of Section 3 can be regarded as including both the standard-evaluation and
the self-evaluation. In Section 4, I extend the quasi ordering analysis to a complete
ordering of capability sets with the interpretation of evaluating the standard of living
in terms of the standard-evaluation. Section 5 is concerned with the analysis of
the standard of living with the interpretation of the agent’s self-evaluation. While
analyses in Sections 3, 4, and 5 can be regarded as extremes, in Section 6, I examine
a class of quasi orderings that lie in between the superset-dominance rule and an

ordering. Section 7 contains some concluding remarks.

2 The Basic Notation and Definitions

Let %" be the non-negative orthant of the n-dimensional real space. The points in
R” will be denoted by z,y,2,a,b,--- and will be called alternatives. For all z =
(1, 20),y = (Y1, -+, yn) € RY, define z > y when z; > y; foralli =1,---,n and
z; > y; for some j € {1,---,n}. The alternatives are to be interpreted as functioning
vectors d la Sen (1985, 1987).

At any given point of time, the set of all alternatives that may be available to the
agent is a subset of IR’,. Such a set will be called the agent’s capability set. 1 will use
A, B, C etc. to denote the capability sets.

My concern in this paper is to rank different capability sets in terms of the
standard of living that they offer to the agent. What are the capability sets that one
would like to rank in the current context? In this paper, I confine my attention to

capability sets that are

(2.1) non-degenerate: a capability set A C IR" is non-degenerate iff there exists
x € A such that x; >0foralli=1,---,n,

(2.2) compact: a capability set A C IR"} is compact iff A is closed and bounded,

(2.3) comprehensive: a capability set A C R" is comprehensive iff, for all z,y € R",

ifx; >y;fori=1,--- nand x € A, then y € A,

(2.4) convex: a capability set A C IR is convex iff, for all z,y € A and for all
a € [0,1], ar + (1 — a)y € A holds.



Let K be the set of all capability sets that are non-degenerate, compact, comprehen-
sive and convex.?

Let IT be the set of all permutations of {1,---,n}. Elements of IT will be denoted by
m, 7', etc. For all A € K and for all m € I1, let w(A) =: {z € ]Rfm = Yr(s), Y € A}
For all A,B € K, if A = w(B) for some m € II, I then say that A and B are
symmetric. For example, the sets {z € R} |1/a; + z2/as + 23+ -+ 2, < 1} and
{z € R} |z1/as+22/a1 + 23+ - -+ 2, < 1}, where a; > 0 and ay > 0, are symmetric,
and the sets {z € R |z; < a1,22 < ag,23 < 1,---,2, < 1} and {z € RY[z; <
ag, Ty < a1,23 < 1,---, 2, < 1}, where a; > 0 and ay > 0, are symmetric. For all
Ae K, allie{l,---,n} and all o* > 0, let &’A =: {z € R}|z; = 'y; and z; = y;
for all j # i,Vy € A}. Finally, for all A, B € K, if for all b € B, there exists a € A
such that a > b, then I say that B lies entirely in A. Note that, if B lies entirely in
A, necessarily, B is a subset of A.

Let > be a binary relation over K that satisfies reflexivity: [for all A € K, A = A
and transitivity: [for all A, B,C € K,if A> B and B > C then A = C]. > is thus a
quasi ordering. When > satisfies completeness: [for all A,B € K, A > B or B = A|,
reflexivity and transitivity, > is called an ordering. The intended interpretation of
> is the following: for all A, B € K,[A = B] will be interpreted as “the standard
of living offered by A is at least as much as the standard of living offered by B”. >
and ~, respectively, are the asymmetric and symmetric part of >. I will use “=” to

denote the logical negation of a statement.

3 Superset-Subset Dominance

In this section, I present a quasi ordering approach that uses the superset-dominance
relation to rank capability sets in terms of the standard of living. First, let me define

the superset-dominance-based rule formally.

Definition 3.1. > over K is called the superset-dominance-based rule iff,
foral A\ Be K;,A»> B& BC A. -++(3.1)

Clearly, the superset-dominance-based rule is reflexive and transitive, and thus is a

2These restrictions on the capability sets in K can be derived from some basic assumptions in a
resource allocation model, see Gotoh, Suzumura and Yoshihara (1999).



quasi ordering. I now introduce two axioms that will be used for the characterization

of this ranking rule.

Definition 3.2. > over K satisfies

(3.2.1) Monotonicity iff, for all A, B € K, if BC A and A # B, then A > B.

(3.2.2) Non-Dominance iff, for all A, B € K, if there exist « € A— B and b € B
such that a > b, then =(B > A).

The property of Monotonicity is simple and easy to explain. It requires that if the
capability set B is a proper subset of the capability set A, then A offers a higher level
of the standard of living than B. The intuition of Monotonicity can be explained
by appealing to the agent’s actual living or her perceived living and the agent’s
capabilities. The functioning-capability approach to the standard of living focuses on
two essential parts of an agent’s living conditions, namely, her actual living in the self-
evaluation exercise or her perceived living in the case of standard-evaluation and her
capabilities to achieve either her actual living or her perceived living. The notion of an
agent’s capabilities is a freedom type notion and reflects the degree of opportunities
offered to the agent. In the case that B is a proper subset of A, A dominates B in
both these two essential parts of the agent’s living conditions. Thus, it makes sense to
say that in such a case, A offers a higher standard of living than B. Non-Dominance
requires that for two capability sets A and B, if A contains some functioning vectors
that are outside of B and that vectorically dominate some functioning vectors in B,
then B cannot be ranked (strictly) higher than A in terms of the standard of living. In
other words, if some functioning vector a under A cannot be achieved under B, then
the living standard offered by B cannot be higher than the living standard offered
by A. The intuition of Non-Dominance is this: the functioning vector a, which is
achievable under A but not under B, has the potentiality of becoming the agent’s
actual living or her perceived living; in such an event, it may be argued that B cannot

offer a higher standard of living than A.

Theorem 3.3. Suppose > over K is a quasi ordering. Then, > satisfies Monotonicity

and Non-Dominance if and only if it is the superset-dominance-based rule.

Proof. It can be checked that the binary relation > over K induced by the superset-

dominance-based rule is a quasi ordering that satisfies Monotonicity and Non-Dominance.



Therefore, I have only to show that if > over K is a quasi ordering that satisfies Mono-
tonicity and Non-Dominance, then it is the superset-dominance-based rule, i.e., (3.1)
holds.

Let > over K be a quasi ordering and satisfy Monotonicity and Non-Dominance.
To show that (3.1) holds, I have to show that for all A, B € K, (i) if A = B, then
A~ B, (ii) if BC A and A # B, then A > B, and (iii) if A is not a subset of B and
B is not a subset of A, then =(A = B) and —(B > A). In what follows, I proceed to
show the above three cases.

Case (i) follows from the reflexivity of > easily, while case (ii) follows from Mono-
tonicity. To show case (iii), let A, B € K be such that neither A is a subset of B, nor
B is a subset of A. Since K is the set of all capability sets that are non-degenerate,

compact, comprehensive and convex, the following must be true:
there exist a,a’ € A and b,b’ € B such that a« > b and V' > o/, --+(3.2)

there exists C € K such that A C C, C # A, C is not a subset of B and B is not a

subset of C, -++(3.3)
and
there exist ¢ € C' and x € B such that z > c. --+(3.4)

From (3.2), by Non-Dominance, it follows that =(A > B) and —(B > A). Therefore,
[~(A > B) and ~(B = A)] or [A = B and B > A] follow from the definition of the
asymmetric part, >, of >. I now need to show that it cannot be true that [A > B
and B = A]. Suppose to the contrary that [A > B and B > A], that is, A ~ B.
From (3.3), by Monotonicity, it follows that C' > A. Then, by the transitivity of
», it follows that C' > B. However, from (3.4), it must be true that =(C' > B), a
logical contradiction. Therefore, it cannot be true that [A > B and B > A]. Thus,
[~(A = B) and —~(B »= A)| must hold.

Note that cases (i), (ii) and (iii) exhaust all possibilities. Therefore, Theorem 3.3
is proved. [ |

The superset-dominance-based rule defined in (3.1) was first suggested by Sen
(1985,1987) in the same context of ranking capability sets in terms of the standard

of living. However, he did not provide an axiomatic characterization. The charac-



terization result provided here suggests that the superset-dominance-based rule has
two essential parts: Monotonicity, which reflects that more opportunities promote
the agent’s standard of living, and Non-Dominance, which captures the idea that a
capability set B cannot offer a higher level of the standard of living than a capability
set, A if some functioning vector in A cannot be achieved under B.

I now discuss the issue of redundancy of the axioms used in Theorem 3.3. The
following examples, Examples 3.4 and 3.5, establish the independence of the axioms

used in Theorem 3.3.

Example 3.4. Define the binary relation >; over K as follows: forall A, B € K, A ~y

B. Clearly, > is an ordering (thus a quasi ordering) that satisfies Non-Dominance,

but violates Monotonicity.

Example 3.5. Define the binary relation >, over K as follows: forall A, B € K, A >,
B <vol(A) >vol(B), where vol(-) denotes the volume of a capability set in K. Clearly,

> is a (quasi) ordering that satisfies Monotonicity, but violates Non-Dominance.

4 The Elementary Standard-Evaluation

The superset-dominance-based rule defined in (3.1) may be very appealing. However,
it leaves “too many” capability sets unranked in terms of the standard of living. Yet,
one can argue that some of these unranked capability sets can be ranked in terms of
the standard of living. For example, consider the capability sets A and B illustrated

in Figure 1.

fa

O h
Figure 1

Recall that Sen emphasizes the importance of freedom of choice in determining the

standard of living and that freedom of choice means having a capability set that offers
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plenty of opportunity for choosing. It therefore has some reason to believe that the
capability set A offers a higher level of standard of living than the capability set B.
Faced with the problem of incompletenss of the binary relation defined in (3.1),
in this section as well as in Section 5, I require that the binary relation > over K be
an ordering. In Section 6, I examine a class of quasi orderings that are in between the
super-set dominance rule and an ordering. To start with, in this section, I consider
the exercise of the standard-evaluation. I try to formulate some normative properties
imposed on the binary relation >. These normative properties have some intuitive
appeals in the current context and some of which appeal directly to the notion of
commonly shared values in the society in evaluating the standard of living. T show

that they, together, characterize the rule defined below:

Definition 4.1. > over K is called the elementary standard-evaluation rule if and only
if

forall A,B € K, A> B < maxzea(z) ... - Tn) > maxXyep(yi -+ Yn)- - (4.1)

The elementary standard-evaluation rule ranks capability sets in terms of the
standard of living according to the maximum value of (z; - --x,) in a capability set.

For the characterization purpose, I introduce four axioms that put restrictions on >.

Definition 4.2. > over K satisfies

(4.2.1) Symmetry iff, for all A,B,C € K, if A and B are symmetric, then A >
C&Bx-C.

(4.2.2) Weak Monotonicity iff, for all A,B € K, if B C A then A > B, and if B
lies entirely in A, then A > B.

(4.2.3) Invariance of Scaling Effects iff, for all A,B € K and for all o' > 0,
A>B&e dAx-oB.

(4.2.4) Weak Indifference iff, for all A € K, there exists a* € A such that B =
{z eR}|z; <af,i=1,---,n} € K and B ~ A.

The property of Symmetry requires that, if two capability sets A and B are
symmetric, then, the ranking of A and a capability set C' in terms of the standard

of living corresponds to the ranking of B and C. It essentially requires that there



be no discrimination among different functionings and these functionings be treated
equally in evaluating the standard of living offered to the agent by a capability set.
This non-discriminatory treatment of different functionings can be regarded as a
reflection of some commonly shared social standards in valuing different functionings
and thus reflects the idea of the standard-evaluation. If different functionings are
treated equally, then the life style achieved by a functioning vector a can be regarded
as equivalent to any functioning vector b which is symmetric to a. Thus, in terms of
the two essential ingredients of the standard of living, namely, the agent’s perceived
living and her capabilities to achieve different functionings, symmetric capability sets
should be ranked exactly the same in terms of the standard of living.

Weak Monotonicity is a weaker property than Monotonicity introduced in Section
3. It requires that if B is subset of A, then the standard of living offered by A is at
least as much as B; further, if B lies entirely in A, then A offers more standard of
living than B. It reflects that the agent is not averse to more opportunities.

The property of Invariance of Scaling Effects requires that, by re-scaling the unit
of measurement for any functioning while maintaining others unchanged, the relative
standard of living offered by two capability sets A and B should be the same: if A
offers a higher level of the standard of living than B before rescaling, then A should
be offer a higher level of the standard of living than B after re-scaling and vice versa.
The idea is that the choice of “measuring rod” for a functioning is not relevant for
ranking capability sets in terms of the standard of living.

Finally, Weak Indifference requires that for all capability set A € K, there is a
functioning vector a¢* in A such that the standards of living offered by A and the
capability set A = {z € R"}|z; < a},i =1, ---,n} are the same. The idea of Weak
Indifference is the following. The living standard offered by a capability set A can
always be achieved by suitably choosing a functioning vector ¢* in A and forming
a capability set that is the comprehensive hull of a* in IR}. Therefore, it reflects
the idea that in certain cases, the loss of opportunities as reflected in the change of
the capability set A to the capability set A¥ does not reduce the standard of living
offered by A provided that the functioning vector a* in A is properly chosen and is
also available in A#. The intuition of Weak Indifference fits well with Sen’s argument
that special attention should be given to the agent’s actual living or her perceived

living.



I now show that the four axioms introduced above, together, characterize the

elementary standard-evaluation.

Theorem 4.3. Suppose > over K is an ordering. Then, > on K satisfies Symmetry,

Weak Monotonicity, Invariance of Scaling Effects and Weak Indifference if and only

if it is the elementary standard-evaluation rule.

To prove Theorem 4.3, the following two lemmas, Lemmas 4.4 and 4.5, will be
useful. First, define Ky = {A € K|A = {z € R}| X (z;/a;) < 1}, for all a € IRY,
such that a; > 0,i=1,---} and K, = {A € K|A = {z € R |z; < q;}, for all a € IRY,
with a; > 0,2 = 1,---,n}. In the following two lemmas, Lemmas 4.4 and 4.5, the
properties, Symmetry, Weak Monotonicity and Invariance of Scaling Effects, of >

over K, and K>, respectively, should be re-defined accordingly.

Lemma 4.4. Suppose > is an ordering. > on K, satisfies Symmetry, Weak Mono-
tonicity and Invariance of Scaling Effects if and only if for all A, B € K3, A > B &

MaXgeA(Z1 ... - Tp) > MaXyep (Y1 -+ oo - Yn)-
Proof. It can be checked that if for all A, B € Ky, A > B < maxgea(Zy - ... - Tp) >
maxyep(y1 - .- - Yn), then > satisfies Symmetry, Weak Monotonicity and Invari-

ance of Scaling Effects. I have only to show that if > on K, satisfies Symme-
try, Weak Monotonicity and Invariance of Scaling Effects, then for all A, B € Ko,
A > B & maxgea(®r - ... - Tp) > maXyep (Y1 -+ o * Yn)-

Let > on K, satisfy Symmetry, Weak Monotonicity and Invariance of Scaling
Effects. Let A = {z € R} |z; < aj,a; > 0,4 = 1,---,n},B = {y € Ry, <
bi,b; > 0,i = 1,---,n} € Ky. Note that maxzeca(zy - ... - ®,) = a1 - ... - @, and
maXycA(Y1 - oo Yn) = b1 oo - by

First, I show that

ifa,-...-a, =by-...- by, then A~ B. --+(4.2)

Let A* = {z € R’ |z; < 1,7 = 1,---,n}. Consider the sets Cy,Cs,---,C, € K
defined as follows:

Cir={zeR}|z <c 2, < 123 < 1, 2, < 1}

Co={r € R} |z; <a,20 < o253 <1, 2, < 1}

10



n .
Cr={r € Rz < a1y < ag, -, 2p1 < G 1, T < Cpy Tpg1 <y 00, Ty <11

C,=A,
where ¢; = a1ag -~ ap,C2 = G203+ Ay, "+, Ck = AgGgy1- " Ay Cp1 = G 10y, and
¢, = a,. By construction, we have ¢; = ajco =+ =ay---ap_10 =+ = @103+ - Q.

In what follows, I show that C; ~ Cy ~ --- ~ C,, = A.
Consider C; and C, first. Let a! = ¢; (recall that o' re-scales the unit of mea-

surement for functioning 1). By Invariance of Scaling Effects, it follows that

C, = Cy iff 'Cy > o' Cs. --+(4.3)
Note that o'!C; = A*. Therefore, the following holds:

Cy = Cyiff A* = o'Cy ={z e R} |z1 < ayfer, 20 < o,23 <1, 2, <1} ---(4.4)
Now, consider ot = a; and o/? = ¢,. By Invariance of Scaling Effects, it follows that
Cy, = Cy iff &'1C; = o1 Cs. --+(4.5)
By another application of Invariance of Scaling Effects, it follows that

a?(a'Cy) = a?(''Cy) iff a'C) = o' Cy. --+(4.6)
From (4.5) and (4.6), the following is true:

Cy = Cy iff (' Cy) = (a1 Cy). -+(4.7)
Note that a?(a/'Cy) = A*. Thus, the following can be obtained:

Cy = Cy iff o?('Cy) = {z € R |21 < e1far, 20 < 1/co 23 <1, 2, < 1} = A%
..(4.8)

Note that a;/c; = 1/¢y. Therefore, (4.4) can be rewritten as:

Cy = Cyiff A* = o'Cy = {z € Rl |1 < (1/c2), 20 < (c1/a1), 23 < 1,---, 2, < 1}.
. (4.9)

Note that a'Cy and o?(/*C}) are symmetric. Then, Symmetry implies

11



o?(*Ch) = {z € R |21 < erfar,m0 < 1/eg 23 < 1,---,2, <1} ~ a'Cy = {z €
]Rg_‘ﬂ?l S 1/62,332 S 61/0,1,333 S 1, e, Tp S 1} .. (410)

By the transitivity of >, from (4.8), (4.9) and (4.10), it then follows that C; ~ Cj.
Consider now Cy and C5. Recall that

Co={zeR%|z1 <a1,22 < cp,23 <1, 2, <1},
and

Cs={z e R}z <aj,z9 <ag,73<c3,24<1,-++, 2, < 1},
where ¢ = as---a, and c3 = a3 ---a,. By Invariance of Scaling Effects, it follows

that (consider ot = a4)

Co = Csiff {z € R |1 < 1,20 <3 <1,---,2, <1} = {z € R}|z; < 1,20 <
a2, T3 S C3, T4 S ]-a"'axn S ]-} (411)

Noting that {z € R} |z; < 1,29 < ¢p,23 < 1,--+,2, < 1} and {z € RY|z; <
c2, 3 < 1,23 < 1,---,2, < 1} are symmetric, and {z € IR" |z < 1,29 < a,23 <
C3, T4 < 1:"'7xn < 1} and {-/'E € ]R:_‘.’El < G2, T2 < C3,T3 < 1a$4 < 1a"'7xn < ]-} are

symmetric, by Symmetry, we have

v 1> 4 = ) > Ly, dp ~ " >~ 3 >~ 1 >

{z € RY|z; < 1,25 < cp,23 <1 z, <1} ~ {z € Rz < 70 < 1,23 <
17"'aan1}7

--+(4.12)

and

{.’17 S IRZ_‘:UI S ]-axQ S G2, T3 S C3, T4 S 1,""3:71 S 1} ~ {.’I; € RTH'/L‘I S Az, T2 S
ez, r3 < 1l,xy <1,--+, 2, <1} -++(4.13)

Therefore, by the transitivity of >, from (4.11), (4.12) and (4.13), the following
holds

Co = Cyiff {z e R |1 < cp,00 < 1,23<1,-+-,2, <1} = {z € R} |21 < 9,29 <
e, 23 <1,ag <1, 20 < 1}. . (4.14).

Note that co = ascs. Then, by following the same procedures as in the proof for
Cy ~ Cy, from (4.14), Cy ~ C3 can be obtained.

Similarly, C3 ~ Cy,---,C,_1 ~ C, can be proved. Then, the transitivity of
= implies C; ~ C,, = A. Noting that ¢; = a;---a, = by---b,, C; ~ B can be
established similarly. By the transitivity of >, it then follows that A ~ B. Thus,

12



(4.2) holds.
Next, I show that

if ay---ay > by - by, then A= B. .- +(4.15)

Consider D, FE € Ko:

D={z € R"|z; < (a1a3---a,) ™ i=1,--- n},
and

E={zeR:|z; < (biby---b,) Y™ i=1,--- n}.
From (4.2), A ~ D and B ~ E. By Weak Monotonicity, noting that F lies entirely
inside D, D > E holds. Hence, the transitivity of > implies A > B. That is, (4.15)
holds.

Given (4.2), (4.15) completes the proof. |

Lemma 4.5. Suppose > is an ordering. > on K satisfies Symmetry, Weak Mono-
tonicity and Invariance of Scaling Effects if and only if for all A, B € K;, A> B &
maXzeA(xl .- xn) > maXyeB(yl .- yn)

Proof. The proof of Lemma 4.5 is similar to that of Lemma 4.4 and is therefore
omitted. ]

Proof of Theorem 4.3. It can be checked that if (4.1) holds, then > on K satisfies
Symmetry, Weak Monotonicity, Invariance of Scaling Effects and Weak Indifference.
Therefore, I have only to show that if > on K satisfies Symmetry, Weak Monotonic-
ity, Invariance of Scaling Effects and Weak Indifference, then it is the elementary
standard-evaluation rule, that is, (4.1) holds.

Let > on K satisfy Symmetry, Weak Monotonicity, Invariance of Scaling Effects
and Weak Indifference. I first show that

for all A, B € K1 U Ky, maxzea(21 -+ %,) = maxyep(y1---Yn) = A~ B.  ---(4.16)

By Lemmas 4.4 and 4.5, I need only to show that for all A € K; and all B = Ko, if
MaXzeA(T1 -+ Tn) = MAXyep(Y1 -~ Yn), then A~ B. Let A ={z € R}| X7, z;/a; <
1} where a; > 0,4 = 1,---,n and B = {z € R%|z; < b;,b; > 0,0 = 1,---,n}.
Note that if maxzea(21---2,) = maxyep(y1---Yn), then b; = a;/n,i =1,--- ,n. Let
A* = {z € R} X 2 < 1} and let A* = {z € Rl}|z; < 1/n,i = 1,---,n}.

Then, by the repeated use of Invariance of Scaling Effects, it must be true that
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A > B & A* = A*. Therefore, I have only to show that A* ~ A**. Let a* € A*

be such that a* # (1/n,1/n,---,1/n). Then, it can be checked easily that A** >

{z e R}|z; <af,i=1,---,n}. If A* > A**, then, by the transitivity of >, it follows

that A* = {z € R} |z; < aj,i =1,---,n}. Note that a* is arbitrary. Together with

A* > A*, it then follows that A* > {z € R" |z; < a;,4 = 1,---,n} where a € A%, a

contradiction with Weak Indifference. Therefore, A* ~ A**. Thus, (4.16) holds.
From (4.16), by Lemmas 4.4 and 4.5, the following can be obtained easily:

for all A, B € K1 U Ky, maxgea(21 - &,) > maxyep(y1---yn) = A > B, ---(4.17)
From (4.16) and (4.17), noting that > is an ordering, it must be true that

for all A, B € K1 U Ky, maxzea(21 -+ 2,) > maxyep(yr---yn) © A> B, ---(4.18)
I now show that

for all A, B € K,maxgzea(21 -+ T,) = maxyep(y1 - yn) = A~ B. -++(4.19)

Let A € K and maxgea(z1---2,) = a1 - - - a, where a = (ay,---,a,) € A. Note
that since A is compact (and convex) and the function z; - - -, is continuous and
quasi-concave, the existence of a is guaranteed. Further, since A is non-degenerate,
a; > 0 forall i = 1,---,n. Consider G = {z € RY}|z; < a;,4 = 1,---,n} and
H = {z € R} |, z;/(na;)}. Then, it can be checked that max,cq(z1---z,) =
maXgeg (T - %) = aj---a,. Also, by construction, since A € K (A is non-
degenerate, compact, comprehensive and convex), it must be true that G C A C
H. From maxgeq(zi- - %,) = MmaXgep(T1---2,), by (4.18), G ~ H holds. From
G C A C H, by Weak Monotonicity, it follows that H = A and A > G. Therefore,
by the transitivity of >, A~ G ~ H.

Let B € K and maxgea(x1 -+ 2,) = by -+ b, where b = (by,---,b,) € B. Again,
note that since B is compact (and convex) and the function z; - - - x,, is continuous and
quasi-concave, the existence of b is guaranteed. Further, since B is non-degenerate,
bi > 0 for all i = 1,---,n. Consider G' = {z € RY}|z; < b, = 1,---,n} and
H' = {z € R}| Y., x;i/(nb;)}. Following similar procedures as the last paragraph,
B ~ G' ~ H' can be obtained. Note that a;---a, = by ---b,. By (4.18), G ~ G' ~
H ~ H'. Therefore, A ~ B follows from the transitivity of >; that is, (4.19) holds.

From (4.19) and (4.18), by Weak Monotonicity, it follow that
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for all A, B € K,maxgzea(21---2,) > maxyep(yr---yn) = A > B. --+(4.20)

Noting that > is an ordering, (4.20), together with (4.19), completes the proof of
Theorem 4.3. u

Remark 4.6. The following examples, Examples 4.7, 4.8, 4.9 and 4.10, establish the

independence of the axioms used in Theorem 4.3.

Example 4.7. Define the binary relation > over K as follows: for all A and B € K,

A =1 B iff maxge s 2229 -+ Ty > Maxyep Y2Ys - - Y. Note that =1 is an ordering that
satisfies Weak Monotonicity, Invariance of Scaling Effects and Weak Indifference, but

violates Symmetry.

Example 4.8. Define the binary relation >3 over K as follows: for all A, B €

K, A ~y B. Clearly, =5 is an ordering that satisfies Symmetry, Invariance of Scaling
Effects and Weak Indifference, but violates Weak Monotonicity.

Example 4.9. Define the binary relation >3 over K as follows: for all for all A and
B e K, A>3 Biff maxzea(z1 + 2o+ -+ -+ xn) > maxyep(ys + Y2+ -+ - + yn). It can
be checked that >3 is an ordering that satisfies Symmetry, Weak Monotonicity and

Weak Indifference, but violates Invariance of Scaling Effects.

Example 4.10. For all A € K, let a;(4) = max{z;|(z1, -,z -, T,) € A}
Define the binary relation >, over K as follows: for all AAB € KA =, B &
a1(A)---an(A) > a1(B)---a,(B). Then, =, is an ordering that satisfies Symmetry,

Weak Monotonicity and Invariance of Scaling Effects, but violates Weak Indifference.

Remark 4.11. If K is interpreted as a class of all utility possibities sets that are
3

non-degenerate, compact, convex and comprehensive® in an n-person society, then
the result of Theorem 4.3 can be regarded as a characterization of the Nash social

welfare function.

31f each individual has a concave utilility function, then a utility possibilities set has these four

properties.
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5 The Elementary Self-Evaluation

The assessment of the capability sets in terms of the standard of living based on the
ranking rule characterized in the previous section, Section 4, is interpreted as the
following. There is a commonly accepted value judgment in the society regarding
different functionings, namely, different functionings should be treated equally. This
value judgment is reflected in the axiom of Symmetry. Based on this value judgement,
when interpreting Weak Indifference, the functioning vector a* figured in the axiom
is subsequently interpreted as the agent’s perceived living. Thus, any measure of
capability sets in terms of the standard of living based on Symmetry and Weak
Indifference with the interpretation of the functioning vector a* being the agent’s
perceived living may be deemed as an exercise of the standard-evaluation.

In this section, I drop the axiom of Symmetry and re-interpret the functioning
vector a* used in Weak Indifference as the agent’s actual living. Imposing no value
judgment and attaching a special importance to the agent’s actual living in assessing
the living standard, I examine the issue of the self-evaluation. Specifically, I prove that
the axioms Weak Monotonicity, Invariance of Scaling Effects and Weak Indifference

characterize the following ranking rule.

Definition 5.1. > over K is called the elementary self-evaluation rule iff, there exist
$i>0(=1,---,n) with >, s;, = 1 such that

forall A,B € K, A> B & maxgea(zi -+ x3) > maxyep(yit - - yor). -+ (5.1)

Theorem 5.2. Suppose > over K is an ordering. Then, > on K satisfies Weak

Monotonicity, Invariance of Scaling Effects and Weak Indifference if and only if it is
the elementary self-evaluation rule.

To prove Theorem 5.2, I first prove the following lemmas.

Lemma 5.3. Suppose > over K is an ordering and satisfies Weak Monotonicity,
Invariance of Scaling Effects and Weak Indifference. Then, for all A € K, there exists
a unique a* € A such that af > 0foralli=1,---,nand A~ {z € R |z; < af,i =
1,-+-,nb.

Proof. Let > over K be an ordering and satisfy Weak Monotonicity, Invariance
of Scaling Effects and Weak Indifference. Given Invariance of Scaling Effects, it is
sufficient to show that for S = {z € R} | X, x; < 1}, there exists a unique s* € S
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such that s; > 0 for i = 1,---,nand S ~ {z € Rl}|z; < sf,i =1,---,n} = S*
By Weak Indifference, suppose that there exist s*,¢* € S such that s* # t*, s; > 0,
t; >0foralli=1,---,nand S~ S* ~{z € Rl |z; <tf,i=1,---,n} =T*. Let
z* = vs* + (1 —7)t* where v € (0,1). Clearly, by Weak Monotonicity, s; +-- -+ s, =
1 =% +---+1¢. Since s* # t* and >, s7 = Y, tf = 1, there exist j, k such
that s7 < ¢ and s; > t;. Without loss of generality, let s7 < ¢]. Consider the sets

= {z € RY| Y (sjzi/7) < 1} and Z* = {2 € R} |z; < 2,1 = 1,---,n}. By
Invariance of Scaling Effects, from S ~ S*, it follows that Z ~ Z*. Note that Z* C S
and T lies entirely inside Z. By Weak Monotonicity, S = Z* and Z > T*. From
T* ~ S and S > Z*, by the transitivity of >, it follows that 7" > Z*. On the
other hand, from Z ~ Z* and Z > T*, by the transitivity of >, Z* > T™ holds, a
contradiction. Therefore, by Weak Indifference, there exists a unique s* € S such
that s; >0fori=1,---,n,>" ,;s;,=1and S~ S*. [ |

Lemma 5.4. Suppose > over K is an ordering and satisfies Weak Monotonicity, In-
variance of Scaling Effects and Weak Indifference. Then, forall A = {z € R} | YXiL, (zi/pi) <
1} € K, A~ {z € RY}|z; <s;pj,i =1,---,n}, where s € R, is such that >3, s; =1

and S={r e R} | YL 2 <1} ~{z € ]RfﬂacZ <s,i=1,---,n}=5%

Proof. Let > over K be an ordering and satisfy Weak Monotonicity, Invariance of
Scaling Effects and Weak Indifference. Let S = {z € R} |>{_, z; <1} € K. From
Lemma 5.3, there exists a unique s € S such that >3j_; s; =1 and S ~ {z € R} |z; <
sp,t=1,---,n} =5% Let A= {2z € R} X", (zi/p;) <1} € K. From S ~ S*, by

Invariance of Scaling Effects, it follows that
{z e R} |z1/p1 + Xjp v <1} ~ {z € R |21 < sypy, 2 < 1,6=2,---,n}. --+(5.2)

From (5.2), by the repeated use of Invariance of Scaling Effects, one obtains that
A={z e R} | YL (zi/pi) <1} ~{z e R} |z; < sips,i=1,---,n}. |

Lemma 5.5. Suppose > over K is an ordering and satisfies Weak Monotonicity,
Invariance of Scaling Effects and Weak Indifference. Then, for all A = {z € R"} |z; <
ai,i =1,---,n},B={x € R}|z; <b,i=1,---,n} € K, if A~ B, then for all
Ae(0,1),C={z e RY|z; < Aa; + (1 = AN)bj,i=1,---,n} > A

Proof. Let > over K be an ordering and satisfy Weak Monotonicity, Invariance of
Scaling Effects and Weak Indifference. Let A = {z € R"|z; < a;,i=1,---,n},B =
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{z € R}|z; < bj,i =1,---,n} € K, and A ~ B. Let A € (0,1) and C = {z €
R” |z; < Aa;+ (1 — A)bj,i=1,---,n}. If A= B, then C = A. Hence, C' > A. Now,
let A # B. Given Weak Monotonicity and Lemma 5.4, it is straightforward to check
that there exist j and k such that a; < b; and a; > b,. Without loss of generality, let
a1 < by. Then, following a similar argument as in the proof of Lemma 5.3, it can be
shown that C > B ~ A. [ |

With the help of Lemmas 5.3, 5.4 and 5.5, I present the proof of Theorem 5.2

below.

Proof of Theorem 5.2. It can be checked that if > over K is the elementary
self-evaluation rule, then it satisfies Weak Monotonicity, Invariance of Scaling Effects
and Weak Indifference. Therefore, I have only to show that if > on K satisfies
Weak Monotonicity, Invariance of Scaling Effects and Weak Indifference, then it is
the elementary self-evaluation rule, that is, (5.1) holds.

Let > over K satisfy Weak Monotonicity, Invariance of Scaling Effects and Weak
Indifference. Consider the capability set S = {z € R} | Yj_, z; < 1}. By Lemma 5.3,
there exists a unique s € S such that s; >0foralli =1,---,n, Y ;s;=1and S ~
{z e RY|z; < s5,i=1,---,n} = S* Forall A € K, if s* = argmaxzea(z}' ---z3")

(given that A is compact and convex and the function z3'---z5" is quasi-concave,

arg maxge4(z7" - - - 257) is therefore unique), then, it must be true that S* C A C

S. By Weak Monotonicity and S ~ §*, A ~ § follows from the transitivity of >

immediately. By Invariance of Scaling Effects, the following can be obtained easily:

for all B,C € K, if argmax,ep(z7' - - - xi) = arg max,ec (e - - -25*), then B ~ C.
..(5.3)

Clearly, for all A € K, the function f(A) = maxge4 (27" - - - 23*) is a representation
of > over K satisfing Weak Monotonicity, Invariance of Scaling Effects and Weak
Indifference. In what follows, I shall prove that if a function g represents > over
K satisfying the three axioms specified in Theorem 5.2, then for all A,B € K,
g(A) > g(B) & maxgea(x]' - - - xir) > maxgep i’ - xin).

Let g : K — IRy be such that for all A,B € K, g(A) > ¢g(B) & A = B and
g(A) > 0 for all A € K. Define h : R} — IR, as follows: for all z € RY}, if z; > 0
for all i = 1,---,n, then h(z) = g({z € R |z < z;,i =1,---,n}) and if 2, = 0
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for some i = 1,---,n, then h(z) = 0. Clearly, the function A is well-defined. I now
show that h is quasi-concave and homothetic. To show that A is quasi-concave, I need
only to show that the set L(v) = {z € IR} |h(z) > v} is convex. Let z*,y* € R
be such that h(z*) = h(y*). From Lemma 5.4, {x € RY}| X, (z;/(x]/s:)) < 1} ~
{zr e RY|z; <af,i=1,---,n}and {z € RY[ XL, (:/(y /1)) <1} ~ {2z € R |z <

yf,i = 1,---,n}. It is also clear that =} > y} and z

*

J
be such that 1 > v > 0 and consider z* = yz* + (1 — 7)y*. By Lemma 5.5 and

the definition of h(-), h(z*) > h(z*) = h(y). Hence, h is quasi-concave. For all
A= {z € R} X (x;i/p;)) < 1}, by Lemma 54, A ~ {z € R}|z; < s;p;,i =

1,---,n}. By Lemmas 5.4 and 5.5, h achieves the maximum at a* = (s1p1,- -, SpPn)

< yj for some 7,7. Let ~y

over A. It is then clear that for all A > 0, from Lemma 5.4, argmax,cxa = Aa*,
where M = {z € R} | Y0, (zi/Ap;) < 1}. Therefore, h is homothetic (see Fére and
Shephard (1977, 1977a)). That is, h(x) = H(r(z)) where H : IR, — IR, is increasing
and r : R} — IR, is homogenous of degree 1. From Weak Monotonicity, H is strictly
increasing. Thus, for all z,y € RY}, r(z) > r(y) iff A(z) > h(y). By the definition of
h, it follows that

forall A={z € R}|z; <a;,i =1,---,n}and B={z € R}|z; <b;,i =1,---,n} €
K, A» B<&r(a)>r(b). --+(5.4)

Clearly, r(z) > 0 for all z € IR"} such that z; > 0,4 =1,---,n. Let r(e) = 1, where
e=(1,---,1). Consider p = (p1,pa,- -, pp) and z* = (z%,---,z%) where i = 1,-- -, n,
z; = p; and 2 = 1 for all j # 4. Let r; = r(z’). From r(z') = r(e)r1, noting that
71 > 0 and r is homogeneous of degree 1, it follows that r(z'/r;) = r(e). From
(5.4), by Invariance of Scaling Effects, one obtains 7(p1/r1,pa/r1,1/r1,-+,1/r1) =
r(1,ps,1,--+,1) = r(x?). Note that r is homogeneous of degree 1. Therefore,
r(p1,p2,1,--+,1) = r(z')r(z?). Following similar arguments, given the homogene-
ity of degree 1 of r(-), (5.4) and Invariance of Scaling Effects, it can be shown that

r(p) = r(x!)---r(z"). Thus,
for all p € RY} with p; > 0,i=1,---,n, r(p) =r(z')---r(z). --+(5.5)

I now show that, for all i = 1,---,n, there exists v; > 0, for all p; > 0, r(2?) =
p;i. From r(z') = r(e)r;, since r(-) is homogeneous of degree 1, r(z%/r;) = r(e)
holds. Then, for all ¢; > 0, by (5.4) and Invariance of Scaling Effects, it follows that
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r(y'/ri) = r(2'), where y* = (yi,---,y},) is such that y; = p;g; and y; = 1 for all
j # i, and 2' = (2},---, ;) is such that z; = ¢; and 2} = 1 for all j # i. By the
homogeneity of degree 1 of r(-), it then follows that r(y’) = r(z')r(2"). For all p; > 0,
define u(p;) = r(z'). Then, I have obtained

for all p; > 0,¢; > 0, u(pig;) = u(pi)u(g:)- -++(5.6)

Equation (5.6) is the Cauchy equation and its general solution is (see Aczél
(1966)): for all p; > 0, u(p;) = p;* for some ¢; > 0 (noting that r() is strictly
increasing, and therefore u(-) is strictly increasing as well). It then follows that for all
p; > 0,7(x") = w;p§ where w; > 0 is a constant. From (5.5) and by the homogeneity
of degree 1 of 7(-), it follows that for all p € IR} with p; > 0, r(p) = wp{" - - - p&* and
¢1+ -+ ¢, =1, where w is a constant. From the definition of 7(-) and A(-), it then
follows that for all A = {z € R} |z; < a;,i = 1,---,n},B = {z € R |z; < b;,i =
l,---,n}e K,A» B&af---a% > b ---bS». From Lemma 5.4, by the definition of
g(:) and (5.3), it then follows that for all X, Y € K, X » YV < max,ex(2f' - -28) >

maxyey (yi* -+ - y<*). By Lemma 5.4, it must be true that ¢; = s; for i = 1,--+,n.
That is, for all X, Y € K, g(X) = g(Y) & maxgex(z7" ---25") > maxyey (7" - - yp")-
|

Remark 5.6. From Examples 4.8, 4.9 and 4.10, clearly, the axioms used in Theorem

5.2 are independent.

6 A Quasi Ordering Approach

Both the elementary standard-evaluation rule and the elementary self-evaluation rule
may be criticized for their “elementary nature”. As our axiomatic results (Theorems
4.3 and 5.2) demonstrate, the major failure of these two rules lies with the axiom of
Weak Indifference. Weak Indifference essentially attaches exclusive importance to the
agent’s perceived living or actual living in evaluating the standard of living offered
by a capability set and ignores the freedom type information contained in the set.
This does not go along well with Sen’s notion of the standard of living in which he
emphasizes the opportunity/freedom aspect of a capability set. In this section, I try
to relax Weak Indifference and present a quasi ordering approach to the evaluation of

the standard of living offered by capability sets. It turns out that the quasi ordering
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characterized in this section lies in between the superset-dominance rule and the
elementary self-evaluation rule.

Let > be a quasi ordering over K. As shown by Donaldson and Weymark (1998)
(see also Bossert (1999), Duggan (1999) and Suzumura and Xu (1999)), a quasi
ordering is always the intersection of some orderings. That is, for all quasi ordering
= over K, there exists a class {2 of orderings over K such that == N, ,cq =4, where
each »=,€ ) is an ordering. I now impose a few properties on the quasi ordering >

over K; or equivalently, on orderings in €.

Definition 6.1. For all »;€ Q, >, over K satisfies

(6.1.1) Weak Monotonicity iff, for all A, B € K, if B C A then A =, B, and if B
lies entirely in A, then A >, B.

(6.1.2) Invariance of Scaling Effects iff, for all A,B € K and for all of > 0,
A= B& o'A > o'B.

(6.1.3) Weak Invariance iff, for all A € K, there exists a* € A such that B = {z €
R%|z; <aj,i=1,---,n} € K and B ~; A.

The above axioms are the exact counterparts of the axioms proposed in Section
4 and their intuitions have already explained. With the help of these properties and

recalling Theorem 5.2, the following result is immediate.

Theorem 6.2. Suppose = over K is a quasi ordering and let == (,,cq = Where
each and every »,€ ) is an ordering. Then, [for all =€ Q :>; over K satisfies
Weak Monotonicity, Invariance of Scaling Effects and Weak Indifference| if and only
if there exists a set I' of positive scalars {st,---,s%} such that for all A,B € K,
A-B& maxmeA(xi:tL coegin) > mauxyeg(yf:tL cooyfn) for all {st,---, st} el

Proof. The proof follows from Theorem 5.2 and the fact that > over K is a quasi

ordering—>= ,,cq = for some collection {2 of orderings over K. B
Remark 6.3. Clearly, the axioms used in Theorem 6.2 are independent.

Remark 6.4. If the quasi ordering > over K in Theorem 6.2 is complete, then the
rule characterized there becomes the elementary self-evaluation rule. If, on the other
hand, the set I' consists of all possible positive scalars, then the rule characterized

in Theorem 6.2 becomes the superset-dominance rule. In view of these observations,
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the rule axiomatized in Theorem 6.2 lies in between the superset-dominance rule and

the elementary self-evaluation rule.

7 Concluding Remarks

In this paper, I have used Sen’s functioning-capability approach to analyse the issue
of the standard of living offered to an agent. For this purpose, an agent is char-
acterized by her capability sets each of which summarizes her different functionings
and her capabilities to achieve these different functionings. Thus, the formal exer-
cise of evaluating an agent’s standard of living is to rank her capability sets. I have
considered both the standard-evaluation and the self-evaluation. With the standard-
evaluation, the crucial things are to suppose that there exist some widely acceptable
value judgment regarding different functionings and that a special importance of the
agent’s perceived living is attached to the evaluation exercise. On the other hand,
the essential part of the self-evaluation is to place an importance of the agent’s actual
living in assessing her capability sets in terms of the standard of living. The quasi
orderings induced by the superset-dominance-based-rule and characterized in Theo-
rem 6.2, respectively, can be regarded as an exercise of both the standard-evaluation
and the self-evaluation. The rule based on (4.1) that gives an index for a capabil-
ity set in terms of the standard of living by its maximum value of (z; - ... - x,) in
this capability set has been regarded as an exercise of the standard-evaluation since
certain value judgment regarding different functionings is involved in the characteri-
zation. The rule based on (5.1) that ranks capability sets according to the maximum
value of (x3' - ...-z5") in a capability set, where each s; is positive and the sum of
these s;’s is equal to 1, is interpreted as the self-evaluation since the weights s;’s
are determined by the agent’s actual choice of the life style from the capability set
{z e R} | XL, s < 1}

Clearly, the superset-dominance-based rule is the smallest class of all ranking rules
each of which is an ordering and respects a type of monotonicity property. In a sense,
it is the “coarsest” quasi ordering in the context of ranking capability sets in terms of
the standard of living. On the other hand, both the elementary standard-evaluation
rule and the elementary self-evaluation rule go to the other extreme by requiring
a complete ranking of the capability sets and are therefore particular orderings for

ranking capability sets in terms of the living standard. The rule characterized in
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Theorem 6.2 is an interesting intermediate ranking rule that lies in between and is
more general than the two extremes. As remarked in Section 6, both the extremes, the
superset-dominance rule and the elementary self-evaluation (or standard-evaluation)
rule are special cases of the rule axiomatized in Theorem 6.2.

Finally, it is interesting to note that if K is interpreted as the class of all utility
possibilities sets that are non-degenerate, comprehensive, compact and convex for an
n-person society, then the results of Theorems 4.3 and 5.2 can be regarded as charac-
terizations of symmetric and asymmetric Nash social welfare function, respectively.
If, on the other hand, K is interpreted as the class of n-person bargaining games,
then the results of Theorems 4.3 and 5.2 suggest that the Nash bargainging solution

(both symmetric and asymmetric) is optimal.
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