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Abstract

When proxies (external instruments) used to identify target struc-
tural shocks are weak, inference in proxy-SVARs (SVAR-IVs) is nonstan-
dard and requires the use of identi�cation-robust methods to construct
asymptotically valid con�dence sets for the impulse responses of interest.
In the presence of multiple target shocks, test inversion methods may re-
quire a large number of restrictions on the proxy-SVAR parameters other
than the proxies and may therefore become far from trivial to apply. We
show that asymptotic inference in these situations can be alternatively
conducted through standard methods if there exist strong proxies for the
auxiliary shocks, i.e. the shocks which are not of primary interest in the
analysis. We design a frequentist identi�cation strategy where the im-
pulse responses associated with the target shocks are (point-)identi�ed
by instrumenting the auxiliary shocks, not the target shocks. To do so,
we exploit the relationship that characterizes the �B-form�and �A-form�
representations of the proxy-SVAR and develop a Minimum Distance
(MD) estimation method based on the latter. The suggested identi�ca-
tion strategy is complemented with a novel diagnostic test for instrument
relevance based on bootstrap resampling. The test does not give rise to
pre-testing issues, is robust to conditionally heteroskedastic VAR distur-
bances and proxies, and is computationally straightforward regardless
on the number of shocks being instrumented. Some illustrative examples
show the usefulness of the suggested approach.
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1 Introduction

Proxy-SVARs, or SVAR-IVs, popularized by Stock (2008), Stock andWatson
(2012), Mertens and Ravn (2013) and Stock and Watson (2018), have become
standard tools to track the dynamic causal e¤ects of macroeconomic shocks
on variables of interest. In proxy-SVARs, the model is complemented with
�external�variables which carry information on the structural shocks of interest
(throughout the paper we use the terms proxies, instruments and external
variables interchangeably). Inference in these models depends on whether the
proxies are strongly or weakly correlated with the structural shock of interest,
henceforth denoted target shocks.

As for instrumental variable [IV] regressions with weak instruments, proxies
are �weak�in proxy-SVARs when their connection with the target shocks can be
approximated as local-to-zero (Staiger and Stock, 1997; Stock and Yogo, 2005).
Montiel Olea, Stock and Watson (2021) show that inference is nonstandard in
these cases and extend the logic of Anderson and Rubin tests to proxy-SVARs.
When the proxy-SVAR features multiple target shocks this method requires
inverting �S-tests�and the imposition of a relatively large number of additional
restrictions on the proxy-SVAR parameters other than the proxies, which are
not always easily interpretable and testable.1

This paper is motivated by the idea that there are cases in which it may be
convenient to recover the e¤ects of the target shocks by using proxies for the
shocks which are not of primary interest in the analysis, henceforth denoted
�auxiliary shocks�. We formalize an identi�cation strategy for proxy-SVARs in
which the dynamic causal e¤ects produced by the target shock(s) are point-
identi�ed by using proxies available for the auxiliary shocks. We call this
identi�cation strategy the �indirect approach�or �indirect identi�cation strat-
egy�, as opposed to the conventional �direct�approach based on instrumenting
the target shock(s) directly. The indirect identi�cation strategy is particu-
larly advantageous when the proxies available for the target shocks are weak
or suspected to be weak while the proxies used for the auxiliary shocks are
strong.

As is known, SVARs can be represented either in �B-form�or in �A-form�
(Amisano and Giannini, 1997; Lütkepohl, 2005), the main di¤erence being that
in the former the structural shocks are identi�ed by modeling their impact on
the variables, while in the latter the structural shocks are recovered by iden-
tifying the structural relationships that characterize the variables. The same

1For instance, in a SVAR with n = 4 variables and k = 2 target structural shocks, it is
necessary to impose at least k2 = 4 restrictions to build weak-identi�cation-robust con�dence
sets for the IRFs by test inversion.
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holds for proxy-SVARs. However, while in the B-form the auxiliary shocks
have no active role in the identi�cation, in the A-form the target shocks can
be recovered by instrumenting the target shocks. Our suggested identi�cation
strategy exploits the link that characterizes the B-form and A-form representa-
tions of the proxy-SVAR and is formalized through a Minimum Distance [MD]
estimation method (Newey and McFadden, 1994) based on the latter, called
�indirect-MD� throughout the paper. We derive the necessary order condi-
tions and the necessary and su¢ cient rank condition for (point-)identi�cation
of the proxy-SVAR, and show that the indirect-MD approach involves stan-
dard asymptotics if the proxies available for the auxiliary shocks are strong.
Accordingly, asymptotic valid con�dence intervals for the IRFs obtain in the
�usual way�, i.e. either by the delta-method or by bootstrap methods along the
lines of Jentsch and Lunsford (2019a, 2019b). Relative to Montiel Olea, Stock
and Watson�s (2020) key contribution on weak-identi�cation-robust methods
in proxy-SVARs, the suggested indirect-MD approach is worth considering
when �nding strong instruments for the target shocks is more problematic
than �nding strong instruments for the auxiliary shocks. The obvious gain is
the possibility to rely on standard asymptotic inference.

The indirect-MD estimation captures the moment conditions implied by
the proxy-SVAR e¢ ciently and overcomes some of the restrictions required
by the application of the IV method when multiple instruments are used for
multiple target shocks. In proxy-SVARs featuring multiple target shocks, esti-
mation by IV requires the imposition of Choleski-type restrictions on a covari-
ance matrix that results from a particular parameterization of the model, and
this solves the problem of incorporating the additional parametric restrictions
necessary for identi�cation (Mertens and Ravn, 2013). With the suggested es-
timation approach the additional restrictions required to (point-)identify the
target structural shocks need not be Choleski-type restrictions.

To our knowledge, Caldara and Kamps (2017) is the only example in the �s-
cal proxy-SVAR literature which, aside from the Bayesian estimation method,
can be framed within the logic of the indirect identi�cation strategy discussed
in this paper. Caldara and Kamps (2017) interpret the structural equations
associated with the A-form of their �scal proxy-SVAR as �scal reaction func-
tions whose �unsystematic�components correspond to the �scal shocks of in-
terest. They set-identify the �scal shocks and the implied �scal multipliers by
a Bayesian penalty function approach.2 Our approach departs from Caldara

2 It can be argued that the Bayesian approach to proxy-SVARs does rely on A-form speci-
�cations; see e.g. Arias, Rubio-Ramirez and Waggoner (2020) and Giacomini, Kitagawa and
Read (2020). However, the �standard�Bayesian approach is designed to instrument the target
structural shocks, not the auxiliary shocks. The �scal proxy-SVAR considered in Caldara
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and Kamps (2017) in two main respects. First, our primary objective is to
provide an alternative to the weak-instruments-robust methods needed when
the proxies available for the target structural shocks are weak, or suspected
to be so. Second, we design a novel frequentist approach that point-identi�es
the proxy-SVAR parameters and involves standard frequentist asymptotic in-
ference.

Instrument relevance. The availability of strong proxies for the aux-
iliary shocks su¢ ces to consistently recover the target structural shocks by
the indirect-MD approach and rely on standard asymptotic inference. The
hypothesis of strong proxies is therefore key to this approach. We thus com-
plement our estimation strategy with a novel diagnostic test for instrument
relevance based on bootstrap resampling. We show that the moving block
bootstrap [MBB] introduced in Brüggemann, Jentsch and Trenkler (2016) for
SVARs and framed by Jentsch and Lunsford (2019a, 2019b) in the proxy-
SVAR context, can be used to infer the strength of instruments (other than
building con�dence intervals for IRFs). The null hypothesis is that the proxies
are strong against the alternative that they are weak. The test, which has
been investigated by Angelini, Cavaliere and Fanelli (2021) in the context of
state-space models, exploits the asymptotic distribution of a MBB estimator of
the proxy-SVAR parameters under strong and weak proxies, respectively. The
estimator, obtained through a classical MD (CMD) approach along the lines of
Angelini and Fanelli (2019), re�ects the strength of the proxies. Under strong
proxies, the MBB version of the CMD estimator replicates the asymptotic dis-
tribution of its non-bootstrap counterpart, which is the Gaussian distribution.
Under weak proxies, the cumulative distribution function [cdf] of the MBB
version of the CMD estimator is stochastic in the limit in the sense of Cava-
liere and Georgiev (2020) and, in particular, is non-Gaussian. Based on these
results, we show that a test for strong against weak proxies can be designed,
under the conditions studied in the paper, as a normality test applied to a
properly selected number of MBB replications of the CMD estimator.

The test has three main properties. First and most importantly, it can be
used as a pre-estimation test for instrument relevance which does not a¤ect
second-stage inference. In other words, the reliability of post-test inferences
conditional on the test failing to reject the null of strong proxies is indepen-
dent on the outcome of the test. This property marks an important di¤erence
with respect to the literature on weak instrument asymptotics where the con-
sequences on the inference of pre-testing the strength of proxies have been well
documented; see, inter alia, Zivot, Startz and Nelson (1998), Hausman, Stock

and Kamps (2017) represents a remarkable exception to this tradition.
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and Yogo (2005) and Andrews, Stock and Sun (2019); see also Montiel Olea
et al. (2021). Second, the test is consistent against weak as well as irrelevant
proxies and controls size under very general conditions on VAR innovations and
proxies. Third, the test is computationally straightforward and is obtained in
the same way regardless of the number of shocks being instrumented.

We illustrate the usefulness of our identi�cation, estimation and testing
strategy by reconsidering some proxy-SVARs already estimated in the litera-
ture. In particular, we focus on the identi�cation of an oil supply shock and
the identi�cation of �nancial and macroeconomic uncertainty shocks, respec-
tively.3

Structure of the paper. The paper is organized as follows. Section
2 introduces the link between the B-form and A-form representations of a
proxy-SVAR and shows that the mapping between the two can be exploited to
rationalize an identi�cation strategy where the auxiliary shocks can be instru-
mented to recover the target shocks. Section 3 summarizes the assumptions
and characterizes the concepts of strong and weak proxies used throughout the
paper. Section 4 presents the indirect-MD identi�cation and estimation ap-
proach to proxy-SVARs. Section 5 complements the estimation strategy with
a novel test for instrument relevance based on bootstrap resampling: Section
5.1 focuses on the mechanics of the test and Section 5.2 shows that the use
of the suggested test does a¤ect post-test inference on the IRFs. Section 6
presents two illustrative examples, Section 6.1 focuses on the identi�cation
of the oil-supply shock and Section 6.2 on the joint identi�cation of �nancial
and macroeconomic uncertainty shocks. Section 7 contains some concluding re-
marks. A Supplementary Material (SM) contains formal proofs of propositions
and auxiliary lemmas and complements the paper along several dimensions.

2 Model, representations and identification
strategies

In this section we discuss two di¤erent representations of a proxy-SVAR and
show that the relationship among the two can be exploited to design an iden-

3 In the Supplementary Material we also consider a �scal proxy-SVAR from which we infer
the US tax and �scal spending multipliers.
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ti�cation strategy where the target shocks are recovered by instrumenting the
auxiliary shocks of the system.

B-form. We start from the �B-form�representation (Lütkepohl, 2005) of a
SVAR model, given by

Yt = �Xt + ut, ut = B"t , t = 1; :::; T (1)

where Yt is the n � 1 vector of endogenous variables, Xt := (Y 0t�1; :::; Y
0
t�l; )

0

is the vector collecting l lags of the variables, � := (�1; ::: ;�l) is the n � nl
matrix containing the autoregressive (slope) parameters and ut is the n � 1
vector of reduced form innovations with covariance matrix �u := E(utu

0
t).

Deterministic terms have been excluded without loss of generality. The initial
values Y0; :::; Y1�k are �xed. The system of equations ut = B"t in (1) maps the
vector of structural shocks "t (n� 1) to the reduced form innovations through
the nonsingular matrix B (n � n) which contains the on-impact coe¢ cients,
i.e. the instantaneous e¤ects of the structural shocks on the variables. It
is maintained that the structural shocks have normalized covariance matrix
�" := E("t"

0
t) = In but the analysis can be easily extended to the direction of

a diagonal non-unit �" matrix.
We partition the structural shocks as follows: "t := ("01;t; "

0
2;t)

0, where "1;t
collects the k < n target shocks, and "2;t collects the remaining n�k auxiliary
shocks. Notice that we can write

ut =

�
u1;t
u2;t

�
=

�
B11 B12
B21 B22

��
"1;t
"2;t

�
� B1"1;t + B2"2;t (2)

where u1;t and u2;t have the same dimensions as "1;t and "2;t, respectively, and

B1 := (B
0
11

... B021)
0 is n � k and collects the on-impact coe¢ cients associated

with the target structural shocks. The proxy-SVAR approach consists in the
identi�cation of the target shocks "1;t alone by using variables �external�to the
SVAR (henceforth we use the terms �proxies�and �instruments� interchange-
ably). Thus, the IRF of interest is given by the response of the i-th variable
in Yt to the j-th shock in "1;t, i.e.


i;j(h) := �
0
i(S

0
n(Ay)hSn)B1�j ,

i = 1; :::; n

j = 1; :::; k
, h = 0; 1; 2; ::::; hmax (3)

where Ay is the VAR companion matrix, Sn := (In : 0n�n(l�1)) is a selection
matrix such that SnS0n = In and �j is the n � 1 vector containing �1�in the
i-th position and zero elsewhere.

Proxy-SVARs solve the �partial identi�cation�problem raised by the esti-
mation of the IRFs in (3) by assuming that there exist at least k observable
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proxies, collected in the vector zt, which are correlated with "1;t and are ex-
ogenous (orthogonal) to "2;t. This means that zt can be related to "1;t by the
system of equations

zt = �"1;t + !z;t (4)

where the matrix � := E(zt"01;t) captures the link between the proxies and the
target shocks and !z;t is a measurement error independent on "t := ("01;t; "

0
2;t)

0:

By combining (4) with (2) and taking expectations one obtains the moment
conditions

�z;u = �B
0
1 (5)

where �z;u := E(ztu
0
t) is an r � n covariance matrix which can be estimated

consistently from the data under standard regularity conditions.
The approach originally developed by Stock (2008), Stock and Watson

(2012, 2018) and Mertens and Ravn (2013) estimates the IRFs in (3) by prop-
erly exploiting the moment conditions in (5). Hereafter, we call direct approach
the method in which the proxies zt are used to directly instrument the target
shocks "1;t.

A-form. For A = B�1, the �B-form�in (1) can be equivalently expressed
in �A-form�:

AYt = �Xt + "t, Aut = "t , t = 1; :::; T (6)

where � := A� and the matrix A summarizes the simultaneous relationships
that characterize the observed variables. The mapping Aut = "t can be parti-
tioned conformably with "t := ("01;t; "

0
2;t)

0 as follows:�
A01
A02

�
ut =

�
A011 A012
A021 A022

��
u1;t
u2;t

�
=

�
"1;t
"2;t

�
(7)

with A01 := (A
0
11

... A012) corresponding to the block collecting the �rst k rows
of A, and A02 pertaining to the block collecting the remaining n � k rows. In
particular, the block of �rst k equations in (7) reads

A01ut = A
0
11u1;t +A

0
12u2;t = "1;t (8)

and, as it will be detailed in Section 4, it forms a system of k structural
equations under a set of identi�cation restrictions on A1 (A01).

Equation (8) suggests two things. First, the target shocks "1;t can be recov-

ered from the estimation of the parameters in A01 := (A
0
11

... A012). Second, the
auxiliary shocks may have an �active�role in the identi�cation and estimation
of the parameters in A01 because, as it will be detailed in Section 4, one way to
estimate these parameters is by using proxies, say vt, that are correlated with
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(all or part of) the auxiliary shocks in "2;t and are orthogonal to the target
shocks "1;t.

Relation between the two representations and identification
strategies. While the k columns of the matrix B1 in (2) re�ect the instan-
taneous impact of the target shocks on the variables Yt, the k rows of the
matrix A01 in (7) capture the simultaneous relationships that characterize the
variables in Yt. Hence, while the identi�cation of the proxy-SVAR based on
the B-form amounts to �separating� the columns of B1, the identi�cation of
the proxy-SVAR based on the A-form amounts to �separating�the rows of A01.
Simple algebra shows that the connection between the parameters in B1 and
in A1 is given by the expression4

B1 = �uA1 (9)

that suggests that the problem of making inference on the on-impact coe¢ -
cients in B1 and the IRFs in (3) can be alternatively formulated as the problem
of making inference on the coe¢ cients in A01.

5 Indeed, since the VAR covari-
ance matrix �u can be estimated consistently under fairly general conditions, a
plug-in estimator of B1 follows from (9) and the availability of a consistent esti-
mator of the parameters in A01. In the next sections we formalize an estimation
strategy, denoted indirect-MD approach, where the structural parameters in
A1 are estimated by exploiting a vector of proxies vt for (part of) the auxiliary
shocks in "2;t.

3 Assumptions and definitions

In this section we present the assumptions behind the indirect-MD approach
to proxy-SVARs and characterize formally the concepts of �strong�and �weak�
proxies used throughout the paper.

The �rst two assumptions pertain to the reduced form VAR.

Assumption 1 (Reduced form, stationarity) The data generating process
for Yt belongs to the class of models in (1) where the companion matrix Ay is
stable, i.e. all eigenvalues of Ay lie inside the unit disk.

4Simple algebra shows that for in a SVAR where A = B�1, it always holds the relationship
B = �uA

0:
5The identi�cation restrictions placed on A1 (B1) do not generally have a direct coun-

terpart in B1 (A1), in the sense that if e.g. the (1,2)-element of A1 (B1) is set to zero, the
(1,2)-element of B1 (A1) will typically di¤er from zero. We turn on this in Section 4 and in
the SM.
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Assumption 2 (Reduced form, VAR innovations) The VAR innovations
satisfy the following conditions:
(i) futg is a strictly stationary weak White Noise;
(ii) E(utu0t) = �u <1 is positive de�nite;
(iii) ut is �-mixing, meaning that it satis�es the conditions stated extensively
in Assumption 2.1 of Brüggemann, Jentsch and Trenkler (2016);
(iv) ut has absolutely summable cumulants up to order eight.

Assumption 1 features a typical maintained hypothesis of correct speci�-
cation which also incorporates a stability (asymptotic stationarity) condition
which rules out the presence of unit roots from the VAR. Assumption 2 is
as in Francq and Raïssi (2006) and Boubacar Mainnasara and Francq (2011).
Assumption 2(ii) is a standard unconditional homoskedasticity condition on
VAR innovations and proxies. The �-mixing conditions in Assumption 2(iii)
cover a large class of uncorrelated but possibly dependent variables, including
the case of conditionally heteroskedastic innovations. Assumption 2(iv) is a
technical condition necessary to prove the consistency of the MBB in model
(1), see Brüggemann, Jentsch and Trenkler (2016).

The next assumption refers to the structural form.

Assumption 3 (Structural form) Given the SVAR in (1), the matrix B
is nonsingular and its inverse is A = B�1.

Assumption 3 establishes the invertibility of the matrix B which implies the
conditions rank[B1] = k in (2) and rank[A01] = k in (7). Note that A

0
11 in (7)

can be singular. Importantly, Assumption 2 and Assumption 3 jointly imply
that the structural shocks "t = B�1ut � Aut inherit the �-mixing properties
postulated for the VAR innovations.

The next assumption is key to our approach and refers to the existence of
proxies available for the auxiliary shocks. Henceforth ~"2;t denotes a subset of
s � n� k elements of "2;t; s := dim(~"2;t). It is intended that s = n� k when
"2;t � ~"2;t.

Assumption 4 (Proxies for the auxiliary shocks) There exist s � n�
k variables, collected in the vector vt, such that

vt = �~"2;t + !v;t , t = 1; 2; :::; T (10)

where � := E(vt~"02;t) is an s� s matrix of relevance parameters and !v;t is an
i.i.d. measurement error independent on "t := ("01;t; "

0
2;t)

0.

Assumption 4 establishes that there exist s proxies that are correlated with
the s auxiliary shocks in ~"2;t and are exogenous (orthogonal) to the target
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shocks, E(vt"01;t) = 0.6 We implicitly maintain that the number of auxiliary
shocks, n�k, is not too big relative to the number of target shocks, k, otherwise
there would be no bene�t in designing a partial identi�cation strategy based
on instrumenting a large number of auxiliary shocks. Assumption 1-4 jointly
imply that the process that generates the variables (Y 0t ; v

0
t)
0 is stable and that

the process that generates the reduced form innovations �v;t:=(u
0
t; v

0
t)
0 is �-

mixing.

Strong and weak Proxies. Assumption 4 establishes the existence of
proxies for the auxiliary shocks which are exogenous to the target shocks, but
is silent on the strength of these proxies. The next de�nition provides a formal
characterization of �strong�and �weak�proxies that will be used throughout the
paper. In the following, �0 denotes the true value of �, where � collects the non-
zero elements that enter the matrix of relevance parameters � in Assumption
4, and N�0 is a neighborhood of �0. We denote with �1, ..., �s the s columns
of �, i.e. � := (�1

...:::
...�s):

Definition 1 (Strong and weak proxies) Consider the proxy-SVAR ob-
tained by combining the SVAR in (1) with the proxies vt for the structural
shocks ~"2;t in (10). Given Assumption 4, the instrument vt are:

(a) �strong�if � is �xed and for � 2 N�0, rank[�] = s;

(b) �weak�if, for � 2 N�0, there exists at least one column �i of � such that
�i := CT

�1=2, with C a �xed vector with non-zero elements:

According to De�nition 1(a), the proxies vt are �strong� for ~"2;t if each
column of � carries relevant information on the s structural auxiliary shocks
also asymptotically, as T ! 1. Conversely, according to De�nition 1(b), the
proxies vt are �weak�for ~"2;t if at least one column of the matrix � satis�es a
local-to-zero embedding a la Staiger and Stock (1997). This makes � singular
as T !1, and near reduced rank for �nite (large) T . Notice that in De�nition
1(b) not all the proxies are necessarily weak. The case of irrelevant proxies,
C = 0s�s, corresponds to the condition � = 0s�s in (10). In the special case
s = 1, i.e. when one proxy is used for one auxiliary shock, De�nition 1(b)
corresponds to Montiel Olea Stock and Watson�s (2020) characterization of
weak proxy. In the next sections we show that, contrary to what happens in
the strong proxies setup, the asymptotic distribution of the bootstrap estimator

6 In principle, Assumption 4 can be generalized to account more proxies than instrumented
auxiliary shocks, dim(vt) > s. Without loss of generality, we keep exposition focused on cases
where � in (10) is square.
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of the proxy-SVAR parameters is non-Gaussian if the proxies are weak in the
sense of De�nition 1(b). The di¤erent limit behavior of this estimator under
strong and weak proxies allows us to build a novel bootstrap-based test of
instrument relevance.

4 Indirect-MD estimation

In this section we present our estimation approach to the parameters in the
matrix A1. Given an estimator of A1, we use the relationship (9) to recover a
plug-in estimator of B1 and the IRFs in (3).

Moment conditions. Recall that, see (8),

A011u1;t +A
0
12u2;t = "1;t (11)

where the VAR innovations u1;t and u2;t have the same dimensions as "1;t
and "2;t, respectively. By taking the second-order moments of system (11) we
obtain the 1

2k(k + 1) moment conditions:

A01�uA1 = Ik: (12)

Moreover, by using the proxies vt in (11) we obtain the additional ks moment
conditions:

A01�u;v = 0k�s (13)

where �u;v := E(utv
0
t). Systems (12) and (13) jointly provide m := 1

2k(k +

1) + ks independent moment conditions which can be used to estimate the
parameters in A01.

As is known, in the multiple target shocks scenario, k > 1, the proxies
alone do not su¢ ce to (point-)identify the proxy-SVAR and it is necessary to
impose additional parametric restrictions for point-identi�cation, see Montiel
Olea, Stock and Watson (2020). The additional restrictions might be provided
by the theory or economic reasoning on the parameters in A01 or on those in
B1, depending on the context. In the following we focus on the case in which
the additional identi�cation restrictions involve the structural parameters in
A01 and con�ne the case of restrictions on B1 in the SM. Thus, for k > 1, we
complement the moment conditions (12) and (13) with the following set of
linear restrictions on A01 :

vec(A01) = SA1�+ sA1 (14)

where � denotes the vector of (free) structural parameters that enter the matrix
A1, SA1 is a full-column rank selection matrix and sA1 is known vector which
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permits to accommodate non-homogeneous (non-zero) as well as cross-equation
restrictions on A01.

Point-identification and estimation. Let �+ := (vech(�u)0; vec(�u;v)0)0

be the m � 1 vector of reduced form parameters of the proxy-VAR involved
in the moment conditions in (12)-(13). �+0 is the true value of �+, �̂+T :=

(vech(�̂u)
0; vec(�̂u;v)0)0 is the estimator of �+ and V�+ := limT!1Var[T

1=2(�̂+T�
�+0 )] is the asymptotic covariance matrix of T

1=2(�̂+T ��
+
0 ):

7 The moment con-
ditions (12)-(13) and the restrictions in (14) can be summarized by the distance
function:

g(�+; �) :=

�
vech(A01(�)�uA1(�)� Ik)

vec(A01(�)�u;v)

�
(15)

where the notation A1 := A1(�) indicates that the elements of A1 depend
on the structural parameters �. Obviously, g(�+0 ; �0) = 0m�1 at the true
parameter values. The MD estimator of � is obtained from:

�̂T := arg min
�2T�

Q̂T (�) , Q̂T (�) := ĝT (�̂
+
T ; �)

0V̂gg(��)
�1ĝT (�̂

+
T ; �) (16)

where ĝT (�̂
+
T ; �) is the function g(�

+; �) with �+ replaced with the estimator
�̂+T . In (16), T�� P� is the user-chosen optimization set, P� is the parame-
ter space, V̂gg(��):= G�+(�̂

+
T ; ��)V̂�+G�+(�̂

+
T ; ��)

0, V̂�+ is a consistent estimator
of V�+ , G�+(�

+; �) is the m �m Jacobian matrix de�ned by G�+(�
+; �) :=

@g(�+;�)
@�+0 , and �� may be some preliminary (ine¢ cient) estimate of �; for exam-

ple, �� might be a MD estimate of � obtained in a previous step by replacing
V̂gg(��) with the identity matrix, in which case the �̂T from (16) corresponds
to a classical two-step MD estimator (see Newey and McFadden, 1994).

Before discussing the properties of the MD estimator �̂T , in the next propo-
sition we establish the necessary and su¢ cient rank condition and the necessary
order condition for identi�cation. Recall that m := 1

2k(k + 1) + ks denotes
the number of independent moment conditions in (12)-(13), while with a we
henceforth indicate the dimension of the vector of structural parameters � in
(14). With N�0 we denote a neighborhood of �0 in P�:

Proposition 1 (Point-identification) Given the proxy-SVAR obtained by
combining the SVAR (1) with the proxies vt for the s � n� k auxiliary struc-
tural shocks ~"2;t in (10), assume that A01 satis�es the moment conditions (12)
and (13) and, for k > 1, is restricted as in (14). Under Assumptions 1-4, we
have that:

7�+ is a component of the reduced-form covariance parameters of the proxy-SVAR col-
lected in the vector �� discussed in Section S2 of the SM.
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(i) necessary and su¢ cient condition for identi�cation is that the rank condi-
tion:

rank
�
G�(�

+; �)
�
= a (17)

holds in N�0, where

G�(�
+; �) :=

�
2D+k (A1

0�u 
 Ik)
(�v;u 
 Ik)

�
SA1 ;

(ii) necessary order condition is a � m, and this condition implies that at least
` � 1

2k(k � 1) restrictions are placed on the proxy-SVAR parameters.

As it is typical for SVARs and proxy-SVARs, the identi�cation result in
Proposition 1 is �up to sign�, meaning that the rank condition in (17) is valid
regardless on the sign normalizations of the rows of the matrix A01. The nec-
essary order condition inequality a � m simply states that when s auxiliary
shocks are instrumented, the total number of moment conditions implied by
the proxy-SVAR must be larger, or at least equal, to the total number of un-
known parameters featured by the model. It is not strictly necessary that
s = (n�k), meaning that identi�cation can also be achieved by instrumenting
not all auxiliary shocks provided there are enough (economically plausible)
restrictions on the parameters in A01. It can be easily proved that the rank
condition in Proposition 1(i) does not hold if the proxies are weak in the sense
of De�nition 1(b).

Asymptotic properties. We have all the ingredients to derive the as-
ymptotic properties of the MD estimator �̂T derived from (16). The next
proposition contains the main result.

Proposition 2 (Asymptotic properties of MD estimator) Under the
conditions of Proposition 1, let �0 be an interior of P� (assumed compact)
and N�0 � T�. If the necessary and su¢ cient rank condition in Proposition 1
is satis�ed, the estimator �̂T obtained from (16) has the following properties:
(i) �̂T

p! �0;

(ii) T 1=2 (�̂T � �0)
d! N(0a�1; V�), V� :=

�
G�(�

+
0 ; �0)

0Vgg(��)�1G�(�
+
0 ; �0)

	�1
,

where G�(�+; �) is the Jacobian matrix given in Proposition 1 and Vgg(��) :=
G�+(�

+
0 ; ��)V�+G�+(�

+
0 ; ��)

0:

Proposition 2 ensures that the inference on the parameter � is standard.
This implies that one can recover �consistent�estimates of the target shocks
by using "̂1;t := A1(�̂T )0ût, t = 1; :::; T . Moreover, let 
i;j;0(h) denote the true

13



impulse response in (3). One implication of Proposition 2 is that for h = 0; 1; :::
it holds:

T 1=2
�

̂i;j;(h)� 
i;j;0(h)

� d! N(0; V
i;j ) ,
i = 1; :::; n

j = 1; :::; k
(18)

where 
̂i;j;(h) := �0i(S
0
n(Ây)hSn)B̂1�j , B̂1 := �̂uA1(�̂T ), and the asymptotic

covariance matrix V
i;j follows from a standard delta-method argument.

Measure of strength. The MD estimation theory developed so far
refers to a scenario in which the proxies vt that instrument the auxiliary shocks
~"2;t are (indirectly) used to recover the dynamic causal e¤ects produced by the
target shocks "1;t:We conclude this section by considering a bootstrap estima-
tor of the proxy-SVAR parameters that will be used as measure of strength
and will form the basis of our novel test of instrument relevance presented in
the next sections.

From equation (10) and Assumption 4, we can derive the moment condi-
tions �v;u = � ~B02, where recall that �v;u := E(vtu

0
t), � := E(vt~"

0
2;t), and the

matrix ~B2 := @Yt
@~"02;t

collects the s columns of B2 associated with the on-impact

e¤ects of the auxiliary shocks on the variables. Obviously, ~B2 � B2 when
s = n � k. We de�ne the s � s symmetric matrix 
v := �v;u�

�1
u �u;v which

depends on the reduced form covariance parameters �u and �v;u, respectively.
It is seen that under the proxy-SVAR restrictions �v;u = � ~B02 and �u = BB

0,

v = � ~B02(BB

0)�1 ~B2�0 = ��0, hence the matrix 
v re�ects the strength of
the proxies vt. Let � := (�0; �02)

0 be the q� � 1 vector of unrestricted (free)
parameters contained in the (n+ s)� s matrix ( ~B02

... �0)0. � contains the non-
zero elements of the matrix of relevance parameters � while �2 contains the
non-zero on-impact coe¢ cients in the matrix ~B2. We remark that our interest
in the estimation of the parameters � := (�0; �02)

0 is motivated by the need of
constructing of a novel measure of strength.

Using the moment conditions �v;u = � ~B02 and 
v = ��0, we consider
the distance function � � f(�) = 0, where � := (vech(
v)

0; vec(�v;u)0)0 and
f(�) = (vech(��0 )0; vec(� ~B02)). As in Angelini and Fanelli (2019), a classical
MD (CMD) estimator of � can be obtained from the problem

�̂T := arg min
�2T�

Q̂T (�), Q̂T (�) := (�̂T � f(�))0V̂ �1� (�̂T � f(�)) (19)

where T�� P� is the user-chosen optimization set, P� is the parameter space,
�̂T := (vech(
̂v)

0; vec(�̂v;u)0)0 is the estimator of the reduced form parameters,

̂v := �̂u;v�̂

�1
u �̂u;v, �̂u := T�1

PT
t=1 ûtû

0
t, �̂u;v := T�1

PT
t=1 ûtv

0
t, and V̂� is

such that V̂�
p! V� := limT!1Var(T

1=2(�̂T � �0)), �0 being the true value of
�:
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In the SM, Lemma S3, we show that the asymptotic distribution of T 1=2(�̂T�
�0), where �0 := (�00; �

0
2;0)

0 denotes the true value of �, depends on whether
the proxies are strong or weak according to De�nition 1. Under strong proxies
T 1=2(�̂T � �0) is asymptotically distributed as a multivariate Gaussian with
asymptotic covariance matrix V� :=

�
J 0�V

�1
� J�

��1, J� being a full column rank
Jacobian matrix. Conversely, under weak (or irrelevant) proxies T 1=2(�̂T � �0)
is asymptotically non-Gaussian (its asymptotic distribution is derived in detail
in the proof of Lemma S3). The bootstrap counterpart of the CMD estimator
�̂T , henceforth denoted MBB-CMD, is obtained from the problem

�̂
�
T := arg min

�2T�
Q̂�T (�) , Q̂

�
T (�) := (�̂

�
T � f(�))0V̂ �1� (�̂�T � f(�)) (20)

where �̂�T := (vech(
̂
�
v)
0; vec(�̂�v;u)

0)0 is the bootstrap analog of �̂T . Bootstrap
replications of �̂�T (
̂

�
v, �̂

�
v;u) can be obtained from the MBB algorithm sketched

in the SM. Henceforth, the bootstrap statistic ��T := T
1=2V

�1=2
� (�̂

�
T � �̂T ) will

be used as our measure of strength. Indeed, the next proposition shows that
the asymptotic distribution of ��T , conditional on the data, depends on the
strength the proxies.

Proposition 3 (Asymptotic distribution, bootstrap estimator) Under
the conditions of Proposition 2, consider the CMD estimator �̂T obtained from
(19) and its MBB counterpart �̂

�
T derived from (20). Under Assumptions 1-4:

(i) if the proxies are strong, ��T := T
1=2V

�1=2
� (�̂

�
T � �̂T )

d�!p N(0q��1; Iq�);

(ii) if the proxies are weak (or irrelevant), the cdf of ��T := T
1=2V

�1=2
� (�̂

�
T � �̂T )

is stochastic in the limit and is non-Gaussian. The limit distribution is derived
in the proof, see equations (S.24) and (S.27) in the SM.

Proposition 3(i) shows that under strong instruments ��T := T
1=2V

�1=2
� (�̂

�
T�

�̂T ) replicates, conditional on the data, the asymptotic distribution of �T which
is Gaussian. This result is consistent with Jentsch and Lunsford�s (2019b) �nd-
ing that the MBB is consistent in proxy-SVARs with strong proxies. Propo-
sition 3(ii) establishes that when the proxies are weak (or irrelevant), the as-
ymptotic distribution of ��T , conditional on the data, is random in the limit
and non-Gaussian; see Cavaliere and Georgiev (2020) for details on conver-
gence (in distribution) of random cdfs. The di¤erent asymptotic behavior of
��T under strong and weak proxies is at the basis of our novel bootstrap test
of instrument relevance discussed next.

Before moving to the next section, we remark that the asymptotic normal-
ity result in Proposition 3(i) holds regardless of the validity of the exogeneity
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condition. More precisely, conditional on the data, under strong proxies the
statistic ��T remains asymptotically Gaussian also when the proxies used for
the auxiliary shocks fail to be exogenous (orthogonal) to (some of) the target
shocks in "1;t: We study in detail the violation of the exogeneity condition
in the SM, Section S.9. There we focus on an simpli�ed setup which shows
that when the exogeneity conditions fails, the quantity T 1=2(�̂T � �+0 ) is still
asymptotically Gaussian, with �+0 6= �0 being a �pseudo-true�value of �. Ac-
cordingly, conditional on the data, the bootstrap counterpart of T 1=2(�̂T ��+0 ),
T 1=2(�̂

�
T � �̂T ), will be still asymptotically Gaussian. This result is important

for the test of instrument relevance discussed in the next section as it ensures
that the asymptotic non-normality of the statistic T 1=2(�̂

�
T��̂T ) solely depends

on the strength of the proxies.

5 Instrument relevance

The indirect-MD approach discussed in the previous sections hinges on the
availability of strong proxies for the auxiliary shocks. In this section we com-
plement the suggested strategy with a novel test for instrument relevance
which can be used to verify the null hypothesis of strong proxies. To do
so, we exploit the asymptotic behavior of the normalized bootstrap statistic
��T := T

1=2V
�1=2
� (�̂

�
T � �̂T ) derived in Proposition 3.

Section 5.1 provides the mechanics of the test and Section 5.2 focuses on
the most important property of this test, i.e. the fact that it does not a¤ect
post-test inference on the IRFs.

5.1 Bootstrap test

We consider the statistic �̂�T := T
1=2V̂

�1=2
� (�̂

�
T � �̂T ), where V̂� is an estimator

of the asymptotic covariance matrix V�. Without loss of generality, we focus
one component of the vector �̂�T , say its �rst element, �̂

�
1;T . Let z�1;T (�) be the

cumulative distribution function of �̂�1;T , conditional on the data. z�1;T (�) is
used to approximate the distribution of �1;T , say z1;T (�). By Proposition 3(i),
under strong proxies �̂�1;T converges to a standard normal random variable so
that z�1;T (x) � zN (x) !p 0 uniformly in x 2 R as T ! 1, where zN (�)
denotes the N(0; 1) cdf. Since this is an asymptotic result, for T �xed the
bootstrap distribution z�1;T (�) may potentially deviate from the normal even
if the proxies are strong and the result in Proposition 3(i) is valid. Therefore,
our idea is to evaluate whether z�1;T (�) approaches the normal distribution for
large T .
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We can estimate z�1;T (x) from the sequence of i.i.d. bootstrap replications

�̂�1;T :1; :::; �̂
�
1;T :N , using

z�1;T;N (x) :=
1

N

XN

b=1
I(�̂�1;T :b � x), x 2 R: (21)

For any x, deviation of z�1;T;N (x) from the standard normal distribution can
be evaluated by considering the distance z�1;T;N (x) � zN (x) : By standard
arguments and regardless of the strength of the proxies, as N ! 1 (keeping
T �xed)

N1=2(z�1;T;N (x)�z�1;T (x))
d! N (0; UT (x)) (22)

where UT (x) := z�1;T (x)(1�z�1;T (x)). This fact suggests that we may consider
the normalized statistic

��T;N (x) := N
1=2ÛT (x)

�1=2(z�1;T;N (x)�zN (x)), (23)

as actual measure of distance, where ÛT (x) denotes a consistent estimator
of UT (x).8 The statistic ��T;N (x) in (23) captures the (normalized) distance
between the estimated (over N repetitions) bootstrap distribution z�1;T;N (x)
and the theoretical asymptotic distribution that one would get under strong
proxies.

The next proposition establishes the limit behavior of the statistic ��T;N (x)
under strong and weak proxies, respectively.

Proposition 4 Let ��T;N (x) be the statistic de�ned in (23). Under the condi-
tions of Proposition 3 and Assumptions 1-4, assume that:

T;N !1 jointly and NT�1 = o (1) : (24)

Then it holds that:
(i) under strong proxies, if z�T (x) admits the standard Edgeworth expansion
z�T (x)�zN (x) = Op(T�1=2); conditional on the data, ��T;N (x)

d�!p N(0; 1);
(ii) under weak (or irrelevant) proxies, ��T;N (x) diverges, conditional on the

data, at the rate N1=2.

Note that the Edgeworth expansion assumed in Proposition 4(i) is also
maintained in e.g. Bose (1988) and Kilian (1988).9 Proposition 4(ii) shows

8For instance, one may consider ÛT (x) := z�1;T;N (x) (1�z�1;T;N (x)) for an arbitrary large
value of N , or can simply set ÛT (x) to its theoretical value under normality, i.e. ÛT (x) :=
FN (x) (1�FN (x)) :

9The Edgeworth expansion z�T (x) � zN (x) = Op(T
�1=2) is typical in the presence of

asymptotically normal statistics, see e.g. Horowitz (2001, p. 3171) and Hall (1992).

17



that the test is consistent against weak as well as irrelevant proxies. Overall,
Proposition 4 provides the rationale for the design of a tests for strong versus
weak (or irrelevant) proxies which can be formulated in terms of normality
tests applied to N bootstrap replications of the estimator �̂

�
T , where N is

selected consistently with the condition (24), see below. Moreover, the results
in Proposition 4 can be extended to all components of �̂�T as well as to the
whole vector �̂�T , meaning that in practice one can check instruments relevance
using both multivariate and univariate versions of normality tests.

Operational implementation and Monte Carlo evidence. Hence-
forth we use the symbol #̂

�
T to denote the following statistics that can be al-

ternatively chosen once the MBB-CMD estimator �̂
�
T discussed in the previous

section is computed: (i) the �̂
�
T estimator itself, i.e. #̂

�
T � �̂

�
T ; (ii) the trans-

formation �̂�T := T 1=2V̂
�1=2
� (�̂

�
T � �̂T ), i.e. #̂

�
T � �̂�T ; (iii) sub-vectors of �̂

�
T ,

e.g. #̂
�
T � �̂

�
2;T , where recall that �̂

�
T := (�̂

�0
T ; �̂

�0
2;T )

0; (iv) individual elements of

�̂
�
T , e.g. #̂

�
T � �̂

�
1;T , �̂

�
1;T being the �rst element of �̂

�
T . Our bootstrap-based

test of instrument relevance boils down to running normality tests to the se-
quence of bootstrap replications f#̂�T :1; #̂

�
T :2; :::; #̂

�
T :Ng, where N is chosen in

�nite samples with a rule consistent with the condition (24).10 Regardless on
the number of shocks being simultaneously instrumented, the null hypothe-
sis of strong proxies is rejected when the asymptotic normality hypothesis is
rejected at the pre-�xed nominal signi�cance level. We recommend checking
multivariate normality �rst and then, conditionally on not rejecting multivari-
ate normality, possibly testing the normality of the single components of the
vector.

The condition NT�1 ! 0 in (24) is crucial for the tests to correctly control
nominal size. Inspection of the proof of Proposition 4 reveals that the test may
incorrectly reject the hypothesis of strong proxies if N is not �too small�relative
to T . Our simulation experiments, part of which are summarized in Table 1,
suggest that the choice N = [T 1=2] delivers a satisfactory compromise between
size control and power in samples of length typically available to practitioners.

More in detail, we investigate the �nite sample properties of our bootstrap
diagnostic test by some Monte Carlo experiments based on a data generating
process whose details are provided in the accompanying SM. In short, the data
generating process belongs to a SVAR system with n = 3 variables featuring
a single target shock "1;t (k = 1) and two auxiliary shocks. The target shock
"1;t is recovered from the structural equation A01ut = A11u1;t + A12;1u2;t +

A12;1u3;t = "1;t using a proxy vt for the auxiliary shock "3;t � ~"2;t (s = 1 <

10Alternatively, normality tests can be applied to the sequences f#̂�T :1 � #̂T ; #̂
�
T :2 �

#̂T ; :::; #̂
�
T :N � #̂T g.
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n�k = 2) and imposing the restriction A12;1 = 0 (valid in the data generating
process). Using the notation in Section 4 one has a = 2 and m = 2:

Table 1 summarizes the empirical rejection frequencies of the bootstrap di-
agnostic test computed on 20,000 simulations under di¤erent scenarios on the
correlation between the proxy vt and the auxiliary shock ~"2;t. All normality

tests are carried out at the 5% nominal signi�cance level. Let �̂
�
T := (�̂

�0
T ; �̂

�0
2;T )

0

be the MBB-CMD estimator that captures the strength of instruments, dis-
cussed at the end of Section 4. Considering samples of length T = 250 and
T = 1; 000 and setting the tuning parameter N to N = [T 1=2], we apply
Doornik and Hansen�s (2008) multivariate test of normality (henceforth DH)
on the sequence f�̂�2;T :1; :::; �̂

�
2;T :Ng and Lilliefors�(1967) version of univariate

Kolmogorov-Smirnov (KS) tests of normality on the single elements of the
vectors in the sequence f�̂�T :1; �̂

�
T :2; :::; �̂

�
T :Ng.

Results in the upper panel of Table 1 refer to a �strong proxy� scenario
where the correlation between the proxy and the instrumented auxiliary struc-
tural shock is equal to 59% and does not change with the sample size. The
rejection frequencies not in parentheses refer to data simulated from i.i.d. VAR
innovations (implied by assuming i.i.d. Gaussian structural shocks), while the
rejection frequencies in parentheses refer to data simulated form GARCH-type
VAR innovations (implied by assuming GARCH-type structural shocks). In
both cases the test controls nominal size satisfactory well. The lower panel of
Table 1 refers to a �weak proxy�scenario, where the proxy used to instrument
the auxiliary shock satis�es a local-to-zero embedding: the correlation between
the proxy and the target shocks is equal to 5% in samples of length T = 250
and collapses to 2% in samples of length T = 1000. Results show that in both
the i.i.d. and GARCH case, the test detects the weak proxy rather well and,
importantly, the power of the test increases with the sample size. Finally, the
middle panel of Table 1 refers to a �moderately weak proxy�scenario, where
we still have a local-to-zero embedding such that the correlation between the
proxy and the instrumented auxiliary shock is set to 25% in samples of length
T = 250 and collapses to 13% in samples of length T = 1000. In this data
generating process, the tests behaves reasonably well: in samples of length
T = 250 it detects the weak proxy case the 20% of cases (results are robust to
GARCH-type components) but, importantly, as the sample size increases also
the capacity of the test of correctly rejecting the null of strong proxy increases
with a rejection frequency in the range 64%-80%.11

11Further Monte Carlo results on the properties of this bootstrap-based test may be found
in Angelini, Cavaliere and Fanelli (2020). Results show that with the choice N = [T 1=2], the
test displays empirically reasonable rejection rates in �nite samples also in the presence of
zero-censored proxies and multiple target shocks.
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5.2 Post-test inference on the IRFs

As is also known from the literature on IV regressions (and regardless of
whether the null hypothesis of the test is that of weak or strong proxy), caution
is needed against choosing among instruments on the basis of their �rst-stage
signi�cance, since screening worsens small sample bias, see Zivot, Startz and
Nelson (1998), Hausman, Stock and Yogo (2005) and Andrews, Stock and Sun
(2019). Hence, one important way to assess the overall performance of our
novel bootstrap-based test for instrument relevance is to examine, in addition
to the rejection frequencies in Table 1, the reliability of post-test inferences
conditional on the test failing to reject the null of strong proxies. In this sec-
tion we establish that the asymptotic results stated in Proposition 2 remain
valid also after pre-testing the strength of the proxies by the novel bootstrap-
based test. We focus in particular on the post-test coverage of IRFs obtained
by the indirect-MD approach.

In the following, �T denotes any statistic computed from the proxy-SVAR
estimated on the original sample. For example, for h = �h, �T might cor-
respond to the quantity �T := T 1=2

�

̂i;j;(

�h)� 
i;j;0(�h)
�
=V̂

1=2

i;j , with 
̂i;j;(

�h)

de�ned as in (18), 
i;j;0(�h) being a true null value of the IRF and V̂
i;j a
consistent estimator of V
i;j . More in general, �T might correspond to a Wald-
type statistic for restrictions on the parameters in A1 (or in B1). Instead, with
��T;N := �(�̂

�
T :1; :::; �̂

�
T :N ) we denote any statistic that depends on a sequence of

N bootstrap replications of the MBB-CMD estimator �̂
�
T . For example, �

�
T;N

might coincide with the DH multivariate test statistic applied to the sequence
of MBB realizations f�̂�T :1; �̂

�
T :2; :::; �̂

�
T :Ng, see Section 5.1. Notice that ��T;N

depends on the original data through the (conditional) distribution function
zT (�) only.

The following proposition establishes that the statistics �T and �
�
T;N are

independent asymptotically (T;N !1). We implicitly assume that the data
and the auxiliary variates used to generate the bootstrap data are de�ned
jointly on a possibly extended probability space.

Proposition 5 (Asymptotic independence) Let �T and �
�
T;N := �(�̂

�
T :1; :::; �̂

�
T :N )

be statistics de�ned as above. For any x; c 2 R and T;N !1, it holds that

P (f�T � xg \
�
��T;N � c

	
)� P (�T � x)P (��T;N � c) �! 0: (25)

To illustrate one important implication of Proposition 5, we turn on the
data generating process already discussed in Section 5.1 to investigate the �nite
sample rejection frequency of the novel test of instrument relevance. Figure 1
plots, in samples of T = 250 observations and for h = 0; 1; :::; 12 periods, the

20



actual empirical coverage probabilities of 90%-con�dence intervals constructed
for the response the variable Y3;t+h to the target shock "1;t. Actual empirical
coverage probabilities are calculated considering 20,000 simulations. The black
dotted line (which in the graph is almost totally covered by the blue pale dotted
line, see below) refers to the coverages obtained by the indirect-MD approach
based on the structural equation A01ut = a11u1;t + a12u2;t + a13u3;t = "1;t, the
instrumentation of the auxiliary shock ~"2;t � "3;t with a strong proxy vt and the
imposition of the restriction a12 = 0 (true in the data generating process); the
setup is formally similar to the �Strong proxy�case in the upper panel of Table
1. The graph shows that, unconditionally, the �nite sample coverage of IRFs,
denoted P (coverMD(h)), h = 0; 1; :::12, is satisfactory. The blue pale dotted
line refers, instead, to the conditional probabilities P (coverMD(h) j DH � cv),
h = 0; 1; :::12, i.e. the actual empirical coverage probabilities conditional on
the DH multivariate normality test (��T;N � DH), computed on N = [T 1=2]

bootstrap realization of the MBB-CMD estimator, failing to reject the null
of strong proxies. Figure 1 shows that, in line with the theoretical result in
Proposition 5, the unconditional and conditional empirical coverage probabil-
ities tend to coincide.

To further appreciate the importance of this result, we estimate the re-
sponses of Y3;t+h to the target shock by instrumenting "1;t directly with a
weak proxy zt; the setup corresponds formally to the �weak proxy� scenario
in the lower panel of Table 1. In this case, we proceed as follows. Build-
ing weak-identi�cation-robust (Anderson-Rubin) con�dence intervals along the
lines suggested by Montiel Olea et al. (2021), we obtain the actual empirical
coverage probabilities, P (coverA&R(h)), h = 0; 1; :::12, corresponding to the
blue dotted line in Figure 1. Instead, if we estimate the proxy-SVAR pre-
tending that zt is a strong instrument for "1;t; we obtain �plug-in�con�dence
intervals whose actual coverage probabilities, denoted P (coverWplug�in(h)), h =
0; 1; :::12, correspond to the red dotted line in Figure 1. As expected, uncondi-
tionally, the coverage is poor. If in this weak instrument scenario we pre-test
the strength of the proxy by the �rst-stage F-test and consider the actual cov-
erage probabilities conditional on the �rst-stage F-test rejecting the null of
weak proxies, i.e. the probabilities P (coverWplug�in(h) j F > cv), h = 0; 1; :::12,
the results are given by the green dotted line in Figure 1. Thus, it is seen that
screening on the �rst-stage F-test worsens coverage. However, the gap between
unconditional and conditional coverage probabilities becomes less dramatic in
this scenario if con�dence intervals are built conditional on our bootstrap test
of instrument relevance failing to reject the null of strong proxies, i.e. the
quantities P (coverWplug�in(h) j DH � cv), h = 0; 1; :::12; that correspond to
the yellow dotted line in Figure 1.
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The main take-away of Figure 1 is as follows. In the presence of weak
proxies for the target shocks, practitioners can rely on weak instrument-robust
methods. However, if there exist strong proxies for the auxiliary shocks, the
inference on the dynamic causal e¤ects produced by the target shocks can be
improved by the indirect-MD approach. Importantly, the use of our novel
bootstrap pre-test of instrument relevance allows us to screen strong versus
weak proxies without a¤ecting the coverage of post-test con�dence intervals.

6 Empirical illustrations

We show the usefulness of the indirect-MD approach by turning on some em-
pirical illustrations already considered in the literature. Section 6.1 starts
from Kilian�s (2009) SVAR for the identi�cation of an oil supply shock (k = 1)
and compares Montiel Olea, Stock and Watson�s weak-identi�cation-robust
approach with the indirect-MD approach; Section 6.2 discusses the joint iden-
ti�cation of �nancial and macroeconomic uncertainty shocks (k = 2) using
Ludvigson, Ma and Ng�s (2019) reduced form VAR as statistical platform. A
third empirical illustration based on a �scal proxy-SVAR and the identi�cation
of the tax and �scal spending shocks can be found in the SM.

6.1 Oil supply shock

Direct approach, specification. Kilian (2009) considers a three-equation
(n = 3) SVAR for Yt := (prodt; reat; rpot)0, where prodt is the percent change
in global crude oil production, reat is a global real economic activity index of
dry goods shipments and rpot the real oil price. Using monthly data for the
period 1973:M1-2007:M12 and a Choleski decomposition (based on the above
ordering of the variables), he identi�es three structural shocks: the oil supply
shock, "St , an aggregate demand shock, "

AD
t , and an oil-speci�c demand shock,

" OSDt , respectively. Montiel Olea et al. (2021) focus on the identi�cation of the
oil supply shock alone using the same reduced form VAR as Kilian (2009) and
Kilian�s (2008) measure of �exogenous oil supply shock�as external instrument
for "St , henceforth denoted zt:

In our notation, "1;t = "St (k = 1) is the target structural shock, zt is
Kilian�s (2008) proxy for "1;t and "2;t = (" ADt ; " OSDt )0 (n � k = 2) are the
auxiliary shocks of the system. The counterpart of the B-form in (2) is given
by the system 0@ uprodt

ureat
urpot

1A =

0@ �11
�21
�31

1A "St +B2"2;t
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where ut := (u
prod
t ; ureat ; urpot )0 are the VAR innovations and the coe¢ cients in

B1 � (�11; �21; �31)0 captures the instantaneous impact of the oil supply shock
on the variables. The link between Kilian�s (2008) proxy and the oil supply
shock, i.e. the counterpart of (4) is given by the equation

zt = �"
S
t + !z;t

where � is the relevance parameter and !z;t is an i.i.d. measurement error.
Since k = 1, no additional restriction other the unit e¤ect normalization �11 =
1 and the proxy zt is needed on the parameters �21, �31 and � to build weak-
identi�cation-robust con�dence intervals:

Direct approach, proxy relevance and IRFs. The instrument zt
is available on the period 1973:M1-2004:M9 and, following Montiel Olea et
al. (2021), we use the common sample period 1973:M1-2004:M9 (T = 381

monthly observations) for estimation. Montiel Olea et al. (2021) report a
robust �rst-stage statistic for the proxy zt equal to 9.4. We complement their
analysis with our bootstrap pre-test for proxy relevance. To do so, we �x the
tuning parameter N = [T ]1=2 = 19, and apply DH multivariate normality test
on the sequence of bootstrap (MBB) replications f#̂�T :1; #̂

�
T :2; :::; #̂

�
T :Ng, where

the bootstrap estimator #̂
�
T is obtained from the proxy-SVAR as follows. First,

we consider the choice #̂
�
T � �̂

�
T = (�̂

�0
1;T ; �̂

�
T )
0, where �̂

�
T = (�̂

�0
1;T ; �̂

�
T )
0 is the

MBB-CMD estimator discussed in Section 4.12 The DH multivariate normality
test delivers in this case a p-value of 0.04. Second, we consider the choice
#̂
�
T � �̂

�
1;T and in this case the DH multivariate normality test has a p-value of

0.004.13 Overall, the bootstrap test rejects the hypothesis that Kilian�s (2008)
proxy zt is strong for the oil supply shock and this evidence supports Montiel
Olea, Stock and Watson�s (2020) weak-identi�cation-robust approach in this
framework.

The blue lines plotted in Figure 2 are the estimated impulse response co-
e¢ cients obtained using Kilian�s (2008) proxy zt. More precisely, the graph
quanti�es the responses of the variables in Yt := (prodt; rpot; reat)

0 to an oil
supply shock that increases oil production of 1% on-impact (note that the re-
sponses plotted for prodt are cumulative percent changes). The blue shaded

12Since in this case we are testing the strength of a proxy which is used to directly in-
strument the target shock, the test mimics the analysis developed in Section 4 with a the
key di¤erence: the MBB-CMD estimator in (20) is computed from the moment conditions
�z;u = �B

0
1, 
z = �B

0
1(BB

0)�1B1�
0 = ��0 which re�ect the strength of zt for the oil supply

shock.
13Univariate normality tests computed on the single elements of #̂

�
T � �̂

�
T = (�̂

�0
1;T ; �̂

�
T )

0 and

#̂
�
T � �̂

�0
1;T , not reported to save space, con�rm the outcome of the multivariate normality

tests.
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area are the associated 68% (panel A) and 95% (panel B) Anderson-Rubin
weak-identi�cation-robust con�dence intervals and coincide with the IRFs plot-
ted in panels A and B of Figure 1 in Montiel Olea et al. (2021) (see in particular
their �SVAR-IV�and �CSAR�). Next we compare these responses with the ones
obtained by identifying the oil supply shock by the indirect-MD strategy.

Indirect-MD approach, specification. The A-form of this proxy-
SVAR, i.e. the counterpart of system (8), is given by the equation:

�11u
prod
t + (�12 , �13)

�
ureat
urpot

�
= "St (26)

where A011 � �11 and A012 � (�12 , �13), and �11, �12 and �13 are the structural
parameters (a = 3). Equation (26) provides a moment condition of the form
(12), i.e. A01�uA1 = 1 . Moreover, if as in Assumption 4 there exist s =
n � k = 2 proxies vt for the auxiliary shocks "2;t = (" ADt ; " OSDt )0, we have
two additional moment conditions of the form (13), i.e. A01�u;v = 01�2, where
�u;v := E(utv

0
t). Overall, we have three moment conditions (m = 3) that can

be used to estimate the three structural parameters in A01 = (A011; A
0
12) �

(�11; �12; �13) (a = 3) by the method discussed in Section 4.
Following Kilian (2009) and Montiel Olea, Stock and Watson�s (2020),

Assumption 1 is considered valid; Assumption 2 is investigated by a set of
residuals diagnostic test on the estimated VAR (based on l = 24 lags) which
suggest that the residuals are conditionally heteroskedastic but uncorrelated.14

Assumption 3 is maintained. The strength of the proxies used for the auxiliary
shocks under Assumption 4 is discussed next.

Indirect-MD approach, selection of proxies and strength. We
employ the following proxies for the two auxiliary shocks: vt := (vRVt ; vBrt )0,
where vRVt is the log di¤erence of the World Steal Index (WSI) introduced
by Ravazzolo and Vespignani (2021) and is used as a proxy for the aggregate
demand shock " ADt , and vBrt is the log di¤erence of Brent Oil Futures and is
used as a proxy for the oil-speci�c demand shock " OSDt . In this case the, vRVt
is available on the sample 1990:M2-2004:M9 and, for comparative purposes
and in line with the previous analysis, we re-estimate the proxy-SVAR on the
common sample period 1990:M2-2004:M9 (which implies T = 176 monthly
observations).

We pre-test the strength of the chosen proxies vt := (vRVt ; vBrt )0 by our
bootstrap-based test. Again, we apply DH multivariate normality test to the
sequence of bootstrap replications f#̂�T :1; #̂

�
T :2; :::; #̂

�
T :Ng, where N = [T ]1=2 =

13 and the estimator #̂
�
T is selected as follows. Let �̂

�
T = (�̂

�0
2;T ; �̂

�
T )
0 be the

14Results are available upon request.
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MBB-CMD estimator discussed in Section 5.1: �rst, we consider the choice
#̂
�
T � �̂

�
T , obtaining a p-value of the DH multivariate normality test of 0.67; sec-

ond, we take #̂
�
T � �̂

�0
2;T , obtaining a p-value of DH multivariate normality test

of 0.73. Thus, the bootstrap test supports the null hypothesis that the proxies
vt := (v

RV
t ; vBrt )0 are strong for the structural shocks "2;t = (" ADt ; " OSDt )0.

Indirect-MD approach, IRFs.The impulse responses estimated by the
indirect-MD approach are given by the red lines plotted in Figure 2 and are
surrounded by red shaded areas corresponding to 68%-MBB (panel A) and
95%-MBB (panel B) pointwise con�dence intervals (Hall�s percentile method).
It is worth remarking that these bootstrap con�dence intervals are �condi-
tional�on the bootstrap pre-test of instrument relevance failing to reject the
hypothesis of strong proxies.

We notice two main facts. First, the �conditional�MBB (pointwise) con-
�dence intervals obtained by the indirect-MD approach using strong proxies
for the auxiliary shocks are more informative than the Anderson-Rubin weak-
identi�cation-robust (pointwise) con�dence intervals obtained by instrument-
ing the oil supply shock directly. The di¤erences in the uncertainty surrounding
point estimates in the two approaches become marked when considering 95%
con�dence intervals, see panel B. Second, our empirical results line up with
Kilian�s (2009) main �ndings. In Kilian�s (2009) Choleski-SVAR, real economic
activity and the real price of oil respond scantly, temporarily and not signi�-
cantly to the oil supply shock, a result also evident from the IRFs estimated by
the indirect-MD method. Actually, Kilian�s (2009) recursive SVAR implies the
restrictions A012 � (�12 , �13) = (0; 0) in the structural equation (26), which
can be tested by standard methods under the conditions of Proposition 2. A
standard Wald-type test for these restrictions delivers a bootstrap p-value of
0.68 which con�rms that the estimated structural equation in (26) is consistent
with the �rst equation of Kilian�s (2009) recursive SVAR.

6.2 Financial and macroeconomic uncertainty shocks

In this second empirical illustration we emphasize the merit of the indirect-
MD approach in situations in which �nding valid multiple proxies for multiple
target shocks can be problematic. The objective is to track the dynamic causal
e¤ects produced by �nancial and macroeconomic uncertainty shocks (k = 2) on
real economic activity. As in Ludvigson, Ma and Ng (2019), we consider a small
VAR system including n = 3 variables: Yt := (UF;t; UM;t; at)

0, where UF;t is an
index of �nancial uncertainty, UM;t is the index of macroeconomic uncertainty
and at is a measure of real economic activity, say the growth rate of industrial
production. Ludvigson et al. (2019) argue that the joint use of macroeconomic
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and �nancial uncertainty is crucial to disentangle the contributions of two
distinct sources of uncertainty and study their pass-through to the business
cycle. In this framework, n � k = 1 < k: The two uncertainty indexes are
discussed in Ludvigson et al. (2019). We use the same data as in Ludvigson
et al. (2019) and Angelini et al. (2019).15

Reduced form. We focus on the period 2008:M1-2015:M4 that we term
the �Great Recession + Slow Recovery�period, based on T = 88monthly obser-
vations. The choice of focusing on the period after the Global Financial Crisis
is motivated by the empirical results in Angelini et al. (2019), who identify
three main (distinct) volatility regimes on a sample of monthly observations
covering the period 1960-2015, the latter of which corresponds to our sample.

The reduced form VAR model for Yt := (UF;t; UM;t; at)
0 includes a con-

stant and l = 4 lags. The speci�cation is similar to that in Angelini and
Fanelli (2019) who do not detect neither serial correlation nor conditionally
heteroskedasticity in the VAR residuals on the period 2008:M1-2015:M4.

Direct approach, caveats. The target structural shocks are in "1;t :=
("F;t; "M;t)

0 (k = 2), where "F;t denotes the �nancial uncertainty shock and
"M;t the macroeconomic uncertainty shock. The auxiliary shock of the system
is the �non-uncertainty shock�"a;t (n � k = 1) associated with real economic
activity. The B-form of the model (the counterpart of (2)) is given by the
system: 0@ uF;t

uM;t

ua;t

1A
ut

=

0@ bF;F bF;M
bM;F bM;M

ba;F ba;B

1A
B1

�
"F;t
"M;t

�
"1;t

+

0@ bF;a
bM;a

ba;a

1A
B2

("a;t)
"2;t

where ut:=(uF;t; uM;t; ua;t)
0 is the vector of VAR reduced form innovations.

The notation used for the on-impact coe¢ cients in B1 (and B2) appears ob-
vious. Since k = 2, the (point-)identi�cation of the two uncertainty shocks
requires (at least) two proxies for the two structural shocks plus (at least)
1
2k(k � 1) = 1 additional parametric restriction. We borrow the restriction
bF;M = 0 from Angelini et al. (2019), who exploit two major changes in the
volatility of the system in the period 1960-2015. This restriction, which implies
that �nancial uncertainty does not reacts instantaneously (within the month)
to the macro uncertainty shock, is incorporated in our proxy-SVAR.

In this setup the implementation of the �direct�identi�cation approach rises
the challenge of �nding two valid observable external instruments for the two

15The uncertainty indexes are taken from Sidney Ludvigson�s web page:
https://www.sydneyludvigson.com/data-and-appendixes .
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uncertainty shocks in "1;t := ("F;t; "M;t)
0. Ludvigson et al. (2019) discuss this

issue in the context of a novel identi�cation strategy which combines �external
variable constraints�with inequality constraints. They use a measure of aggre-
gate stock market return as a proxy for the �nancial uncertainty shocks and
the log di¤erence in the real price of gold as a proxy for the macro uncertainty
shocks but, notably, in their framework proxies need not be neither �strong�(in
the sense of De�nition 1(a)), nor exogenous to the non-instrumented structural
shocks. To circumvent the problem of �nding relevant and exogenous prox-
ies for the two uncertainty shocks next we move to the indirect identi�cation
strategy.

Indirect-MD approach: specification. The identi�cation of the un-
certainty shocks "1;t := ("F;t; "M;t)

0 through our indirect identi�cation strategy
requires considering the A-form of the SVAR:�

aF;F aF;M
aM;F aM;M

�
A011

�
uF;t
uM;t

�
u1;t

+

�
aF;a
aM;a

�
A012

(ua;t)
u2;t

=

�
"F;t
"M;t

�
"1;t

(27)

which naturally provides the 1
2k(k + 1) = 3 moment conditions stemming

from A01�uA1 = I2. Since n � k = 1, it is necessary to �nd at least one
external instrument for the real economic activity shock, i.e. a variable vt
(s = n� k = 1) such that

vt = �"a;t + !vt (28)

where ~"2;t � "2;t = "a;t, � is the relevance parameter and !vt is an i.i.d. mea-
surement error orthogonal to all structural shocks of the system. The relation-
ship (28) is the counterpart of equation (10) in Assumption 4, and provides the
two additional moment restrictions A01�u;v = 02�1. The �additional�restriction
necessary for identi�cation is the zero restriction (on B1) bF;M = 0, discussed
above. This restriction can be mapped into the structural coe¢ cients in the

matrix A01 := (A
0
11

... A012) by using the relationship (9) and the adaptation to
the MD estimation method discussed in the SM.

Jointly, the restrictionsA01�uA1 = I2 andA
0
1�u;v = 02�1 providem =3+2=5

independent moment conditions of the type (12)-(13) which can be used to es-

timate the a =5 free structural parameters in the matrix A01 := (A011
... A012).

Next we discuss the choice of the proxy vt for the real economic activity shock.

Indirect-MD approach: choice of the proxy for the auxiliary
shock. To build a proxy vt for the auxiliary shock "a;t, we follow the same
route as in Angelini and Fanelli (2019) who consider the choice of an instru-
ment for the real economic activity shock. Let houset be the log of new pri-
vately owned housing units started on the estimation period 2008:M1-2015:M4
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(source: Fred). We take the �raw�growth rate of new privately owned housing
units started, �houset, and estimate an auxiliary dynamic linear regression
model of the form �houset = E(�houset j Ft�1)+ert, where Ft�1 denotes the
information set available to the econometrician at time t � 1, and ert can be
interpreted as the �innovation component�of the growth growth rate �houset.
The residuals bert, t = 1; :::; T are used as the actual proxy for real economic
activity shock, i.e. vt = bert.

Indirect-MD approach: instrument relevance. To pre-test whether
vt = bert is a strong proxy for the real economic activity shock, we compute
our bootstrap test of instrument relevance. We apply DH multivariate normal-
ity test to the sequence of bootstrap replications f#̂�T :1; #̂

�
T :2; :::; #̂

�
T :Ng, where

#̂
�
T :b � �̂

�
2;T :b; b = 1; :::N , N = [T ]1=2 = 9, �̂

�
2;T is the MBB-CMD estimator of

the instantaneous impact of the real economic activity shock on the variables in
Yt. The p-value of the DH multivariate normality test is 0.38 and strongly sup-
ports the hypothesis that we are using a strong proxy for the �non-uncertainty
shock�"a;t of the system.

Indirect-MD approach: IRFs. Once the model is estimated by the
indirect-MD approach, we recover the IRFs of interest. The red lines in Figure
3 plots the estimated dynamic responses of the growth rate of the industrial
production to the identi�ed �nancial (upper panel) and macroeconomic (lower
panel) uncertainty shocks over an horizon of 40 months. Responses refer to
one-standard deviation uncertainty shocks and are surrounded by 90%-MBB
(pointwise) con�dence intervals (red shaded area; Hall�s percentile method).
Again, the bootstrap con�dence intervals in Figure 1 are �conditional�on the
pre-test of instrument relevance failing to reject the hypothesis of strong prox-
ies. To compare results with a benchmark, Figure 3 plots in blue the responses
(always computed to one-standard deviation shocks) obtained by Angelini et
al. (2019) via changes in volatility, i.e. without the use of external vari-
ables (see their Figure 5). The blue shaded area corresponds to the 90%-i.i.d.
bootstrap con�dence intervals Angelini et al. (2019) compute on the period
2008:M1-2015:M4.16

Two main facts emerge from Figure 3. First, despite the �nding that the
two uncertainty shocks have played a sizable role in curbing economic activ-
ity during the post-Great Recession period is robust to the two identi�cation

16The MBB and iid bootstrap con�dence intervals are comparable in this setup for two
main reasons. First, the MBB is �robust�in the sense that it is consistent also in the presence
of iid VAR innovations, see Jentch and Lunford (2009b). Second, from the reduced form
speci�cation analysis of the estimated model, the VAR innovations are not found to display
forms of weak dependence such as e.g. conditional heteroskedasticity on the sample period
2008:M1-2015:M4.
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methods, it is possible to appreciate sizeable di¤erences in the on-impact ef-
fect of the macroeconomic uncertainty shock on industrial production growth.
Indeed, with the indirect-MD approach the (signi�cant) peak response of the
industrial production growth to the macroeconomic uncertainty shock is on-
impact and is equal to -0.32%, with the changes-in-volatility approach the
(signi�cant) peak response occurs 5 months after the shock and is equal to
-0.15%. The (signi�cant) peak response of real economic activity to the �nan-
cial uncertainty shock occurs 3 months after the shocks and is equal to -0.17%,
a result similar to that obtained via the changes-in-volatility approach. Sec-
ond, based on (pointwise) 90%-bootstrap con�dence intervals, the inference on
the e¤ects of uncertainty shocks appears more precise with the indirect-MD
approach.

7 Conclusions

Structural shocks can be identi�ed by modeling the structural relationships
that characterize the observed variables, the so-called �A-form�in the language
of SVARs. Proxy-SVARs can be also represented in A-form and this suggests
that, under certain conditions, the target structural shocks can be recovered by
instrumenting the auxiliary shocks of the system. We have designed an iden-
ti�cation strategy and a MD estimation approach where the target structural
shocks are recovered by instrumenting the auxiliary shocks. This strategy is
convenient when �nding strong proxies for the auxiliary shocks is easier than
�nding strong proxies for the target structural shocks, or when the imple-
mentation of weak-identi�cation-robust methods requires a large number of
additional restrictions.

The suggested indirect identi�cation strategy has been complemented with
a novel, computationally straightforward, diagnostic test for proxy relevance
based on bootstrap resampling. Pre-testing the strength of the proxies by this
novel test does not a¤ect post-test inferences.

We have shown the empirical usefulness and relative merits of the suggested
approach by re-visiting the estimation of some proxy-SVARs already analyzed
in the literature.
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Rejection frequencies

Strong proxy
T = 250 T = 1000

corr = 59% corr = 59%
θ DH KS DH KS
β2,1

0.05(0.05)
0.05(0.06)

0.05(0.05)
0.05(0.06)

β2,2 0.05(0.06) 0.05(0.05)
β2,3 0.05(0.05) 0.05(0.05)
λ 0.05(0.05) 0.05(0.05)

Moderately weak proxy
T = 250 T = 1000

corr = 25% corr = 13%
θ DH KS DH KS
β2,1

0.22(0.20)
0.21(0.24)

0.80(0.64)
0.36(0.36)

β2,2 0.27(0.30) 0.38(0.39)
β2,3 0.20(0.24) 0.30(0.33)
λ 0.09(0.08) 0.10(0.11)

Weak proxy
T = 250 T = 1000
corr = 5% corr = 2%

θ DH KS DH KS
β2,1

0.72(0.71)
0.80(0.79)

0.98(0.98)
0.93(0.93)

β2,2 0.85(0.85) 0.95(0.96)
β2,3 0.82(0.81) 0.95(0.95)
λ 0.24(0.24) 0.50(0.49)

Table 1: Monte Carlo results (details on the data generating processes may be found
in the SM). Empirical rejection frequencies of the bootstrap test for strong against
weak proxy, based on 20000 simulations and tuning parameter N := [T 1/2]. corr =
corr(υt, ε2,t) is the correlation between the instrument υt and the structural shock ε2,t.
KS is Lilliefors’ (1967) version of Kolgomorov-Smirnov univariate normality test; DH
is Doornik and Hansen’s (2008) multivariate normality test. Numbers in parentheses
refer to GARCH-type VAR innovations (see SM). All tests are computed at the 5%
nominal significance level.
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SUPPLEMENT TO
AN IDENTIFICATION STRATEGY FOR PROXY-SVARS WITH

WEAK PROXIES
By Giovanni Angelini, Giuseppe Cavaliere, Luca Fanelli

September 2021

S.1 Introduction

This supplementary material complements the results of the paper along sev-
eral dimensions. Section S.2 summarizes the notation used for the bootstrap.
Section S.3 presents the auxiliary lemmas necessary to prove the main propo-
sitions of the paper and Section S.4 contains the proofs of all lemmas and
propositions.

Section S.5 revisits the indirect-MD approach discussed in Section 4 of
the paper under the conditions that the additional restrictions necessary for
identi�cation in the multiple target shocks scenario are placed on the matrix
B1 (B-form) rather than on the matrix A1 (A-form). Section S.6 compares
the MD estimation method with the IV approach. Section S.7 sketches the
MBB algorithm frequently mentioned in the paper and used to build our test
of instrument relevance. Section S.8 discusses in detail the data generating
process used to produce the Monte Carlo results discussed in Section 5 of the
paper. Section S.9 focuses on a simple proxy-SVAR speci�cation which shows
that when the exogeneity condition of proxies is violated, the estimator of the
structural parameters is not consistent (i.e. centered on pseudo-true values)
but its asymptotic distribution is still asymptotically Gaussian distributed.
Finally, Section S.10 provides a third empirical illustration other the exam-
ples discussed in the paper and focuses in particular on the identi�cation and
estimation of �scal multipliers from a �scal proxy-SVAR.

S.2 Notation

We use P to denote the probability measure for the data, and use E(�) and
V ar(�) to denote expectations and variance computed under P , respectively.
We use P � to denote the probability measure induced by the bootstrap, i.e.
conditional on the original sample. Expectation and variance computed under
P � are denoted by E�(�) and Var�(�), respectively.

Let, for any & > 0, p�T (&) := P
�(jj�̂�T � �̂T jj > &), where �̂

�
T is the bootstrap

analog of the estimator �̂T , and k�k is the Euclidean norm. With the notation

1



��̂
�
T � �̂T

p�!p 0�, which reads �̂�
�
T � �̂T convergences in P � to 0, in probability�,

we mean that the (stochastic) sequence fp�T (&)g converges in probability to
zero (p�T (&)

p! 0).
Consider a scalar a random variable X, with associated cdfs zX(x) :=

P (X � x); moreover, let the bootstrap sequence fX�
T g, where X�

T has asso-
ciated cdf (conditional on the data) z�X�

T
(x) := P �(X�

T � x). We say that
X�
T �converges in conditional distribution to X, in probability�, denoted by

�X�
T

d�!p X� if z�X�
T
(x)

p! zT (x) for each x at which zX(x) is continuos.
Notice that if zX(�) is continuous, then the latter convergence also implies
that supx2R jz�X�

T
(x)�zX(x)j

p! 0. These de�nitions can be extended to the
multivariate framework in the conventional way.

S.3 Auxiliary lemmas

This section reports the lemmas useful for the developments of the paper. Pre-
liminarily we represent the proxy-SVAR in a form that facilitates the derivation
of the estimator of the reduced form parameters.

Estimator of the reduced form parameters. By coupling the VAR
for Yt in (1) of the paper with the proxies available for the auxiliary shocks vt in
(10) of the paper (Assumption 4), the proxy-SVAR model can be represented
as the �large�, parametrically constrained, VAR system�

In ��(L) 0

0 Is

��
Yt
vt

�
=

�
ut
vt

�
, �� :=

�
�u �u;v
�v;u �v

�
(S.1)

where �(L) := �1L+ ::: +�lL
l. System (S.1) maintains implicitly that the

proxies in vt are already expressed in innovation form, i.e. as uncorrelated
processes. Actually, it may happen that the observed proxy vt is autocorrelated
and generated by a dynamic model of the form: vt = Et�1vt+�v;t, where Et�1vt
may depend on lags of vt and Yt, and �v;t is the unsystematic component in
innovation form. In this case, (S.1) can be generalized to the representation�

In ��(L) 0

Dv;y(L) Is �Dv;v(L)

��
Yt
vt

�
=

�
ut
�v;t

�
, �� :=

�
�u �u;v
�v;u �v

�
(S.2)

where Dv;y(L) and Dv;v(L) are matrix polynomials in the lag operator as-
sumed, without loss of generality, of order not larger than l, and such that the
roots of the characteristic equation det(Is �Dvv(x)) = 0 satisfy the stability
condition jxj > 1. This ensures, given Assumption 1 in the paper, that system
(S.1) remains asymptotically stable. Regardless of whether we consider system

2



(S.1) or (S.2), the innovations �t := (u0t; v
0
t)
0 or �t := (u0t; �

0
v;t)

0 are �-mixing
under Assumptions 2-4.

Irrespective of whether we consider system (S.1) or (S.2), we de�ne the
vector Wt := (Y

0
t ; v

0
t)
0 of dimension (n+ s)� 1 and compact the proxy-SVAR

in the expression

Wt = 	1Wt�1 +	2Wt�2 + :::+	lWt�l + �t (S.3)

where each matrix of autoregressive (slope) parameters 	i, i = 1; :::; l, has
triangular and highly constrained structure. Henceforth, we denote with � 
the vector that collects the autoregressive parameters that enter the matrices
	i, i = 1; :::; l, and with �� the vector that collects the non-repeated elements of
the covariance matrix ��. Jointly, the reduced form parameters of the proxy-
SVAR are in the vector � := (�0 ; �

0
�)
0 which has dimensions q�1. In particular,

q = q + q�, where q = dim(� ) and q� = dim(��). �0 := (�0 ;0; �
0
�;0)

0 is the

true value of � and �̂T := (�̂
0
 ;T ; �̂

0
�;T )

0 is the quasi-maximum likelihood [QML]
estimator of �.1 Further, we consider a MBB analog of the QML estimator
of � := (�0 ; �

0
�)
0, denoted �̂

�
T := (�̂

�0
 ;T ; �̂

�0
�;T )

0. A sequence of N bootstrap

replications of this estimator,
n
�̂
�
T :1; :::�̂

�
T :N�

o
, can be obtained with the MBB

algorithm sketched in Section S.7.
Lemma S1 deals with the asymptotic properties of the non-bootstrap and

bootstrap estimator of the parameters � := (�0 ; �
0
�)
0:

Lemma S.1 Consider the proxy-SVAR model summarized in (S.3). Under
Assumptions 1, 2 and 4 of the paper:
(i)

�̂T � �0
p! 0q�1; (S.4)

T 1=2

 
�̂ ;T � � ;0
�̂�;T � ��;0

!
d! N(0q�1; V�) ; V� :=

�
V V ;�
V 0 ;� V�

�
; (S.5)

(ii) let ` be the block length of the MBB algorithm (Section S.7): under the
additional condition `3=T ! 0:

�̂
�
T � �̂T

p�!p 0q�1 (S.6)

T 1=2V
�1=2
�

 
�̂
�
 ;T � �̂ ;T
�̂
�
�;T � �̂�;T

!
d�!p N(0q�1; Ig): (S.7)

1The QML estimator of � := (�0 ; �
0
�)
0 is computed by maximizing the Gaussian quasi-

likelihood associated with model (S.1) along the lines described e.g. in Section 3 in Boubacar
Mainassara and Francq (2011). Observe, indeed, that the reduced form model in (S.3) reads
as a special case of Boubacar Mainnasara and Francq�s (2011) structural VARMA models.
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Some remarks are in order.

Remark S.3.1 The results in Lemma S1 hold regardless of Assumption 4 in
the paper, i.e. irrespective of whether the proxies are strong or weak. The
asymptotic covariance matrix V� in (S.5) is speci�ed in detail in Brüggemann,
Jentsch and Trenkler (2016). It can be proved it has �sandwich� form V� :=

A�10 B0A
�10
0 , whereA0 := limT!1

�
@2

@�@�0
logLT (�0)

�
, B0 := limT!1Var

�
@
@� logLT (�0)

�
,

and logLT (�0) is the Gaussian log-likelihood associated with the reduced form
model in (S.1), see Theorem 1 in Boubacar Mainnasara and Francq (2011).
A consistent estimator of V� has HAC-type form: V̂ HAC� := Â�1B̂HACÂ�10;
Boubacar Mainnassara and Francq (2011) discuss the computation of Â and
B̂HAC , see in particular their Theorem 3.

Remark S.3.2 When Assumption 2 can be replaced with the stronger i.i.d.
condition for �t, or when �t is a MDS (E(�t j Ft�1) = 0q�1) and is also con-
ditionally homoskedastic (E(�t�

0
t j Ft�1) = ��), one has V ;� = 0q �q� in

(S.5), which implies easily manageable expressions for the asymptotic covari-
ance matrices V and V�; for instance, V� := 2D+q�(�� 
 ��)D+0q� when �t is
a conditionally homoskedastic MDS. The simulation studies in Brüggemann,
Jentsch and Trenkler (2016) show that the MBB is �robust�in the sense that
it performs satisfactorily well in �nite samples also when the true data gener-
ating process for �t = (u

0
t; �

0
�;t)

0 is i.i.d. so that it would be �natural�applying
the residual-based i.i.d. bootstrap. In this respect, the MBB is �robust� to
�-mixing and i.i.d. conditions and as such it represents an ideal method of
inference in proxy-SVARs.

The next lemma derives the asymptotic distribution of the estimator of
the reduced form parameters of the proxy-SVAR, collected in the vector � :=
(vech(
v)

0; vec(�v;u)0)0 where, recall, 
v := �v;u�
�1
u �u;v: The parameters in

� play a crucial role in the development of the CMD estimator discussed in
Section 5 of the paper in order to build our bootstrap test for instrument
relevance.

In what follows, we exploit the functional dependence of � on the m � 1
vector �+ := (vech(�u)

0; vec(�v;u)0)0, where �+ is a �piece�of ��, i.e. �+ :=
M�+��, with M�+ full row rank selection matrix; see the vector � := (�

0
 ; �

0
�)
0

in Lemma S1. We de�ne: � := (!0; $0)0, where ! = vech(
v) is o1 � 1,
o1 =

1
2s(s + 1), and $ := vec(�v;u) is o2 � 1, o2 = ns; hence, � is o � 1,

4



o = o1 + o2. The estimator of � is �̂T := (!̂
0
T ; $̂

0
T )
0 and is obtained from �̂�;T

and Lemma S1. �0 = ��(�
+
0 ) � (!00; $00)0 denotes the true value of �, and �

+
0

the true value of �+: Finally, with N�0 we denote a neighborhood of the true
matrix �0.

Lemma S.2 Consider the proxy-SVAR obtained by combining the SVAR (1)
with the proxies vt for the structural shocks ~"2;t in (10). Under Assumptions
1,2 and 4 of the paper:
(i) �̂T

p! �0, regardless of the strength of the proxies;
(ii) if the proxies vt are strong in the sense of De�nition 1(a) of the paper,
then

T 1=2(�̂T � �0)
d! J�+G�+

where G�+ denotes a N(0; V�+) random variable, V�+ := (M�+V�M
0
�+) with

V� de�ned in (S.5), and J�+ :=
@��+
@�+0 is an o �m Jacobian matrix such that

rank[J�+ ] = o:

(iii) if all proxies in vt are weak in the sense of De�nition 1(b) in the paper,
the component !̂T � !0 of the vector �̂T � �0 is such that

T (!̂T � !0)
d! J (1)G�+ + 1

2(Io1 
G
0
�+)H

(1)
�+
G�+,

where T 1=2J (1)
�+
! J (1), J (1)

�+
is the o1m �m upper block of the Jacobian J�+,

and H(1)
�+

is the o1m �m upper block of the om �m Hessian matrix H�+ :=

@
@�+0 vec

��
@��+
@�+0

�0�
and is di¤erent from zero.

Remark S.3.3 Lemma S2(iii) shows that the asymptotic distribution of T (!̂T�
!0) is a mixture of Gaussian and �2-type random variables. Thus, T 1=2(!̂T �
!0)

p! 0o�1, result that holds also with completely irrelevant proxies. It fol-
lows that T (�̂T � �0) is asymptotically non-Gaussian. Lemma S2 refers to
the case in which all s proxies included in vt are weak. In practice, we might
have subsets of weak and strong proxies in vt. In this case, it is possible to
prove that the asymptotic distribution of �̂T is still not Gaussian; results are
available upon request to the authors.

The next Lemma shows that the asymptotic distribution of T 1=2(�̂T � �0),
where �̂T is the CMD estimator

�̂T := arg min
�2T�

Q̂T (�), Q̂T (�) := (�̂T � f(�))0V̂ �1� (�̂T � f(�)) (S.8)

(see Section 4 of the paper) depends on whether the proxies are strong or weak
in the sense of De�nition 1 in the paper. In what follows, N�0 is a neighborhood
of �0 and P� is the compact (dense) parameter space.
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Lemma S.3 Consider the proxy-SVAR obtained by combining the SVAR (1)
with the proxies vt for the structural shocks ~"2;t in (10). Then consider the
CMD estimator �̂T obtained from the problem (19) in the paper. Let �0 be an
interior point of P�. Then, under Assumptions 1-4:
(i) if the proxies are strong and the rank condition for identi�cation holds

in N�0, then T 1=2(�̂T � �0)
d! N(0; V�), V� :=

�
J 0�V

�1
� J�

��1, where J� is a
Jacobian matrix of full column rank in N�0;
(ii) if the proxies are weak (or completely irrelevant), T 1=2(�̂T � �0) is not
asymptotically Gaussian.

S.4 Proofs of lemmas and propositions

S.4.1 Proof of Lemma S1

(i) The result follow from Theorem 1 in Boubacar Mainnasara and Francq
(2011) by setting the matrices B01, ..., B0q in their VARMA model in equation
(3) equal to zero, and the matrices A00 and B00 equal to the identity matrix;
see also Theorem 2.1 in Brüggemann, Jentsch and Trenkler (2016). (ii) The
result follows from Theorem 4.1 in Brüggemann, Jentsch and Trenkler (2016);
see also Theorem 3.2 in Jentsch and Lunsford (2019b). �

S.4.2 Proof of Lemma S2

(i) � = ��+(�
+) is a smooth function of �+ and therefore of �� (recall that

�+ = M�+��, M�+ being a selection matrix of full row rank). The result
follows from Lemma S1(i) and the Slutsky Theorem.

(ii) Since �+ =M�+��, Lemma S1(i) implies that

T 1=2(�̂+T � �
+
0 )

d! N(0; V�+), V�+ :=M�+V�M
0
�+ (S.9)

where �̂+T :=M�+ �̂�;T , �
+
0 :=M�+��;0 and V�+ is positive de�nite. We consider

the following quadratic expansion of �̂T = ��+(�̂
+
T ) around �

+
0 :

T 1=2 (�̂T � �0) = J�+0 (�
+
0 )T

1=2(�̂+T � �
+
0 ) +

1
2T

1=2RT (��
+
T ) (S.10)

where J�+0 (�
+
0 ) is the o � m Jacobian matrix J�+0 :=

@��+
@�+0 evaluated at �

+
0 ,

and the remainder term RT (��
+
T ) has representation:

RT (��
+
T ) :=

�
Io 
 (�̂+T � �

+
0 )
0�H�+(��

+
T )(�̂

+
T � �

+
0 ),

6



H�+(��
+
T ) :=

@

@�+0
vec

(�
@��+

@�+0

�0����
�+=��+T

)

where H�+(��
+
T ) is the om�m Hessian evaluated at ��+T , an intermediate vec-

tor value between �̂+T and �+0 . By construction, the last o2 components of
T 1=2 (�̂T � �0) coincide with the last element of T 1=2(�̂+T ��

+
0 ) (i.e. T

1=2($̂T �
$0)), hence the structures of the Jacobian J�+0 (�

+
0 ) and of the remainder term

RT (��
+
T ) in (S.10) are given by

J�+0
(�+0 ) :=

0@ J
(1)

�+0

J
(2)

�+0

1A �
 
J
(1;1)

�+0
J
(1;2)

�+0
0 Ins

!
(S.11)

and

RT (��
+
T ) �

�
R1;T (��

+
T )

0

�
o1 � 1
o2 � 1

(S.12)

where
R1;T (��

+
T ) :=

�
Io1 
 (�̂+T � �

+
0 )
0�H(1)

�+
(��+T )(�̂

+
T � �

+
0 ),

and H(1)
�+
(��+T ) :=

@
@�+0 vec

h
J
(1)0
��+T

i
is the o1m�m upper block of H�+(��

+
T ).

To prove the result, we show that in (S.10) J�+0 (�
+
0 ) is constant and has

full row rank, and that the remainder term 1
2T

1=2RT (��
+
T ) is op(1) as �̂

+
T (and

hence ��+T ) converges in probability to �
+
0 :

By using standard matrix derivative rules (Magnus and Neudecker, 1999)
it follows that the blocks J (1;1)

�+0
and J (1;2)

�+0
are given by the expressions

J
(1;1)

�+0
:= �D+s

�
�v;u�

�1
u 
 �v;u��1u

�
Dn ; J

(1;2)

�+0
:= 2D+s (�v;u�

�1
u 
 Is):

(S.13)
Without loss of generality (ordering is not crucial for the arguments that fol-

low), partition the matrix B as B = ( ~B1
... ~B2), where ~B1 collects the columns

of B associated with the n� s non-instrumented auxiliary structural shocks of

the system. Likewise, partition the matrix A = B�1 as A =
�
~A01
~A02

�
, where

~A01 is the block associated with the n � s non-instrumented auxiliary struc-
tural shocks and ~A02 is the block associated with s instrumented structural
shocks; rank[ ~A02] = s under Assumption 3. By imposing the proxy-SVAR re-
strictions �v;u = � ~B02 and �u = BB

0, and using the above partitions one has

�v;u�
�1
u = � ~B02(BB

0)�1 = �(0
... Is)A = � ~A02, so that at the true parameter

7



value the Jacobian in (S.11) is equal to

J�+(�
+
0 ) :=

 
�D+s

�
� ~A02 
 � ~A02

�
Dn 2D+s (� ~A

0
2 
 Is)

0 Ins

!
(S.14)

and it is therefore seen that it is constant and of full column rank if rank[�] = s
in N�0 ; i.e. if the proxies are strong.

To prove that the remainder term 1
2T

1=2RT (��
+
T ) is op(1) as �̂

+
T (and hence

��+T ) converges in probability to �
+
0 , we have to prove that the blockH

(1)
�+
(��+T ) :=

@
@�+0 vec

h
J
(1)0
��+T

i
of the Hessian in (S.12) does not depend on T . It is useful to

note that

H
(1)
�+
(��+T )

0 :=
@

@�+0
vec
h
J
(1)

��+T

i
�

0@ @
@�+0 vec

h
J
(1;1)

��+T

i
@

@�+0 vec
h
J
(1;2)

��+T

i 1A �
 
H
(1)
11 H

(1)
12

H
(1)
21 H

(1)
22

!
(S.15)

and that after applying standard matrix derivative rules, the derivativesH(1)
11 :=

1
@ vech(�u)0

@ vec
h
J
(1;1)

��+T

i
; H

(1)
12 :=

1
@ vec(�v;u)0

@ vec
h
J
(1;1)

��+T

i
,H(1)

21 :=
1

@ vech(�u)0
@ vec

h
J
(1;2)

��+T

i
and H(1)

22 :=
1

@ vec(�v;u)0
@ vec

h
J
(1;2)

��+T

i
are function of �u and �v;u, hence do not

depend on T if the proxies are strong.
The asymptotic normality result follows from (S.10), the result J�+0 (�

+
0 )T

1=2(�̂+0;T�

�+0 )
d! J�+G�+ and the fact that the term 1

2T
1=2RT (��

+
T ) in the expansion

(S.10) is op(1).

(iii) We isolate the block associated with T 1=2 (!̂T � !0) and consider, for
� 6= 0s�s, the expansion (S.10):

T 1=2 (!̂T � !0) =
�
J
(1;1)

�+0

... J (1;2)
�+0

�
T 1=2(�̂+0;T � �

+
0 ) +

1
2T

1=2R1;T (��
+
T ): (S.16)

We show that if the instruments vt are weak for ~"2;t, then for T !1 :

T (!̂T � !0) = T 1=2
�
J
(1;1)

�+0

... J (1;2)
�+0

�
| {z }

=J(1)+o(1)

T 1=2(�̂+0;T � �
+
0 )| {z }

Op(1)

+1
2(Io1 
 T

1=2(�̂+0;T � �
+
0 )
0| {z }

Op(1)

)H
(1)
�+
(��+T )T

1=2(�̂+0;T � �
+
0 )| {z }

Op(1)

(S.17)

with J (1) := T 1=2J (1)
�+
� T 1=2

�
J
(1;1)

�+0

... J (1;2)
�+0

�
and H(1)

�+
(��+T ) 6= 0 and does not

depend on T:

8



We start by proving that in the expansion (S.17), T 1=2
�
J
(1;1)

�+0

... J (1;2)
�+0

�
!

J (1), with J (1) independent of T . From (S.13) and (S.14) we have

T 1=2
�
J
(1;1)

�+0

... J (1;2)
�+0

�
= T 1=2

�
�D+s

�
� ~A02 
 � ~A02

�
Dn

... 2D+s (� ~A
0
2 
 Is)

�

= T 1=2D+s (� ~A
0
2 
 Is)

�
�
�
Is 
 � ~A02

�
Dn
... 2Is2

�
:

If all s instruments in vt are weak in the sense of De�nition 1(b), � := T�1=2C,
where C is s� s constant and di¤erent from the zero. It turns out that:

T 1=2
�
J
(1;1)

�+0

... J (1;2)
�+0

�
:= T 1=2D+s (T

�1=2C ~A02 
 Is)

�
�
�
�
Is 
 T�1=2C ~A02

�
Dn

... 2(Is 
 Is)
�

so that as T !1 :

T 1=2
�
J
(1;1)

�+0

... J (1;2)
�+0

�
! J (1) := D+s (C ~A

0
2 
 Is)

�
0
... 2Is2

�
:

where J (1) does not depends on T :
Next we show that in the expansion (S.17), H(1)

�+
(��+T ) 6= 0 and does not

depend on T: From the inspection of the matrix in (S.15) it follows that while
H
(1)
11 , H

(1)
22 and H

(1)
21 depend on �v;u = � ~B

0
2 = T

�1=2C ~B02 and converge to zero

as T !1, H(1)
22 solely depends on �u, hence H

(1)
22 6= 0.

Finally, if � = 0s�s, i.e. the instruments vt are completely irrelevant
for ~"2;t, then !̂T

p! 0; the �rst term in the expansion (S.17) is zero so that
T !̂T = Op(1) and T 1=2!̂T

p! 0:�

S.4.3 Proof of Lemma S3

The proof is based on three premises.
First, given the distance function � � f(�) = 0 upon which the CMD

estimation problem in (19) is based, standard matrix derivative rules show
that the Jacobian matrix J� :=

@f(�)
@�0

has the following structure:

J� :=

�
2D+s (�
 Is) 0

( ~B2 
 Is) Kns(�
 Is)

��
S� 0

0 S ~B2

�
(S.18)
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where, for s > 1, S� and S ~B2 are selection matrices used to impose the addi-

tional identi�cation restrictions on the parameters ( ~B02
... �0)0 necessary other

than the proxies. It turns out that under strong proxies (De�nition 1(a) of the
paper) J� has full column rank in N�0 , while under weak proxies (De�nition
1(b) of the paper) J� has reduced rank in N�0 .

Second, given the CMD problem in (19), the consistency result �̂T
p! �0 is

obtained under the strong proxies hypothesis by the same arguments used in
the proof of Proposition 2(i) to establish the consistency of the MD estimator
�̂T .

Third, the �rst-order conditions associated with the problem (S.8) are given
by

J 0
�̂T
V̂ �1� (�̂T � f(�̂T )) = 0

where J�̂T is the Jacobian (S.18) evaluated at the CMD estimator. By using

a mean-value expansion of f(�̂T ) around �0, the �rst-order condition become

J 0
�̂T
V̂ �1� (�̂T � �0 � J _�(�̂T � �0)) = 0

where _� is an intermediate vector between �̂T and �0, and �0 = f(�0). By
re-arranging the expression above we obtain the relationshipn

J 0
�̂T
V̂ �1� J _�

o
T 1=2(�̂T � �0) = J 0�̂T V̂

�1
� T 1=2(�̂T � �0) (S.19)

which shows that the asymptotic distribution of T 1=2(�̂T � �0) depends on two
main components: the asymptotic distribution of T 1=2(�̂T � �0), derived in
Lemma S2, and the property of the matrix

n
J 0
�̂T
V̂ �1� J _�

o
for T !1.

(i) Under strong proxies, the consistency result �̂T
p! �0 implies that J�̂T

p!
J�0 and J _�

p! J�0 ; the asymptotic normality result follows from Lemma S2(i)

which guaranties that V̂�
p! V� (positive de�nite) and Lemma S2(ii).

(ii) To prove that under weak proxies (and completely irrelevant proxies)
T 1=2(�̂T � �0) is not asymptotically Gaussian it su¢ ces to consider the expres-
sion in (S.19) and apply Lemma S2(iii).�

S.4.4 Proof of Proposition 1

(i) Under Assumptions 1-2 and 4, �̂+T
p! �+0 by Lemma S1(i), hence, by the

Slutsky Theorem, ĝT (�̂
+
T ; �)

p! g(�+0 ; �). Since V̂�+ is a consistent estimator

of V�+ , for any �� 2 P�, Q̂T (�) := ĝT (�̂
+
T ; �)

0V̂gg(��)�1ĝT (�̂
+
T ; �)

p! Q0(�) :=

g(�+0 ; �)
0V �1gg;0(��)g(�

+
0 ; �), where Vgg;0(��) = G�+(�

+
0 ; ��)V�+G�+(�

+
0 ; ��)

0 is pos-
itive de�nite as the Jacobian matrix G�+(�

+; �) is m�m and nonsingular for

10



any �+. To see that G�+(�
+; �) is nonsingular, by applying standard deriva-

tive rules (Magnus and Neudecker, 1999) one has

G�+(�
+; �) :=

@g(�+; �)

@�+0
m�m

=

 
@vech(A01�uA1�Ik)

@�+0
@vec(A01�u;v)

@�+0

!
=

 
D+k

@vec(A01�uA1�Ik)
@�+0

@vec(A01�u;v)
@�+0

!

=

 
D+k

@vec(A01�uA1�Ik)
vech(�u)0

D+k
@vec(A01�uA1�Ik)

vech(�u;v)0
@vec(A01�u;v)
vech(�u)0

@vec(A01�u;v)
vech(�u)0

!

=

�
D+k (A

0
1 
A01)Dn 0

0 (Is 
A01)

�
(S.20)

so that it is seen that G�+(�
+; �) does not depend on �+ and is invertible

because rank[A01] = k (Assumption 3). Since V �1gg;0(��) is nonsingular, the
condition for Q0(�) to have a unique minimum (of zero) in N�0 is that the
�rst derivative of Q0(�), G�(�+0 ; �)

0V �1gg;0(��)g(�
+
0 ; �), satis�es the condition

rank[G�(�
+; �)0V �1gg;0(��)] = rank[G�(�

+; �)] = a in N�0 : From standard ma-
trix derivative rules:

G�(�
+; �) :=

@g(�+; �)

@�0
m�a

=
@g(�+; �)

@vec(A01)
0 � SA1

=

0@ D+k
@vec(A01�uA1�Ik)

@vec(A01)
0

@vec(A01�u;v)
@vec(A01)

0

1ASA1 = � 2D+k (A
0
1�u 
 Ik)

�v;u 
 Ik

�
SA1

which proves the result.
(ii) The restriction a � m follows straightforwardly from the fact that the

Jacobian matrix G�(�+; �) is m�a and the rank condition. From Proposition
1 in Angelini and Fanelli (2019), for k > 1, the necessary order condition for
identi�cation requires ` � 1

2k(k�1), where ` denotes the number of additional
parametric restrictions other than the instruments. We exploit the relationship
` + a = nk, which establishes that the sum of the restrictions placed on the
matrix A1, `, plus the number of the free (unconstrained) parameters that
enter the matrix A1, a, must equal the total number of elements of the matrix
A1, nk. Since s � n� k, then

a � 1

2
k(k + 1) + ks � 1

2
k(k + 1) + k(n� k) = nk � 1

2
k(k � 1)

so that

` = nk � a � nk �
�
nk � 1

2
k(k � 1)

�
=
1

2
k(k � 1):�

11



S.4.5 Proof of Proposition 2

(i) To prove the consistency we observe that (a) under Assumptions 1-2 and 4
and from Proposition 1, Q0(�) := g(�+0 ; �)

0V �1gg;0(��)g(�
+
0 ; �) is uniquely max-

imized at the point �0 in N�0 ; (b) P� is compact and N�0 � T� � P�; (c)
Q0(�) is continuos; (d) for any ��, Q̂T (�) := ĝT (�̂

+
T ; �)

0V̂gg(��)�1ĝT (�̂
+
T ; �) con-

verges uniformly in probability to Q0(�): To see that (d) holds, recall that
�̂+T

p! �+0 by Lemma S1, ĝT (�̂
+
T ; �)

p! g(�+0 ; �) and V̂gg(��)
p! Vgg;0 by the

Slutzky Theorem. Then, given the Euclidean norm k�k, by the triangle and
Cauchy-Schwartz inequalities:���Q̂T (�)�Q0(�)��� � ���[ĝT (�̂+T ; �)� g(�+0 ; �)]0V̂gg(��)�1[ĝT (�̂+T ; �)� g(�+0 ; �)]���

+
���g(�+0 ; �)0[V̂gg(��)�1 + V̂gg(��)0�1][ĝT (�̂+T ; �)� g(�+0 ; �)]���
+
���g(�+0 ; �)0[V̂gg(��)�1 � V �1gg;0]g(�

+
0 ; �)

0
���

�


ĝT (�̂+T ; �)� g(�+0 ; �)

2 


V̂gg(��)�1




+ 2


g(�+0 ; �)



ĝT (�̂+T ; �)� g(�+0 ; �)




V̂gg(��)�1




+ kg(�0; �)k2



V̂gg(��)�1 � V �1gg;0





so that sup�2P�

���Q̂T (�)�Q0(�)��� � sup�2T� ���Q̂T (�)�Q0(�)��� p! 0. Given (a),

(b), (c), and (d), the consistency result follows from Theorem 2.1 in Newey
and McFadden (1994).

(ii) To prove asymptotic normality we start from the �rst-order conditions
implied by the problem (16) in the paper:

G�(�̂
+
T ; �̂T )

0V̂ �1gg (��)ĝT (�̂
+
T ; �̂T ) = 0a�1: (S.21)

By expanding ĝT (�̂
+
T ; �̂T ) around �0 and solving, yields the expression (valid

in N�0): n
G�(�̂

+
T ; �̂T )

0V̂ �1gg (��)G�(�̂
+
T ; ��)

o
T 1=2(�̂T � �0)

= �G�(�̂+T ; �̂T )
0V̂ �1gg (��)T

1=2ĝT (�̂
+
T ; �0) (S.22)

where �� is a mean value. From the consistency result in (i), as T �!
1, G�(�̂+T ; �̂T )

p! G�(�
+
0 ; �0) and G�(�̂

+
T ; ��)

p! G�(�
+
0 ; �0). Moreover,

G�(�
+
0 ; �0)

0V̂ �1gg (��)G�(�
+
0 ; �0) is nonsingular in N�0 because of Proposition

1. It turns out thatn
G�(�̂

+
T ; �̂T )

0V̂gg(��)
�1G�(�̂

+
T ; ��)

o�1
G�(�̂

+
T ; �̂T )

0V̂ �1gg (��)
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p!
�
G�(�

+
0 ; �0)

0Vgg(��)
�1G�(�

+
0 ; �0)

	�1
G�(�

+
0 ; �0)

0V̂ �1gg (��):

Under Assumptions 1, 2 and 4 and Lemma S1, T 1=2ĝT (�̂
+
T ; �0)

d! N(0m�1; Vgg(��)),
and the conclusion follows from solving (S.22) for T 1=2(�̂T��0) and the Slutzky
theorem. �

S.4.6 Proof of Proposition 3

(i) �̂�T is a smooth function of �̂
+
T
� = M�+ �̂

�
�;T , hence from Lemma S1(ii) we

have �̂�T � �̂T
p�!p 0o�1, so that Q̂�T (�) := (�̂

�
T � f(�))0V̂ �1� (�̂�T � f(�)) satis�es

Q̂�T (�)�Q̂T (�)
p�!p 0, where Q̂T (�) := (�̂T �f(�))V̂ �1� (�̂T �f(�)) is continuous

and for � 2 N�0 and strong proxies is uniquely minimized at �̂T by Lemma
3(i). Moreover, �̂�T � f(�) is such that E�

�
sup�2P� k�̂

�
T � f(�)k

�
< 1, then,

the result �̂
�
T � �̂T

p�!p 0q��1 follows from Theorem 2.6 in Newey and McFadden
(1994) and Assumption 1.

The �rst-order conditions associated with the minimization problem in
equation (20) of the paper are given by

J 0
�̂
�
T
V̂ �1� (�̂�T � f(�̂

�
T )) = 0o�1 (S.23)

where J 0
�̂
�
T

is the Jacobian (S.18) evaluated at the MBB-CMB estimator �̂
�
T .

By a mean-value expansion of f(�̂
�
T ) about �̂T , we obtain

f(�̂
�
T ) = f(�̂T ) + J _�(�̂

�
T � �̂T )

where _� is an intermediate vector value between �̂
�
T and �̂T . Using the above

expansion in (S.23), yields

J 0
�̂
�
T
V̂ �1� (�̂�T � f(�̂T )� J _�(�̂

�
T � �̂T )) = 0o�1;

hence, for f(�̂T ) = �̂T , it holds that:

J 0
�̂
�
T
V̂ �1� (�̂�T � �̂T )� J 0�̂�T V̂

�1
� J _�(�̂

�
T � �̂T ) = 0o�1;

fJ 0
�̂
�
T
V̂ �1� J _�gT

1=2(�̂
�
T � �̂T ) = J 0�̂�T V̂

�1
� T 1=2(�̂�T � �̂T ) (S.24)

which links the asymptotic distribution of T 1=2(�̂
�
T � �̂T ) (conditional on the

data) to the asymptotic distribution of T 1=2(�̂�T � �̂T ) (conditional on the
data), and to the local rank properties of the Jacobian matrix J�. If for
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� 2 N�0 the proxies are strong in the sense of De�nition 1(a) of the paper then,
conditionally on the original data, the asymptotic normality of T 1=2(�̂�T � �̂T )
in (S.24) follows from the asymptotic normality of T 1=2(�̂+T

�� �̂+T ), which is in
turn guaranteed by Lemma S1(ii). Moreover, as �̂

�
T��̂T = o�p(1), in probability,

then, in probability, J
�̂
�
T
� J�̂T = o�p(1), J _� � J�̂T = o�p(1) and, accordingly,

J 0
�̂
�
T

V̂ �1� J _��J 0�̂T V̂
�1
� J�̂T = o

�
p(1), where the q��q� matrix J 0�̂T V̂

�1
� J�̂T is positive

de�nite. This proves the result.

(ii) If for � 2 N�0 the proxies are weak in the sense of De�nition 1(b) of
the paper (or irrelevant), the quantity T 1=2(�̂T � �0) is not asymptotically
Gaussian because of the non-normality of T 1=2(!̂T �!0) established in Lemma
S2(iii). We now show that also T 1=2(!̂�T � !̂T ), the bootstrap counterpart of
T 1=2(!̂T�!0), is not (conditional on the data) asymptotically Gaussian, which
in light of (S.24) su¢ ces to claim that T 1=2(�̂

�
T � �̂T ) is not (conditional on the

data) asymptotic Gaussian. To save space and as in Lemma S2, we consider
the case where all proxies are weak.

Notice that !̂�T = !(�̂
+
T
�), the function !(�) being smooth. From Lemma

S1(ii) �̂+T
�� �̂+T

p�!p 0, in probability, so that also !̂�T � !̂T = o�p(1), in probabil-
ity, regardless of the strength of instruments. Consider (T times) the quadratic
expansion of !̂�T = !(�̂

+
T
�) around �̂+T :

T (!̂�T � !̂T ) = T 1=2J
(1)
�+
(�̂+T )T

1=2(�̂+T
� � �̂+T ) +

T
2R1;T (��

+
T
�) (S.25)

where J (1)
�+
(�̂+T ) :=

@!
@�+0

��
�+=�̂+T

, and the remainder term R1;T (��
+
T
�) has repre-

sentation

TR1;T (��
+
T
�) :=

�
Io1 
 T 1=2(�̂+T

� � �̂+T )
0
�
H(1)(��+T

�)T 1=2(�̂+T
� � �̂+T ),

H(1)(��+T
�) :=

@

@�+0
vec

�
@!

@�+0

�0����
�+=��+T

�

with ��+T
� being an intermediate vector value between �̂+T

� and �̂+T .
We now show that the distribution of T 1=2 (!̂�T � !̂T ), conditionally on

the data, rather than converging in probability, converges in distribution to a
random cumulative distribution function. That is, the (conditional) boot-
strap measure is random in the limit; see Cavaliere and Georgiev (2020).
Randomness essentially arises because of the limit behavior of the Jacobian
T 1=2J

(1)
�+
(�̂+T ): speci�cally, while in the original world it holds that T

1=2J
(1)
�+
(�+0 )!

J (1) (see the proof of Lemma S2(ii)), its analog in the bootstrap world, T 1=2J (1)
�+
(�̂+T ),

does not converges to a constant.
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First, from Lemma S1(ii), T 1=2(�̂+T
���̂+T )

d�!p G��+ � N (0; V�+). Moreover,
by continuity of the second derivative and using the fact that �̂+T = �

+
0 +op (1),

it holds that H(1)(��+T
�)

p�!p H
(1)(�+0 ) and hence

TR1;T (��
+
T
�)

d�!p

�
IM 
G�0�+

�
H
(1)

�+0
G��+

where H(1)

�+0
:=H(1)(�+0 ). Consider now T 1=2J

(1)
�+
(�̂+T ). By an expansion of

vec J
(1)
�+
(�̂+T ) around the true value vec J

(1)
�+
(�+0 ) we obtain

T 1=2 vec J
(1)
�+
(�̂+T ) = T

1=2 vec J
(1)
�+
(�+0 ) +H

(1)

��+
T 1=2(�̂+T � �

+
0 )

where the matrix H(1)

��+
is given in Lemma S2(ii). From �̂+T � �

+
0 = op (1) and

continuity of the Hessian it follows that H(1)

��+
! H

(1)

�+0
. This result, together

with T 1=2(�̂+T
� � �̂+T )

d! N (0; V�+) (Lemma S1(i)) and T
1=2 vec J

(1)
�+
(�+0 ) !

vec J (1) (proof of Lemma S2), implies that

T 1=2 vec J
(1)
�+
(�̂+T )

d! N
�
vec J (1); H

(1)
�+
V�+H

(1)
�+

�
=: vec(GJ(1))

with GJ(1) a Gaussian matrix, implicitly de�ned. Notice that the covariance
matrix H(1)

�+
V�+H

(1)
�+
, albeit being of reduced rank, is not zero. In summary,

T (!̂�T � !̂T ) = T 1=2J
(1)
�+
(�̂+T )| {z }

d!G
J(1)

T 1=2(�̂+T
� � �̂+T )| {z }

d�!pG�
�+

+ 1
2 R1;T (��

+
T
�)| {z }

d�!p

�
Io1
G�0�+

�
H
(1)

�+0

G�
�+

(S.26)

Because the term T 1=2J
(1)
�+
(�̂+T ) does not converge in probability to a constant

but rather (in distribution) to a random variable, the limit distribution of
T (!̂�T � !̂T ) is random in the limit. Speci�cally, the limit can be described
as a mixture of a Gaussian random variable G��+ and the �2-type random�
Io1 
G�0�+

�
H
(1)

�+0
G��+ , where the weight G

�
�+ is a random matrix �xed across

bootstrap repetitions and, precisely, distributed as GJ(1) . Put di¤erently,

T (!̂�T � !̂T )
d�!w GJ(1)G

�
�+ +

1
2(Io1 
G

�0
�+)H

(1)

�+0
G��+

���GJ(1) (S.27)

where �Y �T
d�!w Y jX� denotes weak convergence of the cdf of YT , given the

original data, to the (di¤use) conditional distribution of Y given X, i.e.

P � (Y �T � x)!w P (Y � xjX)
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see Cavaliere and Georgiev (2020). The formal proof of (S.27) can be obtained
from the convergence facts reported in (S.26) following e.g. the proof of Theo-
rem 4.2 in Cavaliere and Georgiev (2020) or Basawa et al. (1991). Speci�cally,
consider �rst the bootstrap statistic

A�T := ATT 1=2(�̂
+
T
� � �̂+T ) +

1
2TRT (��

+
T
�)

where AT is a deterministic matrix sequence satisfying AT ! A. Using the
results above it holds that, conditionally on the original data, and due to
continuity of the cdf of 12(Io1 
G

�0
�+)H

(1)

�+0
G��+ ,

sup
x2Rr

���P � (A�T � x)� P (AG��+ + 1
2(Io1 
G

�0
�+)H

(1)

�+0
G��+ � x)

���!p 0 (S.28)

where the inequality in the previous equation is taken component-wise.
Second, as in Lemma A.2(a) in Cavaliere and Georgiev (2020), see also

Corollary 5.12 of Kallenberg (1997), consider a special probability space where
GJ(1) is de�ned and, for every sample size T , also the original and the bootstrap
data can be rede�ned, maintaining their distribution (we also maintain the no-

tation), such that (jointly) T 1=2J (1)
�+
(�̂+T )!a:s: GJ(1) and T 1=2(�̂

+
T
�� �̂+T )

d�!a:s:

G��+ , rather than in distribution. Then, in this special probability space, from
(S.28) and T 1=2J (1)

�+
(�̂+T )!a:s: GJ(1) , it follows that

T (!̂�T � !̂T )
d�!a:s: GJ(1)G

�
�+ +

1
2

�
Ir 
G�0�+

�
H
(1)

�+0
G��+

���GJ(1)
and, in the original probability space, (S.27) holds. �

S.4.7 Proof of Proposition 4

Given the distance de�ned in equation (23) of the paper, we consider the
decomposition

��T;N (x) = N1=2ÛT (x)
�1=2(z�T;N (x)�z�T (x)) (S.29)

+N1=2ÛT (x)
�1=2(z�T (x)�FN (x)):

For T �xed, the �rst term on the left-hand side of (S.29) converges, as N !1,
to a N (0; 1) regardless of the strength of proxies by the CLT in equation (22)
of the paper (the strength of proxies a¤ects the asymptotic behavior of the
second term in (S.29)).

(i) Under strong proxies, if the term z�T (x) � FN (x) admits a standard
Edgeworth expansion such that z�T (x)�zN (x) = Op

�
T�1=2

�
, the second term

on the right-hand side in (S.29) is of order Op
�
N1=2T�1=2

�
and by Proposition
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3(i) the statistic ��T;N (x) is asymptotically N (0; 1) provided T;N !1 jointly
and NT�1 = o (1) as in equation (24) of the paper.

(ii) Under weak (or irrelevant) proxies, by Proposition 3(ii) z�T (x) does
not converge (in probability) to zN (x), which means that the second term on
the right hand side of (S.29) does not vanishes asymptotically, implying that
��T;N (x) diverges at the rate of N

1=2 as N;T !1. �

S.4.8 Proof of Proposition 5

Let DT denote the original data upon which the proxy-SVAR is estimated,
de�ned on the probability space (Q ;F ; P ). As is standard, the bootstrap
(conditional) cdf F �T (x) := P (�̂

�
T � xjDT ) is a function of the data only. Using

F �T (�), we generate a set of N i.i.d. �bootstrap�random variables as follows.
First, let U�b , b = 1; :::; N , be a sequence of i.i.d. U [0; 1] random variables inde-
pendent on the data (we implicitly extend the original probability space such
that it includes the U�b �s as well). Then, the bootstrap random variables �̂

�
T :b,

b = 1; :::; N that enter the argument of the statistic ��T;N := �(�̂
�
T :1; :::; �̂

�
T :N )

are de�ned as �̂
�
T :b := F

��1
T (U�b ), b = 1; :::; N , where F

��1
T (�) is the generalized

inverse of F �T (�). Thus, we have

��T;N = �(�̂
�
T :1; :::; �̂

�
T :N ) = �(F

��1
T (U�1 ); :::; F

��1
T (U�N ))

with cdf, conditional on DT , given by HT;N (x) = P (�
�
T;N � xjDT ).

We now prove that �T and �
�
T;N are independent asymptotically, in the

sense that for any x; c 2 R, as T;N ! 1, the condition in equation (25) of
the paper, here reported for convenience, holds:

P (f�T � xg \ f��T;N � cg)� P (�T � x)P (��T;N � c)! 0: (S.30)

Observe that (S.30) trivially holds in the presence of weak proxies because
by Proposition 3(ii), ��T;N diverges for N;T ! 1. In the presence of strong
proxies, Proposition 3(i) ensures that as T;N !1, HT;N (x)!p H(x), where
H(x) is a non-random cdf. By the law of iterated expectations (and the fact
that P (X 2 E) = E(IfX2Eg)), we have

P (f�T � xg \ f��T;N � cg) = E(If�T�xg\f��T;N�cg) = E(If�T�xgIf��T;N�cg)

= E
�
E(If�T�xgIf��T;N�cgjDT )

�
= E

�
If�T�xgE(If��T;N�cgjDT )

�
= E

�
If�T�xgHT;N (c)

�
= E

�
If�T�xgH(c)

�
+ E

�
If�T�xg(HT;N (c)�H(c))

�
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= P (�T � x)H(c) + E
�
If�T�xg(HT;N (c)�H(c))

�
:

For the last term, we have��E �If�T�xg(HT;N (c)�H(c))
��� � E

��If�T�xg(HT;N (c)�H(c))
��

� E j(HT;N (c)�H(c))j :

Since we know that under strong proxies HT;N (c)!p H(c), then EjHT;N (c)�
H(c)j ! 0 provided jHT;N (c) � H(c)j is uniformly integrable. But HT;N (c)

and H(c) are cdfs, and hence they are both bounded and uniformly integrable.
Hence, as T;N !1,

P (f�T � xg \ f��T;N � cg)� P (�T � x)H(c) = op (1) :

Therefore,

P (f�T � xg \ f��T;N � cg)� P (�T � x)P (��T;N � c)
= P (f�T � xg \ f��T;N � cg)� P (�T � x)H(c) + P (�T � x)

�
H(c)� P (��T;N � c

�
)

= P (�T � x)
�
H(c)� P (��T;N � c

�
) + op (1) :

Since P (�T � x) 2 [0; 1], we only need to prove that P (��T;N � c)�H(c) van-
ishes asymptotically. But this immediately follows from bootstrap consistency
as

P (��T;N � c)�H(c) = E(If��T;N�cg)�H(c)
= E(EIf��T;N�cgjDT ))�H(c)
= E (HT;N (c)�H(c))! 0

by the uniform integrability of HT;N (c).�

S.5 Indirect-MD approach: identification
restrictions on B1

Section 4 of the paper discusses the case in which in the multiple target shocks
case, k > 1, the additional restrictions necessary for the identi�cation of the
proxy-SVAR are placed on the matrix A01 characterizing the A-form of the
proxy-SVAR. Actually, the speci�cation of the proxy-SVAR might be based
on the B-form in (2)-(5) of the paper and the additional restrictions necessary
to (point-)identify the proxy-SVAR (see Proposition 1 in the paper) might be
provided by the theory on the matrix B1. In this section we discuss how the
indirect-MD estimation problem can be addressed with in these cases.
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The additional restrictions on B1 are represented in the form:

vec(B1) = SB1�1 + sB1 (S.31)

where �1 is the vector of (free) structural parameters that enter the matrix B1
and SB1 and sB1 are the analogs of SA1and sA1 in equation (14) of the paper.
Using (9) in the paper, the moment conditions in (12) and (13) can be mapped
to the expressions:

B01�
�1
u B1 = Ik; (S.32)

B01
u;v = 0k�s (S.33)

where 
u;v := ��1u �u;v is function of the reduced form parameters in �+ :=
(vech(�u)

0; vec(�u;v)0)0. Thus, we can summarize (S.31) and the moment con-
ditions (S.32)-(S.33) by the distance function:

go(!+; �1) :=

�
vech(B01(�1)�

�1
u B1(�1)� Ik)

vec(B01(�1)
u;v)

�
(S.34)

where !+ := (vech(�u)
0; vec(
u;v)0)0. We use the notation B1 := B1(�1) to

indicate that the elements of B1 depend on the structural parameters in �1.
Obviously, go(!+; �1) = 0m�1 at the true parameter values. The estimation
of �1 follows from the MD problem:

�̂1;T := arg min
�12T�1

Q̂oT (�1) , Q̂
o
T (�1) := ĝ

o
T (!̂

+
T ; �1)

0V̂gg(��1)
�1ĝoT (!̂

+
T ; �1)

(S.35)
where ĝoT (!̂

+
T ; �1) is the distance function g

o(!+; �1) with !
+ replaced with

its (consistent) estimator !̂+T := (vech(�̂u)
0; vec(
̂u;v)0)0, T�1� P�1 is the user-

chosen optimization set, P�1 is the parameter space, V̂gg(��1) is given by:

V̂gg(��1) := G!+(!̂
+
T ;
��1)V̂!+G!+(!̂

+
T ;
��1)

0;

where G!+(!
+; �1) is the m�m Jacobian matrix de�ned by G!+(!

+; �1) :=
@go(!+;�1)

@!+
, and ��1 may be some preliminary (ine¢ cient) estimate of �1.

Under Assumptions 1-4, the asymptotic properties of �̂1;T follow from Sec-
tion 4 in the paper. The IRFs of interest are obtained from (3) in the paper.

S.6 Comparison with IV

In this section we compare the MD estimation approach presented in Section
4 of the paper with a natural alternative given by the IV estimation method.

Assume that k > 1 (multiple target shocks) and, for simplicity, that the
matrix A11 in equation (11) of the paper is nonsingular. This condition is
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not implied by Assumption 3 of the paper, hence it is not necessary for the

MD approach to work. With A11 nonsingular, one has A01 = A011(Ik
... � 	),

	 := �(A011)�1A012, so that system (8) can be written as the multivariate
regression model:

u1;t = 	u2;t +
�
A011
��1

"1;t , t = 1; :::; T (S.36)

which can be interpreted, in some applications, as a system of policy reaction
functions; see e.g. Caldara and Kamps (2017) for the �scal framework and
Section S.10 below. For large T , once the VAR innovations u1;t and u2;t have
been replaced with the corresponding residuals û1;t and û2;t, t = 1; :::; T , system
(S.36) can be written in the form

û1;t = 	û2;t + �t , t = 1; :::; T (S.37)

where �t := (A
0
11)

�1 "1;t+op(1) reads as a disturbance term and has covariance
matrix � = (A011)

�1(A11)�1.
Consider now the special case in which there exists proxies vt for all aux-

iliary shocks in "2;t, i.e. s = n � k.2 In this setup, one can estimate the
parameters in the matrix 	 := �(A011)�1A012 by IV, using the proxies vt as in-
struments for the residuals û2;t. This produces the IV estimate 	̂IV and the IV
residuals �̂t := û1;t � 	̂IV û2;t, t = 1; :::; T , respectively. In turn, the IV resid-
uals can be used to estimate the covariance matrix � by �̂IV = 1

T

PT
t=1 �̂t�̂

0
t

. Thus, given the IV estimators 	̂IV and �̂IV , the structural parameters in
A011 and in A

0
12 can be separately recovered from the data only if A011 is upper

(lower) triangle. Indeed, under this condition the Choleski factor of �̂IV is
equal to (Â011)

�1, which amounts to imposing ` = 1
2k(k� 1) additional identi-

�cation restrictions necessary to point-identify the proxy-SVAR; see Mertens
and Ravn (2013).

The MD approach developed in Section 4 is more �exible because the ma-
trix A11 needs not be neither invertible nor triangular. (Point-)identi�cation
is achieved when the rank condition in Proposition 1 of the paper is valid.

S.7 MBB algorithm

In this section we summarize Brüggemann, Jentsch and Trenkler (2016)�s MBB
algorithm frequently cited in the paper. The reference model is the proxy-
SVAR represented as in Section. As in Section S.3, the reference model is

2The IV estimation of system (S.36) becomes more problematic when s < n � k. With
s < n � k; it is necessary to impose at least n � k � s restrictions on the parameters 	 in
system (S.37).
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represented in (S.3) and the reduced form parameters of (S.3) are collected in
the vector � := (� ; ��)0:

Given the VAR system (S.3), we consider the algorithm that follows.

Algorithm (residual-based MBB)

1. Fit the reduced form VAR model in (S.3) to the data W1, ..., WT and,
given the estimates 	̂1,..., 	̂l, compute the innovation residuals �̂t =
Wt�	̂1Wt�1�:::�	̂lWt�l and the covariance matrix �̂� := 1

T

PT
t=1 �̂t�̂

0
t;

2. Choose a block of length ` < T and let B := [T=`] be the number of blocks
such that B` � T . De�ne the M � ` blocks Mi;` := (�̂i+1; :::; �̂i+`),
i = 0; 1; 2; :::; T � `.

3. Let i0; i1, ...,iB�1 be an i.i.d. random sample of the elements of the set
f0; 1; 2; :::; T � `g : Lay blocks Mi0;`;Mi1;`; :::;MiB�1;` end-to-end and
discard the last B`� T values, obtaining the residuals �̂�1; :::; �̂�T ;

4. Center the residuals �̂�1; :::; �̂
�
T according to the rule

e�j`+e := �̂
�
j`+e � E�(�̂�j`+e)

= �̂�j`+e �
1

T � `+ 1

T�X̀
g=0

�̂�e+g

for e = 1; 2; :::` and j = 0; 1; 2; :::;B � 1; such that E�(e�t ) = 0 for t =
1; :::; T ;

5. Generate the bootstrap sample W �
1 ;W

�
2 ; :::;W

�
T recursively by solving, for

t = 1; :::; T; the system

W �
t = 	̂1W

�
t�1 + :::+ 	̂lW

�
t�l + e

�
t (S.38)

with initial condition W �
0 , W

�
�1, ..., W

�
1�p set to the pre-�xed sample

values W0, W�1, ..., W1�p;

6. Use the sample W �
1 ;W

�
2 ; :::;W

�
T generated in the previous step to com-

pute the bootstrap estimators of the reduced form parameters �̂
�
T :=

(�̂
�0
 ;T ; �̂

�0
�;T )

0.

Once �̂
�
T is obtained from the algorithm above, the bootstrap estimators

of the quantities �̂�T := (vech(
̂
�
v)
0; vec(�̂�v;u)

0)0 considered in Section 6 of the

paper follow from �̂
�0
�;T .
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S.8 Data generating process

In this section we summarize the data generating process used for the Monte
Carlo experiments summarized in Table 1 and Figure 1 of the paper.

The data are generated from the following three-equational SVAR with one
lag and no deterministic component:

Yt = �1Yt�1 + ut; t = 1; :::; T

�1 :=

0@ 0:67 �0:12 0:42

0:03 0:43 0:08

0:14 0:02 0:58

1A , �max(�1) = 0:86
ut =

0@ 0:196 0 0:19

0:210 0:16 �0:32
0:017 0 0:09

1A0@ "At � "1;t
"Bt � "12;t
"Ct � ~"2;t

1A

"t :=

0@ "At � "1;t
"Bt � "12;t
"Ct � ~"2;t

1A target shock
non-instrumented auxiliary shock
instrumented auxiliary shock

� iidN(0; I3)

B1 :=

0@ 0:196

0:210

0:017

1A , A01 :=
�
6: 246 0 �13: 185

�
:

Figure 1 of the paper considers the setup in which zt is a weak proxy (in
the sense of De�nition 1(b) in Section 3 of the paper) for the target shock,
while vt is a strong proxy (in the sense of De�nition 1(a) in Section 3 of the
paper) for the auxiliary shock "3;t � ~"2;t. More precisely we have:

zt =
'

T 1=2
"1;t + �z!z;t , !z;t ? "t , ' := 0:5; �z := 0:7

vt = �~"2;t + �v!v;t , !v;t ? "t , � := 0:8; �z := 1:1:

where !z;t and !v;t are i.i.d. measurement errors independent on "t. It turns
out that the correlation between zt and "1;t is equal to 0:58

T 1=2
, while the corre-

lation between vt and ~"2;t is 59%. In terms of the notation used in the paper,
n = 3, k = 1; s = 1 < n� k = 2, a = 2 (recall that one element of A01is set to
zero) and m = 1

2k(k + 1) + ks = 2:

Table 1 of the paper investigates the strength of the proxy vt for ~"2;t by
the bootstrap test considering three possible scenarios. The upper panel refers
to the situation in which the correlation between vt and ~"2;t is 59% Moreover,
the results in Table 1 of the paper are obtained by considering two di¤erent
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hypotheses on the generation of the structural shocks "t. In one case, "t is
generated as an iidN(03�1; I3) process. In the other case, "t is generated
by postulating independent GARCH components for each of its components.
More precisely, as in Jentsch and Lunsford (2019b), in the second scenario we
have the following speci�cation:

"i;t = & i;t"
0
i;t , "

0
i;t � iidN(0; 1); i = 1; 2; 3

&2i;t = %0 + %1"
2
i;t�1 + %2&

2
i;t�1; t = 1; :::; T

with %1 := 0:05, %2 := 0:93 and %0 := (1� %1 � %2).

S.9 Failure of the exogeneity (orthogonality)
condition

The purpose of the present section is to show that the bootstrap test for instru-
ment relevance discussed in Section 5 of the paper solely captures the strength
of the proxies, and not possible violations of the exogeneity condition. More
precisely, we show that non-normality of if the external variables used to iden-
tify the structural shocks of interest are strong but fail to be orthogonal to the
non-instrumented structural shocks, the estimators of parameters of interest in
the proxy-SVAR are not consistent (as expected), but are still asymptotically
Gaussian. This result implies that the bootstrap-based test for instrument
relevance developed in the paper is informative on the strength of the proxies
but not on possible failures of the exogeneity condition.

We consider, without loss of generality, a simple proxy-SVAR based on
one shock-one instrument. This allows to simply the estimation method. The
setup is that of equations (1)-(4) in the paper. In the following, we denote
with "I;t a scalar (k = 1) instrumented structural shock and with "NI;t the
remaining (n � 1) � 1 �non-instrumented� structural shocks of the system;
"t := ("I;t; "

0
NI;t)

0. Imagine that zt is a strong proxy (in the sense of De�nition
1(a) in Section 3 of the paper) for "I;t which nevertheless fails to be orthogonal
to all non-instrumented structural shocks. Thus, assume the data generating
process for zt is given by

zt = �1"I;t + �2"
o
NI;t + !z;t (S.39)

where �1 is the relevance parameter, "
o
NI;t is one structural shock in the vector

"NI;t and �2 is a parameter responsible for the violation of the exogeneity
condition whenever it di¤ers from zero; !z;t is an i.i.d. measurement error
assumed orthogonal to "t := ("I;t; "0NI;t)

0.
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In the following we distinguish between the two cases of exogenous and
non-exogenous proxies.

Exogenous proxies. In the standard proxy-SVAR approach, it is main-
tained that �2 = 0 in (S.39). Then, by combining the proxy with the VAR
innovations ut in (2) one obtains the relationships

E(utz
0
t) = �u;z �

�
�u1;z
�u2;z

�
= �1B1 �

�
B11�1
B21�1

�
1� 1
(n� 1)� 1 :

Under e.g. the �unit e¤ect� normalization B11 = 1 (Montiel Olea, Stock
and Watson, 2020), the moment conditions above simplify to the restrictions
�u1;z = �1 and �u2;z = B21�u1;z, respectively. Thus, B21 = �u2;z=�u1;z =


2=
1, where 
2 = �u2;z � vec(�u2;z), 
1 = �u1;z � vec(�u1;z). Regardless of
the strength of the instrument, the covariance matrix �u;z can be estimated
consistently from the data under fairly general conditions on the VAR and
proxies (Assumptions 1-2 of the paper). Thus, regardless of the strength of
the proxy:


̂T �
�

̂1;T

̂2;T

�
p!
�

0;1

0;2

�
=

�
�1

B21�1

�
and

T 1=2(
̂T � 
0) � T 1=2
�

̂1;T � 
0;1

̂2;T � 
0;2

�
d!
 
�
1
�
2

!
� N(0; V
): (S.40)

Therefore, under the unit e¤ect normalization and the hypothesis of strong
proxy, 
̂1;T

p! �1 6= 0 and

T 1=2(B̂21;T �B21) = T 1=2
�

̂2;T

̂1;T

�

0;2

0;1

�
= T 1=2

�

̂2;T � 
0;2 + 
0;2


̂1;T
�

0;2

0;1

�

=
1


̂1;T
T 1=2

�

̂2;T � 
0;2

�
+ T 1=2


0;2

̂1;T

� T 1=2

0;2

0;1

d! 1

�1
�
2 + op(1)

where �
2 is the multivariate normal implicitly de�ned in (S.40). Using (9) in

the paper and standard arguments (recall that �̂u
p! BB0 regardless of the

strength of the proxies), it follows that also the estimator of the parameters in
A1 will be consistent and asymptotically Gaussian.

Failure of the exogeneity condition. Now consider the case �2 6= 0
in (S.39). The actual proxy-SVAR moment conditions now are:

E(utz
0
t) = �u;z �

�
�u1;z
�u2;z

�
= �1B1 + �2B

o
2 �

�
B11�1
B21�1

�
+

�
Bo2;11�2
Bo2;21�2

�
;
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where Bo2 := (B
o
2;11; B

o0
2;21)

0 denotes the column of the matrix B2 (see (2) in the
paper) associated with the non-instrumented structural shock not orthogonal
to the proxies, "oNI;t. In this case, under the unit e¤ect normalization B11 = 1
we have:


̂T �
�

̂1;T

̂2;T

�
p!
 

+0;1

+0;2

!
=

�
�1 +B

o
2;11�2

B21�1 +B
o
2;21�2

�
;

where 
+0;1 and 

+
0;2 are �pseudo-true�values. Clearly, 


+
0 := (


+
0;1; 


+0
0;2)

0 6= 
0
when �2 6= 0.

The estimator of B21 (given the unit e¤ect normalization B11 = 1) is:

B̂21;T =

̂2;T

̂1;T

p!
B21�1 +B

o
2;21�2

�1 +B
o
2;11�2

=

+0;2


+0;1
= B+21

so that it will be asymptotically biased with the asymptotic bias depending on
the magnitude of the non-exogeneity parameter �2. Again,

T 1=2(B̂21;T �B+21) = T 1=2
 

̂2;T

̂1;T

�

+0;2


+0;1

!
= T 1=2

 

̂2;T � 
+0;2 + 


+
0;2


̂1;T
�

+0;2


+0;1

!

= T 1=2

 

̂2;T � 
+0;2

̂1;T

!
+ T 1=2


+0;2

̂1;T

� T 1=2

+0;2


+0;1

d! 1

(�1 +B
o
2;11�2)

�
2 + op(1)

(S.41)
hence T 1=2(B̂21;T � B+21) is asymptotically biased but Gaussian distributed.
Using (9) in the paper and simple arguments, also the estimator of the para-
meters in A1 will be asymptotically biased and normally distributed.

The result in (S.41) motivates, without loss of generality, the claim at the
end of Section 4 of the paper that if e.g. the proxies in vt are strong for ~"2;t but
fail to be exogenous (orthogonal) to (some of) the structural shocks in "1;t, the
quantity T 1=2(�̂T � �+0 ) is still asymptotic Gaussian, �

+
0 6= �0 being a pseudo-

true value. The result in (S.41) also motivates the claim that the quantity
��T := T 1=2V

�1=2
� (�̂

�
T � �̂T ) remains, conditional on the data, asymptotically

Gaussian also when the exogeneity condition fails. This fact is documented
empirically in Table SM1 which documents the rejection performance of the
test of instrument relevance in samples of T = 250 observations when the
exogeneity condition fails. The underlying data generating process corresponds
to the �Strong proxy�hypothesis already considered in the upper panel of Table
1 (see Section S.8), with the important di¤erence that now the proxy fails to be
exogenous to the non-instrumented shocks. It is seen that rejection frequencies
in Table SM1 (the exogeneity condition fails) match those in Table 1 of the
paper (the exogeneity condition holds).
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S.10 Additional empirical illustration: fiscal
multipliers from a fiscal proxy-SVAR

Fiscal multipliers are key statistics for understanding how �scal policy changes
stimulate (or contract) the economy. There is a large debate in the empirical
literature on the size of �scal multipliers, especially the size and uncertainty
surrounding the tax multiplier, see Ramey (2019). This lack of consensus also
characterizes studies based on �scal proxy-SVARs as shown by the works in
e.g. Mertens and Ravn (2014) and Caldara and Kamps (2017).

Using �scal proxies for the �scal shocks, Mertens and Ravn (2014) un-
cover a large tax multiplier and show that the tax multiplier is larger than
the �scal spending multiplier. Instead, Caldara and Kamps (2017) focus on
the identi�cation of �scal reaction functions and reach the opposite conclusion
using non-�scal proxies for non-�scal shocks and a Bayesian penalty function
approach. In this section, we contribute to this debate by comparing results ob-
tained with our indirect-MD approach which, as in Caldara and Kamps (2017),
requires instrumenting non-�scal shocks, with a direct approach which, as in
Mertens and Ravn (2014), requires instrumenting the �scal shocks directly.

Suppose that the objective of the analysis is to infer the tax and �scal
spending multipliers from a VAR for Yt := (TAXt; Gt; GDPt; RRt)

0 (n = 4),
where TAXt is measure of per capita real tax revenues, Gt per capita real
government spending, GDPt per capita real output and RRt the (ex-post)
real interest rate measured as RRt := Rt � �t, Rt being a short term nominal
interest rate and �t the in�ation rate. The tax and �scal spending multipliers
are de�ned as the response of output (GDP ) following exogenous �scal policy
interventions on taxes and �scal spending, see equation (S.43) below for formal
de�nitions.

Reduced form. We consider quarterly data on the sample 1950:Q1-
2006:Q4 (T = 228 quarterly observations). All variables are taken from Cal-
dara and Kamps (2017), where a more detailed explanation of the dataset can
be found. All series are expressed in logs and are linearly detrended. The
reduced VAR for Yt := (TAXt; Gt; GDPt; RRt)

0 includes p = 4 lags and a con-
stant. Standard residual-based diagnostic tests show that VAR disturbances
are serially uncorrelated but display conditional heteroskedasticity.

Structural shocks. Let "1;t := ("taxt ; "gt )
0 be the vector of target struc-

tural shocks (k = 2), where "taxt denotes the tax shock and "gt the �scal spend-
ing shock. The auxiliary shocks are collected in the vector "2;t := ("yt ; "

mp
t )0

(n � k = 2); "yt is an output shock and "
mp
t can be interpreted as a shock

to the real interest rate, here interpreted likewise a monetary policy shock to
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simplify.
The B-form of the model (the analogue of (2) in the paper) is given by0BB@

utaxt
ugt
uyt
urrt

1CCA
ut

=

0BB@
�tax;tax �tax;g
�g;tax �g;g
�y;tax �y;g
�rr;tax �rr;g

1CCA
B1

�
"taxt
"gt

�
"1;t

+B2

�
"yt
"mpt

�
"2;t

(S.42)

where ut := (utaxt ; ugt ; u
y
t ; u

rr
t )

0 is the vector of VAR innovations and �y;tax and
�y;g are the coe¢ cients that capture the on-impact responses of output to
the tax shock and �scal spending shock, respectively. Since k > 1, we need
` � 1

2k(k � 1) = 1 additional restrictions on the proxy-SVAR parameters for
identi�cation, discussed below.

Fiscal multipliers. Assume for the moment that the proxy-SVAR is
identi�ed. The �scal multipliers can be obtained by properly scaling the re-
sponses of output to the identi�ed �scal shocks. In particular, the dynamic
�scal multipliers are de�ned as the quantities3

Mh;tax :=
�y;tax(h)

�tax;tax
�Scy;tax , Mh;g :=

�y;g(h)

�g;g
�Scy;g ; h = 0; 1; ::: (S.43)

where �y;tax(h) :=
@GDPt+h
@"taxt

is the dynamic response of tax revenues to the tax

shock after h periods, �tax;tax � �tax;tax(0), �y;g(h) :=
@GDPt+h

@"gt
and �g;g �

�g;g(0) are de�ned accordingly, and Scy;tax and Scy;g are scaling factors which
serve to convert the dynamic structural responses into US dollars.

Direct identification strategy, weak-instrument robust method.
The �direct�identi�cation approach hinges on the availability of (at least) two
proxies for the two auxiliary shocks in "1;t := ("taxt ; "gt )

0, other than ` � 1

additional restrictions on the proxy-SVAR parameters. To simplify, we posit
that there exist two proxies for the �scal shocks that we collect in the vector
zt := (z

tax
t ; zgt )

0, and assume that the counterpart of system (4) is given by the
system �

ztaxt
zgt

�
zt

=

�
'tax;tax 0

0 'g;g

�
�

�
"taxt
"gt

�
"1;t

+

�
!taxt
!gt

�
!t

(S.44)

where !t := (!taxt ; !gt )
0 is a vector of measurement errors assumed orthogonal

to the structural shocks "t. In this example, the matrix � in (S.44) has been

3The de�nitions in (S.43) are consistent with Blanchard and Perotti (2002), Mertens and
Ravn (2014) and Caldara and Kamps (2017).

27



speci�ed diagonal to capture the fact that the proxy ztaxt solely instruments
the tax shock (through the relevance parameter 'tax;tax), and the proxy z

g
t

solely instruments the �scal spending shock (through the relevance parameter
'g;g). Notably, the diagonal structure assumed for � in (S.44) provides ` = 2 >
1
2k(k � 1) additional restrictions that would (over-)identify the proxy-SVAR
in the presence of strong proxies but instead would leave it unidenti�ed in the
presence of weak proxies:4

Imagine that we have the suspect that the proxies zt := (ztaxt ; zgt )
0 are weak

for the target shocks "1;t := ("taxt ; "gt )
0 , so that we proceed by implementing

Montiel Olea, Stock and Watson�s (2020) weak-identi�cation robust method.
More precisely, we construct an S-region for the simultaneous response of real
output to the tax and �scal spending shocks. To do so, �rst we assume for
simplicity and without loss of generality that the VAR in (1) has just one
lag so that Ay � �1 = �. Then, we consider the null hypothesis that at
the horizon h, the simultaneous response of real output to the �scal shocks
"1;t := ("

tax
t ; "gt )

0 is equal to


GDP;"1;t(h) =

�
@GDPt+�h
@"taxt

,
@GDPt+�h
@"gt

�
:= �03(�)

hB1 = (a
h
tax;b

h
g ) (S.45)

where �03 := (0; 0; 1; 0) is the selection vector that picks out real output from
the vector Yt := (TAXt; Gt; GDPt; RRt)

0 and ahtax and b
h
g are postulated re-

sponse values. Observe that assuming constant scaling factors Scy;tax and
Scy;g in (S.43), the multipliers Mh;tax and Mh;g can be easily computed from
the postulated responses (ahtax; b

h
g ).

By post-multiplying both sides of (S.45) by �0, one obtains the restrictions
(valid under the null)

�03(�)
h�u;z � (ahtax;bhg )�0 = (0; 0) (S.46)

which can be used to construct an asymptotic valid S-region for ahtax and b
h
g

through test inversion.
Now we show that irrespective of the rank of � in (S.44), by imposing

k2 = 4 restrictions on the block B11 of B1 (recall that B01 := (B011
... B021)),

equation (S.46) can be solved such that � is expressed as function of the
reduced form covariance parameters in �u;z: In particular, using the partition
in (2) in the paper, we rewrite the moment conditions in (5) as (recall that
n = 4) �

�u1;z
�u2;z

�
=

�
B11�

0

B21�
0

�
2� 2
2� 2 (S.47)

4According to De�nition 1(a) of Section 3, if the proxies in zt are strong for "1;t, the matrix
� in (S.44) has full column rank regardless of the sample size. With strong instruments and
� diagonal, the proxy-SVAR is overidenti�ed and testable against the data.

28



where the reduced form covariance matrix �u;z has been decomposed into the
two blocks �u1;z and �u2;z, respectively, with dimensions reported alongside
blocks. To solve the moment conditions (S.47) for �0, we impose k2 = 4

restrictions on B11, namely

B11 =

�
�tax;tax �tax;g
�g;tax �g;g

�
:=

�
1 c0tax;g
0 1

�
(S.48)

where c0tax;g is a postulated response value of tax revenues to the �scal spending
shock. The restrictions in (S.48) amount to the �unit e¤ect�normalizations
(�tax;tax = 1 and �g;g = 1), to the zero contemporaneous response of �scal
spending to the tax shock (�g;tax = 0) and to postulated that the on-impact
response of tax revenues to the �scal spending shock is c0tax;g, where c

0
tax;g can

be possibly zero. Overall, the total number of restrictions placed on (B01
... �0)0

is k2 = 4 + 2 = 6. By solving the equation �u1;z = B11�
0 for �0, yields

�0p =

�
1 c0tax;g
0 1

��1
�u1;z =

�
1 �c0tax;g
0 1

�
(Ik

... 0k�(n�k))�u;z (S.49)

where the notation used for �0, �0p, remarks the fact that the matrix of rel-
evance parameters incorporates the postulated response value �tax;g = c

0
tax;g.

The expression in (S.49) suggests that for c0tax;g given, a plug-in estimator of
�0p is given by

�̂0p =

�
1 �c0tax;g
0 1

�
(Ik

... 0k�(n�k))�̂u;z (S.50)

and therefore is consistent under the conditions of Lemma S1 if all postulated
restrictions are valid.

Let � := (vec(�)0; vec(�u;z)0)0 be the vector containing all reduced form
proxy-SVAR parameters, with �0 being the true value and �̂T the correspond-
ing estimator (see Lemma S1). Regardless of the strength of the proxies, under

Assumptions 1-2, it holds the asymptotic normality result T 1=2(�̂T � �0)
d!

N(0; V�). Thus, by taking the vec of the expression in (S.46), the null hypoth-
esis we can be re-written as

S(�0; a
h
tax;b

h
g ; c

0
tax;g) = vec

n
�03(�)

h�u;z � (ahtax;bhg )�0
o
= 02�1

and, by a simple delta-method argument, this implies the result

T 1=2S(�̂T ; a
h
tax;b

h
g ; c

0
tax;g)

d! N(02�1; VS)

where VS is a covariance matrix that depends on V�. Thus, regardless of the
strength of the proxies, a valid %-level test for the null hypothesis that the
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postulated values (ahtax;b
h
g ; c

0
tax;g) are true rejects whenever

TS(�̂T ; a
h
tax;b

h
g ; c

0
tax;g)

0V̂ �1S S(�̂T ; a
h
tax;b

h
g ; c

0
tax;g) > �

2
2;1�% (S.51)

where V̂S is a consistent estimator of VS and �22;1�% is the (1�%)100% quantile
of the chi-distribution with two degree of freedom. An asymptotically valid
weak-identi�cation robust con�dence set for ahtax, b

h
g and c

0
tax;g with coverage

1� % will contain all postulated values that are not rejected by the Wald-type
test. Con�dence intervals for the tax and �scal spending shocks at the horizon
h can be obtained by the projection method.

We employ the vector of proxies zt := (ztaxt ; zgt )
0, where, as in Mertens and

Ravn (2014), ztaxt is a series of unanticipated tax changes built upon Romer
and Romer�s (2010) narrative records on tax policy decisions, and zgt is narra-
tive measure of expected exogenous changes in military spending constructed
by Ramey (2011). Our bootstrap pre-test for the relevance of zt := (ztaxt ; zgt )

0

rejects the null of strong proxies with a p-value of 0.003. We ignore for the
moment the outcome of the bootstrap test for instrument relevance and pro-
ceed by estimating the dynamic multipliers in (S.43) by CMD pretending that
zt := (z

tax
t ; zgt )

0 is strong for "1;t := ("taxt ; "gt )
0. The impact and peak tax and

�scal spending multipliers are summarized in the left column of Table SM2.5

The estimated peak �scal spending multiplier is 1.52 (at three quarters) with
68%-MBB con�dence interval (-0.73, 3.38), while the estimated peak tax mul-
tiplier is 2.46 (at three quarters) with 68%-MBB con�dence interval (-0.91,
9.76). Table SM2 also reports the estimated elasticity of tax revenues and
�scal spending to output, two crucial parameters related to the size of �scal
multipliers, see Mertens and Ravn (2014) and Caldara and Kamps (2017). The
elasticity of �scal spending to output is close to zero, while the elasticity of tax
revenues to output is almost 3.5, a value comparable to the �ndings in Mertens
and Ravn (2014). Likewise the multipliers, also the elasticity of tax revenues
to output is estimated with a large 68%-MBB con�dence interval. Figure SM1
plots the so-obtained dynamic �scal multipliers over an horizon of hmax =40
quarters, with 68%-MBB con�dence bands. It con�rms that by using stan-
dard methods the �scal multipliers are estimated with great uncertainty, a
somewhat expected result in light of the outcome of the test for instrument
relevance. The test for the over-identi�cation restriction (recall that � is di-
agonal) has p-value 0.27. This result must be interpreted with caution in light
of the detected weakness of the �scal proxies.

We move on by robustifying the inference by Montiel Olea, Stock and
Watson�s (2020) weak-instrument robust approach. Keeping the matrix of rel-

5We normalize the signs of the responses of output consistently with a �scal expansions
induced by exogenous tax cuts and increases in �scal spending.
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evance parameters � diagonal as in (S.44), we impose the four restrictions in
(S.48) and for postulated values of the responses ahtax and b

h
g in (S.45) and

(S.46), we invert the Wald-type test in (S.51) and form an S-region with as-
ymptotic nominal coverage of 68%. Based on economic considerations and the
survey in Ramey (2019), we postulate values for the tax multiplier ranging
from 0 up to 6 and values for the �scal spending multiplier ranging from 0 up
to 3, respectively. Results are summarized in the central column of Table SM2.
We �nd that the projected 68%-identi�cation robust con�dence interval for the
peak �scal spending multiplier is (0, 3) with associated Hodges-Lehmann point-
estimate of 1.06 (after three quarters), while the projected 68%-identi�cation
robust con�dence interval for the peak tax multiplier is (0.37, 6) with associ-
ated Hodges-Lehmann point estimate of 2.55 (after three quarters).6.

Recall that the con�dence sets for the �scal multipliers have been obtained

by imposing a total of six restrictions on the parameters of (B01
... �0)0 (two

restrictions on �, and four on the block B11 of B1). Montiel Olea et al. (2021)
observe that it is yet unclear how to test overidentifying restrictions in these

situations. We notice that the six restrictions on (B01
... �0)0 imply a diagonal

structure for the reduced form covariance matrix �u1;z = B11�
0, a testable

restriction with standard methods (recall indeed that the estimator of �u1;z
is consistent and asymptotically Gaussian regardless of the strength of the
proxies). A Wald-type test for �u1;z diagonal delivers a p-value of 0.34 which
suggests that the highly restricted structure imposed on the proxy-SVAR is
(at least) partially supported by the data.

Indirect identification strategy. The counterpart of the A-form
representation of the proxy-SVAR (the analogue of (8) in the paper) is given
by the two-equations system�

�tax;tax �tax;g
�g;tax �g;g

�
A011

�
utaxt
ugt

�
u1;t

+

�
�tax;y �tax;rr
�g;y �g;rr

�
A012

�
uyt
urrt

�
u2;t

=

�
"taxt
"gt

�
"1;t

:

(S.52)
The crucial assumption here (Assumption 4 in the paper) is that there exists
proxies for the auxiliary shocks in "2;t := ("

y
t ; "

mp
t )0, recall that n� k = 2 and

s � n � k, where s is the dimension of the vector of instruments vt used for
the auxiliary shocks. However, since k > 1, it will be also necessary to impose

restrictions on the parameters in A01 := (A
0
11

... A012) (other than the instruments

6Hodges-Lehmann point estimates are the points in the S-region with higher p-values. We
use this estimator to compare results with those obtained with the indirect-MD approach
discussed next.
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vt) to achieve identi�cation (Propositions 1 and 2 of the paper).
We consider the following vector of instruments for the vt := (vtfpt ; vrrt )

0,
s = (n � k), where as in Caldara and Kamps (2017), vtfpt is Fernald�s (2014)
measure of TFP and is used as proxy for the output shock "yt , and v

rr
t is Romer

and Romer�s (2004) narrative series of monetary policy shocks and is used as
proxy for the shock to the real interest rate, "mpt . Thus, we have in mind a
relationship between proxies and auxiliary shocks of the form 

vtfpt

vrrt

!
vt

= �

�
"yt
"mpt

�
"2;t

+

 
!tfpt
!rrt

!
%t

(S.53)

with !t := (!
tfp
t ; !rrt )

0 measurement error. In this case the moment conditions
in (12)-(13) of the paper provide m = 1

2k(k+1)+ks = 7 independent moment
conditions which can potentially be used to estimate seven parameters � that

enter the matrix A01 := (A
0
11

... A012). Based on Caldara and Kamps (2017), we
postulate that tax revenues do not instantaneously react to �scal spending,
implying �tax;g = 0 in (S.52).

Since the proxy vrrt is available form 1969Q1, we use the common sample
period (1969Q1-2006Q4) for convenience, hence the analysis is based on a
total of T =152 quarterly observations. Empirical results are as follows. The
bootstrap pre-test for the relevance of the proxies vt := (vtfpt ; vrrt )

0 supports
markedly the null of strong proxies with a p-value of 0.88.7 The impact and
peak tax and �scal spending multipliers are summarized in the right column
of Table SM2. The estimated peak �scal spending multiplier is 1.54 (at two
quarters) with 68%-MBB con�dence intervals (0.64, 1.76), and the estimated
peak tax multiplier is 0.96 (at four quarters) with 68%-MBB con�dence interval
(0.18, 1.44). The estimated elasticity of tax revenues to output is 2.06 with
68%-MBB con�dence interval (1.6, 2,5), a point-estimate very close to the 2.08
value calibrated by Blanchard and Perotti (2002) by the �OECD method�.

Figure SM1 plots the dynamic �scal multipliers obtained with the indirect-
MD approach over the horizon of hmax =40 quarters with 68%-MBB con�-
dence bands. The di¤erence with the multipliers estimated with the previous
approach is striking. In her recent review of the theoretical and empirical lit-
erature, Ramey (2019) documents a substantial lack of consensus on the size
and uncertainty surrounding the tax multiplier. Our empirical analysis seems
to suggest that a large portion of the di¤erences can be ascribed to the strength
of the proxies employed in the two approaches.

7Formally, the test is computed as DH multivariate normality test computed on the se-
quence f�̂�2;T :1; :::; �̂

�
2;T :Ng of MBB replications, with N = [T 1=2]=12.
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Rejection frequencies
Strong proxy - no exogeneity
T = 250 T = 1000

corr = 59% (correxog. = 33%) corr = 59% (correxog. = 33%)
θ DH KS DH KS
β2,1

0.05(0.05)
0.05(0.05)

0.05(0.05)
0.05(0.05)

β2,2 0.05(0.05) 0.05(0.05)
β2,3 0.05(0.05) 0.05(0.05)
λ 0.05(0.05) 0.05(0.05)

Table SM1: Monte Carlo results (details on the data generating processes may be
found in the SM). Empirical rejection frequencies of the bootstrap test for strong
against weak proxy, based on 20000 simulations and tuning parameter N := [T 1/2].
corr = corr(υt, ε2,t) is the correlation between the instrument υt and the structural
shock ε2,t, and correxog. = corr(υt, ε1,t) is the correlation between the instrument υt
and the structural shock ε1,t. KS is Lilliefors’ (1967) version of Kolgomorov-Smirnov
univariate normality test; DH is Doornik and Hansen’s (2008) multivariate normality
test. Numbers in parentheses refer to GARCH-type VAR innovations (see SM). All
tests are computed at the 5% nominal significance level.
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Fiscal proxy-SVARs

Multipliers & elasticities

Direct standard Direct A&R Indirect-MD

M0,g = 1.0809
(−0.6359;2.3364)

M0,tr = 1.8394
(−1.0294;7.5788)

M3,g = 1.5214[3]
(−0.7307;3.3828)

M3,tr = 2.4598[3]
(−0.9058;9.7567)

ψtry = 3.4814
(0.0608;4.8160)

M0,g = 0.7440
(0.0000;3.000)

M0,tr = 1.9072
(0.2162;6.000)

M3,g = 1.0639[3]
(0.0000;3.000)

M3,tr = 2.5513[3]
(0.3661;6.000)

M0,tr = 1.4662
(0.9009;1.5594)

M0,tr = 0.6382
(0.0431;0.9313)

M2,g = 1.5365[2]
(0.6411;1.7603)

M4,tr = 0.9553[4]
(0.1800;1.4418)

ψtry = 2.0673
(1.6419;2.4932)

Diagnostic tests

p-value DHθ=B1 = 0.0031 p-value DHθ=B̃2
= 0.8224

Table SM2: Results based on U.S. quarterly data. Multipliers & elasticities: Es-
timated multipliers and elasticities with associated 68%-MBB confidence intervals and
associated lag in brackets. Diagnostic tests: p-values of the diagnostic tests based
on N := [T 1/2] bootstrap replications of the CMD estimator. DHθ=B1 (DHθ=B̃2

) is
Doornik and Hansen’s (2008) multivariate normality test computed with respect to the
vector of all on-impact parameters in B1 (B̃2).
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Figure SM1: Spending and Tax multipliers.
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