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Abstract

Testing for regime switching when the regime switching probabilities are specified either as constants
(‘mixture models’) or are governed by a finite-state Markov chain (‘Markov switching models’) are
long-standing problems that have also attracted recent interest. This paper considers testing for
regime switching when the regime switching probabilities are time-varying and depend on observed
data (‘observation-dependent regime switching’). Specifically, we consider the likelihood ratio test
for observation-dependent regime switching in mixture autoregressive models. The testing problem
is highly nonstandard, involving unidentified nuisance parameters under the null, parameters on
the boundary, singular information matrices, and higher-order approximations of the log-likelihood.
We derive the asymptotic null distribution of the likelihood ratio test statistic in a general mixture
autoregressive setting using high-level conditions that allow for various forms of dependence of
the regime switching probabilities on past observations, and we illustrate the theory using two
particular mixture autoregressive models. The likelihood ratio test has a nonstandard asymptotic
distribution that can easily be simulated, and Monte Carlo studies show the test to have good finite
sample size and power properties.
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1 Introduction

Different regime switching models are in widespread use in economics, finance, and other fields. When
the regime switching probabilities are constants, these models are often referred to as ‘mixture models’,
and when these probabilities depend on past regimes and are governed by a finite-state Markov chain,
the term (time-homogeneous) ‘Markov switching models’ is typically used. In this paper, we are
interested in the case where the regime switching probabilities depend on observed data but not on
past regimes, a case we refer to as ‘observation-dependent regime switching’. Models of this kind can
be viewed as special cases of time-inhomogeneous Markov switching models (in which regime switching
probabilities depend on both past regimes and observed data). Overviews of regime switching models
can be found, for example, in Frühwirth-Schnatter (2006) and Hamilton (2016). Of critical interest in
all these models is whether the use of several regimes is warranted or if a single-regime model would
suffice. Testing for regime switching in all these models is plagued by several irregular features such
as unidentified parameters and parameters on the boundary, and is consequently notoriously difficult.

Tests for Markov switching have been considered by several authors in the econometrics litera-
ture. Hansen (1992) and Garcia (1998) both considered sup-type likelihood ratio (LR) tests in Markov
switching models but they did not present complete solutions. Hansen derived a bound for the dis-
tribution of the LR statistic, leading to a conservative procedure, while Garcia did not treat all the
non-standard features of the problem in detail. Cho and White (2007) analyzed the use of a LR statis-
tic for a mixture model to test for Markov-switching type regime switching. They found their test
based on a mixture model to have power against Markov switching alternatives even though it ignores
the temporal dependence of the Markov chain. Carrasco, Hu, and Ploberger (2014) took a different
approach and proposed an information matrix type test that they showed to be asymptotically optimal
against Markov switching alternatives. Very recently, both Qu and Zhuo (2017) and Kasahara and
Shimotsu (2018) have studied the LR statistic for regime switching in Markov switching models. None
of these papers allow for the regime switching probabilities to depend on the observed data.

Regarding testing for mixture type regime switching, the existing literature is extensive, and several
early references can be found, for instance, in McLachlan and Peel (2000, Sec 6.5.1). Most papers in
this literature consider the case of independent observations without regressors. Notable exceptions
allowing for regressors (but not dependent data) and having set-ups closer to the present paper are
Zhu and Zhang (2004, 2006) and Kasahara and Shimotsu (2015) who consider (among other things)
LR tests for regime switching. Further comparison to these works will be provided in later sections.

In contrast to testing for Markov switching or mixture type regime switching, the literature on
testing for time-inhomogeneous Markov switching and observation-dependent regime switching seems
to be almost nonexistent. To our knowledge, no tests have been obtained for time-inhomogeneous
Markov switching models although these models have attracted some interest (see, e.g., Diebold, Lee,
and Weinbach (1994), Filardo (1994), and Kim, Piger, and Startz (2008)). As to testing for observation-
dependent regime switching, the only two exceptions we are aware of are the unpublished PhD thesis
of Jeffries (1998) and the recent paper of Shen and He (2015). Jeffries’s thesis analyses the LR test in
a specific (first-order) mixture autoregressive model; we will discuss his work further in later sections.
Shen and He (2015) consider the case of independent observations with regressors and observation-
dependent regime switching, and propose an ‘expectation maximization test’ for regime switching.

In this paper we consider testing for observation-dependent regime switching in a time series con-
text. Specifically, we analyze the asymptotic distribution of the LR statistic for testing a linear autore-
gressive model against a two-regime mixture autoregressive model with observation-dependent regime
switching. Following Kasahara and Shimotsu (2015) it would also be possible to consider the more
general testing problem that in a model with more than two regimes the number of regimes can be re-
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duced. However, as even the case of two regimes is quite complex in our set-up, we leave this extension
to future research.

To provide economic motivation, mixture autoregressive models with observation-dependent regime
switching have been applied to economic data for instance in Wong and Li (2001), Lanne and Saikkonen
(2003), Dueker, Sola, and Spagnolo (2007), Bec, Rahbek, and Shephard (2008), Dueker, Psaradakis,
Sola, and Spagnolo (2011), and Kalliovirta, Meitz, and Saikkonen (2015, 2016) in classical likelihood
framework and Villani, Kohn, and Giordani (2009) in Bayesian framework; further discussion of this
previous work will be provided in Section 2. A major motivation for allowing the regime switching
probabilities to depend on observed data stems from the desire to associate changes in regime to
observable economic variables. In the words of Hamilton’s (2016) Handbook of Macroeconomics chapter:

Many economic time series exhibit dramatic breaks associated with events such as economic reces-
sions, financial panics, and currency crises. Such changes in regime may arise from tipping points or
other nonlinear dynamics and are core to some of the most important questions in macroeconomics.

Associating changes in regime to observable economic variables has recently been discussed also by
Chang, Choi, and Park (2017, pp. 127–128) who find it problematic that the regime switching mecha-
nism of the conventional Markov switching model is completely independent of all other parts of the
model and, in particular, of the realizations of the underlying time series. According to these authors,

[Markov switching models] assume that the Markov chain determining regimes is completely inde-
pendent from all other parts of the model, which is extremely unrealistic in many cases. Note that
exogenous regime switching in particular implies that future transitions between states are completely
determined by the current state, and does not rely on the realizations of underlying time series. This
is highly unlikely in many practical applications.

Time-inhomogeneous Markov switching models and their special cases, observation-dependent regime
switching models, respond to this issue. Of these two alternatives the former are rather difficult to
handle both theoretically and empirically. Observation-dependent regime switching models are much
more feasible although rather challenging in our testing problem.

We consider mixture autoregressive (MAR) models in a rather general setting employing high-level
conditions that allow for various forms of observation-dependent regime switching. As specific exam-
ples, we treat the so-called logistic MAR (LMAR) model of Wong and Li (2001) and (a version of
the) Gaussian MAR (GMAR) model of Kalliovirta et al. (2015) in detail. The technical difficulties
we face in analyzing the LR statistic are quite challenging. First, there are nuisance parameters that
are unidentified under the null hypothesis. This is the classical Davies (1977, 1987) type problem.
Second, under the null hypothesis, there are parameters on the boundary of the permissible parameter
space. Such problems (also allowing for unidentified nuisance parameters under the null) are discussed
in Andrews (1999, 2001). Third, the Fisher information matrix is (potentially) singular, preventing
the use of conventional second-order expansions of the log-likelihood function to analyze the LR test
statistic. Such problems are discussed by Rotnitzky, Cox, Bottai, and Robins (2000), and suitable
reparameterizations and higher-order expansions are needed to analyze the LR statistic. A particular
challenge in the present paper is to deal with these three problems simultaneously. Similar problems
were also faced by Kasahara and Shimotsu (2015, 2018) when testing for mixture and Markov switching
type regime switching. Inspired by the work of these authors we consider a suitably reparameterized
model, write a higher-order expansion of the log-likelihood function as a quadratic function of the new
parameters, and then derive the asymptotic distribution of the LR test statistic by slightly extending
and adapting the arguments of Andrews (1999, 2001) and Zhu and Zhang (2006) (who partially gener-
alize results of Andrews). Our two examples demonstrate that, compared to the mixture type regime
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switching considered by Kasahara and Shimotsu (2015), observation-dependent regime switching can
either simplify or complicate the analysis of the LR statistic.

We contribute to the literature in several ways. (1) To the best of our knowledge, apart from the
unpublished PhD thesis of Jeffries (1998), we are the first to study testing for observation-dependent
regime switching using the LR statistic and among the rather few to allow for dependent observations.
(2) We provide a general framework to cover various forms of observation-dependent regime switching,
making our results potentially applicable to several models not explicitly discussed in the present paper.
(3) From a methodological perspective, we slightly extend and adapt certain arguments of Andrews
(1999, 2001) and Zhu and Zhang (2006), which may be of independent interest.

The rest of the paper is organized as follows. Section 2 reviews mixture autoregressive models.
Section 3 analyzes the LR test statistic for testing a linear autoregressive model against a two-regime
mixture autoregressive model. Simulating the asymptotic null distribution, parametric bootstrap, and
a Monte Carlo study are discussed in Section 4, and Section 5 concludes. Appendices A–C contain
technical details and proofs. Supplementary Appendices D–E, available from the authors upon request,
contain further technical details omitted from the paper.

Finally, a few notational conventions are given. All vectors will be treated as column vectors and,
for the sake of uncluttered notation, we shall write x = (x1, . . . , xn) for the (column) vector x where the
components xi may be either scalars or vectors (or both). For any vector or matrix x, the Euclidean
norm is denoted by ‖x‖. We let XTα = opα(1) and XTα = Opα(1) stand for supα∈A ‖XTα‖ = op(1) and
supα∈A ‖XTα‖ = Op(1), respectively, and λmin(·) and λmax(·) for the smallest and largest eigenvalue
of the indicated matrix.

2 Mixture autoregressive models

2.1 General formulation

Let yt (t = 1, 2, . . .) be the real-valued time series of interest, Ft−1 = σ (ys, s < t) denote the σ–algebra
generated by past yt’s, and Pt−1 (·) signify the conditional probability of the indicated event given Ft−1.
In the general two component mixture autoregressive model we consider the yt’s are generated by

yt = st

(
φ̃0 +

p∑
i=1

φ̃iyt−i + σ̃1εt

)
+ (1− st)

(
ϕ̃0 +

p∑
i=1

ϕ̃iyt−i + σ̃2εt

)
, (1)

where the parameters σ̃1 and σ̃2 are positive, and conditions required for the autoregressive parameters
φ̃i and ϕ̃i (i = 1, . . . , p) will be discussed later. Furthermore, εt and st are (unobserved) stochastic
processes which satisfy the following conditions: (a) εt is a sequence of independent standard normal
random variables such that εt is independent of {yt−j , j > 0}, (b) st is a sequence of Bernoulli random
variables such that, for each t, Pt−1(st = 1) = αt with αt a function of yt−1 = (yt−1, . . . , yt−p), and (c)
conditional on Ft−1, st and εt are independent. Extending model (1) to allow for multiple regimes is
straightforward but not needed in the present paper; see Kalliovirta et al. (2015, Sec 2.1).

The conditional probabilities αt and 1−αt (= Pt−1(st = 0)) are referred to as mixing weights. They
can be thought of as (conditional) probabilities that determine which one of the two autoregressive
components of the mixture generates the next observation yt. In condition (b) we assume the mixing
weight αt (and hence also the conditional distribution of yt given its past) to depend on only p lags of
yt; allowing it to depend on more than p lags is easy but would unnecessarily complicate the notation.

We assume that of the original parameters φ̃ = (φ̃0, φ̃1, . . . , φ̃p, σ̃
2
1) and ϕ̃ = (ϕ̃0, ϕ̃1, . . . , ϕ̃p, σ̃

2
2),

q1 parameters are a priori assumed the same in both regimes and the remaining q2 parameters are
potentially different in the two regimes (with q1 + q2 = p+ 2). For instance, one may assume that φ̃0
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and ϕ̃0 are equal, or alternatively that σ̃2
1 and σ̃2

2 are equal. To this end, let β be a q1 × 1 vector of
common parameters, and let φ and ϕ be q2× 1 vectors of (potentially) different parameters. Then, for
some known (p+ 2)–dimensional permutation matrix P , (β, φ) = Pφ̃ and (β, ϕ) = Pϕ̃. For simplicity,
we assume that β and φ are variation-free, requiring the autoregressive coefficients φ̃1, . . . , φ̃p to be
contained in either β or φ (the same variation-freeness is assumed of β and ϕ). If there are no common
coefficients in the two regimes, the parameter β can be dropped and φ = φ̃ and ϕ = ϕ̃.

As for the mixing weight αt, in addition to past yt’s it depends on unknown parameters which may
include components of the parameter vector (β, φ, ϕ) and an additional parameter α (scalar or vector).
When this dependence needs to be emphasized we use the notation αt(α, β, φ, ϕ).

Using equation (1) and the conditions following it, the conditional density function of yt given its
past, f(· | Ft−1), is obtained as

f(yt | Ft−1) = αtft(β, φ) + (1− αt)ft(β, ϕ), (2)

where the notation ft(β, φ) signifies the density function of a (univariate) normal distribution with
mean φ̃0 + φ̃1yt−1 + · · ·+ φ̃pyt−p and variance σ̃2

1 evaluated at yt, that is,

ft(β, φ) =
1

σ̃1
N

(
yt − (φ̃0 + φ̃1yt−1 + · · ·+ φ̃pyt−p)

σ̃1

)
, (3)

with N(u) = (2π̄)−1/2 exp(−u2/2) the density function of a standard normal random variable and
π̄ = 3.14 . . . the number pi. The notation ft(β, ϕ) is defined similarly by using the parameters ϕ̃i
(i = 0, . . . , p) and σ̃2

2 instead of φ̃i (i = 0, . . . , p) and σ̃2
1. Thus, the distribution of yt given its past is

specified as a mixture of two normal densities with time varying mixing weights αt and 1− αt.
To facilitate discussion, denote µ1,t = φ̃0 +

∑p
i=1 φ̃iyt−i, µ2,t = ϕ̃0 +

∑p
i=1 ϕ̃iyt−i, and µt = αtµ1,t+

(1− αt)µ2,t. Now equation (1) can be written as

yt = stµ1,t + (1− st)µ2,t + ut with ut = (stσ̃1 + (1− st)σ̃2)εt, (4)

and the conditional mean and variance of yt are given by (cf. Kalliovirta et al. (2015, p. 249))

E[yt | Ft−1] = µt and V ar[yt | Ft−1] = αtσ̃
2
1 + (1−αt)σ̃2

2 +αt(µ1,t−µt)2 + (1−αt)(µ2,t−µt)2. (5)

The expression of ut in (4) suggests that the normality assumption imposed on εt in (1) is not quite
as restrictive as it may seem at first sight: ut in (4) may be interpreted as an error term and is
a martingale difference sequence with the conditional distribution being a mixture of two normal
distributions. Such mixtures are fairly flexible and can allow for various departures from normality
including skewness, excess kurtosis, and bimodality. One could consider non-normal distributions for
εt but this would significantly alter the derivations of the results that follow. The expressions in (5)
facilitate comparison to smooth transition autoregressive (STAR) models (with two components and
independent and identically distributed errors; see, e.g., van Dijk, Teräsvirta, and Franses (2002)). As
αt is a function of p past yt’s, the conditional mean in (5) has a form similar to that in STAR models; in
contrast, the conditional variance of model (1) can allow for some type of conditional heteroskedasticity
whereas the conditional variance of the standard STAR model is constant.

Different mixture autoregressive models are obtained by different specifications of the mixing
weights (or in our case the single mixing weight αt). In some of the proposed models more than
two mixture components are allowed but for reasons to be discussed below we will not consider these
extensions. If the mixing weights are assumed constant over time the general mixture autoregressive
model introduced above reduces to a (two-component) MAR model studied by Wong and Li (2000).
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In the LMAR model of Wong and Li (2001), a logistic transformation of the two mixing weights is
assumed to be a linear function of past observed variables. Related two-regime mixture models with
time-varying mixing weights have also been considered by Gouriéroux and Robert (2006), Dueker et al.
(2007) and Bec et al. (2008) whereas Lanne and Saikkonen (2003), Villani et al. (2009), and Kalliovirta
et al. (2015) have considered mixture autoregressive models in which multiple regimes are allowed. For
a particular specification of the mixing weights and for a known number of regimes, standard likelihood
based inference, information criteria, and quantile residual based diagnostics can be used for model
selection, in particular for choosing the lag order p; for details, see Kalliovirta et al. (2015, Sec 3).

As discussed in the Introduction, a common and highly irregular problem with the application of
mixture autoregressive models is determining the value of the (usually unknown) number of component
models or regimes. To our knowledge the only solution presented for mixture autoregressive models
is provided for a simple first order case with no intercept terms in the unpublished PhD thesis of
Jeffries (1998). As discussed in the recent papers by Kasahara and Shimotsu (2012, 2015) and the
references therein, some of the difficulties involved stem from properties of the normal distribution,
and they are encountered even when the observations are a random sample from a mixture of (two)
normal distributions. These difficulties also partly explain the complexity of our testing problem and
why we only consider tests for the null hypothesis that a two component mixture autoregressive model
reduces to a conventional linear autoregressive model. Following the ideas in Zhu and Zhang (2006)
and Kasahara and Shimotsu (2012, 2015), we derive a LR test in the general set-up described above
and apply it to two particular cases, the LMAR model of Wong and Li (2001) and the GMAR model
of Kalliovirta et al. (2015). Next, we shall discuss these two models in more detail.

2.2 Two particular examples

LMAR Example. In Wong and Li’s (2001) LMAR model the mixing weight αt is defined as

αLt = αLt (α) =
exp(α0 + α1yt−1 + · · ·+ αmyt−m)

1 + exp(α0 + α1yt−1 + · · ·+ αmyt−m)
,

where the vector α = (α0, α1, . . . , αm) containsm+1 unknown parameters and the orderm (1 ≤ m ≤ p)
is assumed known. Note that for this model, E[yt | Ft−1] agrees with that of the logistic STAR model.

GMAR Example. In the GMAR model of Kalliovirta et al. (2015) the mixing weight is defined as

αGt = αGt (α, φ̃, ϕ̃) =
αnp(yt−1; φ̃)

αnp(yt−1; φ̃) + (1− α)np(yt−1; ϕ̃)
, (6)

where α ∈ (0, 1) is an unknown parameter and np(yt−1; ·) denotes the density function of a particular
p–dimensional (p ≥ 1) normal distribution defined as follows. First, define the auxiliary Gaussian
AR(p) processes (cf. equation (1))

ν1,t = φ̃0 +

p∑
i=1

φ̃iν1,t−i + σ̃1εt and ν2,t = ϕ̃0 +

p∑
i=1

ϕ̃iν2,t−i + σ̃2εt,

where the autoregressive coefficients are assumed to satisfy

φ̃(z) := 1−
p∑
i=1

φ̃iz
i 6= 0 for |z| ≤ 1 and ϕ̃(z) := 1−

p∑
i=1

ϕ̃iz
i 6= 0 for |z| ≤ 1. (7)

This condition implies that the processes ν1,t and ν2,t are stationary and that each of the two component
models in (1) satisfies the usual stationarity condition of the conventional linear AR(p) model. Now
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set νm,t = (νm,t, . . . , νm,t−p+1) and 1p = (1, . . . , 1) (p × 1), and let µm1p and Γm,p signify the mean
vector and covariance matrix of νm,t (m = 1, 2).1 The random vector ν1,t follows the p–dimensional
multivariate normal distribution with density

np(ν1,t; φ̃) = (2π̄)−p/2 det(Γ1,p)
−1/2 exp

{
−1

2(ν1,t − µ11p)
′Γ−1

1,p(ν1,t − µ11p)
}
, (8)

and the density of ν2,t, denoted by np(ν2,t; ϕ̃), is defined similarly. Equation (1) and conditions (6)–(8)
define the (two component) GMAR model; condition (7) is part of the definition of the model because
it is used to define the mixing weights.2

3 Test procedure

We now consider a test procedure of the null hypothesis that a two component mixture autoregressive
model reduces to a conventional linear autoregressive model.

3.1 The null hypothesis and the LR test statistic

We denote the conditional density function corresponding to the unrestricted model as (see (2))

f2,t(α, β, φ, ϕ) := f2(yt | yt−1;α, β, φ, ϕ) := αt(α, β, φ, ϕ)ft(β, φ) + (1− αt(α, β, φ, ϕ)) ft(β, ϕ),

where we now make the dependence of the mixing weight on the parameters explicit. With this
notation the log-likelihood function of the model based on a sample (y−p+1, . . . , yT ) (and conditional
on the initial values (y−p+1, . . . , y0)) is LT (α, β, φ, ϕ) =

∑T
t=1 lt(α, β, φ, ϕ) where

lt(α, β, φ, ϕ) = log[f2,t(α, β, φ, ϕ)] = log [αt(α, β, φ, ϕ)ft(β, φ) + (1− αt(α, β, φ, ϕ)) ft(β, ϕ)] .

The following assumption provides conditions on the data generation process, the parameter space of
(α, β, φ, ϕ), and the mixing weight αt (α, β, φ, ϕ).

Assumption 1.

(i) The yt’s are generated by a stationary linear Gaussian AR(p) model with (the true but unknown)
parameter value φ̃∗ an interior point of Φ̃, a compact subset of {φ̃ = (φ̃0, φ̃1, . . . , φ̃p, σ̃

2) ∈ Rp+2 :

φ̃0 ∈ R; 1−
∑p

i=1 φ̃iz
i 6= 0 for |z| ≤ 1; σ̃2 ∈ (0,∞)}.

(ii) The parameter space of (α, β, φ, ϕ) is A×B × Φ× Φ, where A is a compact subset of Ra and B
and Φ are those compact subsets of Rq1 and Rq2, respectively, that satisfy (β, φ) ∈ B × Φ if and
only if P−1(β, φ) ∈ Φ̃ (here P is as in the third paragraph of Section 2.1).

(iii) For all t and all (α, β, φ, ϕ) ∈ A×B×Φ×Φ, the mixing weight αt (α, β, φ, ϕ), is σ(yt−1)–measurable
(with σ(yt−1) denoting the σ–algebra generated by yt−1) and satisfies αt (α, β, φ, ϕ) ∈ (0, 1).

Corresponding to the null hypothesis, Assumption 1(i) requires the data to be generated by a
stationary linear Gaussian AR(p) model. Assuming a compact parameter space in Assumptions 1(i)

1Specifically, µ1 = φ̃0/φ̃ (1) and µ2 = ϕ̃0/ϕ̃ (1), whereas Γm,p (m = 1, 2) is a p × p symmetric Toeplitz matrix with
γm,0 = Cov[νm,t, νm,t] along the main diagonal and γm,i = Cov[νm,t, νm,t−i], i = 1, . . . , p − 1, on the diagonals above
and below the main diagonal. Here µ1 and µ2, as well as the elements of Γ1,p and Γ2,p, are treated as functions of the
parameters φ̃ and ϕ̃, respectively; for details of this dependence, see Lütkepohl (2005, eqn (2.1.39)).

2A major motivation for defining the mixing weights as in (6) is that an explicit form for the stationary distribution
of (yt, . . . , yt−p+1), and hence of yt, can be obtained and shown to be a mixture of normal distributions with known
expectations and covariance matrices and with mixing weights α and 1− α (for details, see Kalliovirta et al. (2015)).
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and (ii) is a standard requirement which facilitates proofs. Assumption 1(ii) accommodates to the
main cases of interest, namely β = φ̃0, β = (φ̃1, . . . , φ̃p), β = σ̃2, or any combination of these.3

Assumption 1(iii) implies that our two-component mixture autoregressive model reduces to a linear
autoregression only when φ = ϕ, regardless of the values of α ∈ A and β ∈ B. The null hypothesis to
be tested is therefore φ = ϕ and the alternative is φ 6= ϕ or, more precisely,

H0 : (φ, ϕ) ∈ (Φ× Φ)0, α ∈ A, β ∈ B vs. H1 : (φ, ϕ) ∈ (Φ× Φ) \ (Φ× Φ)0, α ∈ A, β ∈ B,

where (here and in what follows, the superscript 0 refers to the model restricted by the null hypothesis)

(Φ× Φ)0 = {(φ, ϕ) ∈ Φ× Φ : φ = ϕ}.

Note that under the null hypothesis the parameter α vanishes from the likelihood function and is
therefore unidentified. Specifically, letting f0

t (φ̃) := f0(yt | yt−1; φ̃) and L0
T (φ̃) denote the conditional

density and log-likelihood functions of the restricted model, we have

f0
t (φ̃) = f2,t(α, β, φ, φ) = ft(φ̃) and L0

T (φ̃) =

T∑
t=1

l0t (φ̃) with l0t (φ̃) = log[ft(φ̃)]

as in a linear Gaussian AR(p) model. As f2,t(α, β
∗, φ∗, φ∗) = ft(φ̃

∗) for any α ∈ A, in the unrestricted
model the parameter vector (α, β∗, φ∗, φ∗) corresponds to the true model for any α ∈ A.

As already indicated, Assumption 1(iii) implies that the restriction φ = ϕ is the only possibility to
formulate the null hypothesis. However, this is not necessarily the case if (against Assumption 1(iii))
the mixing weight αt (α, β, φ, ϕ) were allowed to take the boundary values zero and one. Of our two
examples this would be possible for the GMAR (but not for the LMAR) model in which αt (α, β, φ, ϕ)

takes the boundary values zero and one when the parameter α takes these values (see (6)). In both
cases a linear autoregression results and either the parameter φ or ϕ is unidentified (see (2)). (The
MAR model of Wong and Li (2000) provides a similar example.) It would be possible to obtain tests
for the GMAR model by using a null hypothesis which specifies α = 0 or α = 1. However, as in
Kasahara and Shimotsu (2012, 2015)4, this approach would require rather restrictive assumptions and
would also lead to very complicated derivations. Therefore, we will not consider this option.

As the parameter α is unidentified under the null hypothesis, the appropriate likelihood ratio type
test statistic is

LRT = supα∈ALRT (α) ,

where, for each fixed α ∈ A,

LRT (α) = 2
[
sup(β,φ,ϕ)∈B×Φ×ΦLT (α, β, φ, ϕ)− supφ̃∈Φ̃L

0
T (φ̃)

]
.

Now let, for each fixed α ∈ A, (β̂Tα, φ̂Tα, ϕ̂Tα) denote an (approximate) unrestricted maximum likeli-
hood (ML) estimator of the parameter vector (β, φ, ϕ). We make the following assumption.

Assumption 2. The unrestricted ML estimator satisfies the following conditions:
(i) LT (α, β̂Tα, φ̂Tα, ϕ̂Tα) = sup(β,φ,ϕ)∈B×Φ×Φ LT (α, β, φ, ϕ) + opα(1),

(ii) (β̂Tα, φ̂Tα, ϕ̂Tα) = (β∗, φ∗, φ∗) + opα(1).

Assumption 2(i) means that (β̂Tα, φ̂Tα, ϕ̂Tα) is assumed to maximize the likelihood function only
asymptotically. This assumption is technical and made for ease of exposition; see Andrews (1999) and

3Note that assuming the autoregressive parameters φ and ϕ to have a common parameter space is made for simplicity
and could be relaxed; for an example where such a relaxation would be needed, see the ACR model of Bec et al. (2008).

4See the remarks following Proposition 5 in KS (2012) and property (a) on p. 1633 of KS (2015).

8



Zhu and Zhang (2006) for similar assumptions. Assumption 2(ii) is a high level condition on (uniform)
consistency of the ML estimator and is analogous to Assumption 1 of Andrews (2001). It has to be
verified on a case by case basis (typically relying on a uniform law of large numbers and a suitable
identification condition); this is exemplified below for the LMAR and GMAR models.

As for the term supφ̃∈Φ̃ L
0
T (φ̃) in the LR test statistic, note that L0

T (φ̃) is the (conditional) log-
likelihood function of a linear Gaussian AR(p) model. Let ˆ̃

φT denote an (approximate) maximum
likelihood estimator of the parameters of a linear Gaussian AR(p) model, that is, ˆ̃

φT satisfies5

L0
T (

ˆ̃
φT ) = sup

φ̃∈Φ̃

L0
T (φ̃) + op(1) and ˆ̃

φT = φ̃∗ + op(1).

Noting that LT (α, β∗, φ∗, φ∗) = L0
T (φ̃∗) for any α now allows us to write LRT (α) as

LRT (α) = 2[LT (α, β̂Tα, φ̂Tα, ϕ̂Tα)− LT (α, β∗, φ∗, φ∗)]− 2[L0
T (

ˆ̃
φT )− L0

T (φ̃∗)] + opα(1). (9)

The analysis of the second term on the right hand side is standard while dealing with the first term is
more demanding requiring a substantial amount of preparation.

3.1.1 Examples (continued)

LMAR Example. In the LMAR example, we assume there are no common parameters in the
two regimes so that the parameter β is omitted, φ = φ̃, ϕ = ϕ̃, q1 = 0, and q2 = p + 2. To satisfy
conditions (ii) and (iii) in Assumption 1, A can be any compact subset of {(α0, α1, . . . , αm) ∈ Rm+1 :

(α1, . . . , αm) 6= (0, . . . , 0)} where 1 ≤ m ≤ p. This ensures that the mixing weight αLt is not equal to
a constant. For the verification of Assumption 2, see Appendix B.

Note that we only consider the ‘real’ LMAR case where m ≥ 1 and (α1, . . . , αm) 6= (0, . . . , 0).
When m = 0 or (α1, . . . , αm) = (0, . . . , 0), the mixing weight αLt is constant and the model reduces
to the MAR model of Wong and Li (2000) and then our testing problem requires different and more
complicated analyses (we shall discuss this point more later). A similar restriction is made by Jeffries
(1998) in his (first-order) logistic mixture autoregressive model to facilitate the derivation of the LR
test (see the hypotheses at the end of p. 95 and the following discussion, as well as the end of p. 110).

GMAR Example. The GMAR model exemplifies the setting with common coefficients by assuming
that the intercept terms in the two regimes are the same (note that this still allows for different means
in the two regimes). As will be discussed in more detail in Section 3.3.1, this assumption is partly due
to the fact that otherwise the derivation of the LR test would become extremely complicated. Hence,
in this example β = φ̃0 (= ϕ̃0), φ = (φ̃1, . . . , φ̃p, σ̃

2
1), ϕ = (ϕ̃1, . . . , ϕ̃p, σ̃

2
2), q1 = 1, and q2 = p + 1. To

satisfy Assumptions 1(ii) and (iii) the parameter space A of α can be any compact and convex subset
of (0, 1) with [η, 1− η] for some η > 0 being the typical choice (this also rules out the possibility that
α = 0 or α = 1 discussed after Assumption 1). For the verification of Assumption 2, see Appendix C.

We note that there are cases when the mixing weight αGt is constant and the model reduces to the
MAR model of Wong and Li (2000).6 Unlike in the LMAR example, this fact does not complicate the
derivation of our test. The reason seems to be that in the GMAR model the reduction occurs only for
certain values of φ̃ and ϕ̃ whereas in the LMAR model it occurs for all values of φ̃ and ϕ̃.

5Note that the parameter space for φ̃ is the compact set Φ̃ and not the entire stationarity region of a (causal) linear
AR(p) model. Asymptotically, also the OLS estimator can be used.

6Set, e.g., p = 1, φ̃0 = ϕ̃0 = 0, and σ̃2
1/(1− φ̃2

1) = σ̃2
2/(1− ϕ̃2

1); the last equality can hold even if (φ̃, σ̃2
1) 6= (ϕ̃, σ̃2

2).
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3.2 Reparameterized model

In standard testing problems the derivation of the asymptotic distribution of the LR test relies on a
quadratic expansion of the log-likelihood function LT (α, β, φ, ϕ); when the parameter α is not identified
under the null hypothesis, the relevant derivatives in this expansion are with respect to (β, φ, ϕ) for
fixed values of α ∈ A. In problems with a singular information matrix it turns out to be convenient to
follow Rotnitzky et al. (2000) and Kasahara and Shimotsu (2012, 2015) and employ an appropriately
reparameterized model. The employed reparameterization is model specific and aims to have two
conveniences. First, it transforms the null hypothesis φ = ϕ into a point null hypothesis where some
components of the parameter vector are restricted to zero and the rest are left unrestricted. Second,
and more importantly, it simplifies derivations in cases where the conventional quadratic expansion of
the log-likelihood function breaks down because, under the null hypothesis, the scores of the parameters
(β, φ, ϕ) are linearly dependent and, consequently, the (Fisher) information matrix is singular. As will
be seen later, this is the case for the GMAR model but not for the LMAR model.

General requirements for the reparameterization are described in the following assumption. Only
the parameters restricted by the null hypothesis, φ and ϕ, are reparameterized. The examples in this
and the following subsection illustrate how the reparameterization could be chosen.

Assumption 3.

(i) For every α ∈ A, the mapping (π,$) = πα(φ, ϕ) from Φ × Φ to Πα is one-to-one with πα and
π−1
α continuous.

(ii) For every α ∈ A, πα((Φ× Φ)0) = Φ× {0} and πα(φ∗, φ∗) = (π∗, 0) := (φ∗, 0).

(iii) (β̂Tα, π̂Tα, $̂Tα) = (β∗, π∗, 0) + opα(1), where (π̂Tα, $̂Tα) := πα(φ̂Tα, ϕ̂Tα).

We sometimes refer to the reparameterization described in Assumption 3 as the ‘π-parameterization’
and the original parameterization as the ‘φ-parameterization’. Note that the transformed parameters
π and $ generally depend on α but, for brevity, we suppress this dependence from the notation. The
parameter space of (π,$) also depends on α and is given, for any α ∈ A, by

Πα = {(π,$) ∈ R2q2 : (π,$) = πα(φ, ϕ) for some (φ, ϕ) ∈ Φ× Φ}.

Assumption 3(i) contains some minimal regularity conditions for the reparameterization. By Assump-
tion 3(ii), the null hypothesis φ = ϕ can be equivalently written as $ = 0 or, more precisely, as

H0 : π ∈ Φ, $ = 0, α ∈ A, β ∈ B vs. H1 : (π,$) ∈ Πα \ (Φ× {0}), α ∈ A, β ∈ B.

Under H0 parameters β and π are identified but α is not. Assumption 3(iii) is a high level condition
similar to Assumption 2(ii) from which it can be derived with appropriate additional assumptions. A
simple Lipschitz condition similar to Andrews (1992, Assumption SE-1(b)), given in Lemma A.1 in
Appendix A, is one possibility.

To develop further notation, partition π−1
α (π,$) into two q2–dimensional components as π−1

α (π,$) =

(π−1
α,1(π,$),π−1

α,2(π,$)), and define

fπ2,t(α, β, π,$) := f2(yt | yt−1;α, β, φ, ϕ) = απt (α, β, π,$)ft(β,π
−1
α,1(π,$))+(1−απt (α, β, π,$))ft(β,π

−1
α,2(π,$)),

where απt (α, β, π,$) = αt(α, β,π
−1
α,1(π,$),π−1

α,2(π,$)) and the function ft(·) is as in (2). The log-
likelihood function of the reparameterized model can now be expressed as

LπT (α, β, π,$) =

T∑
t=1

lπt (α, β, π,$), (10)
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where lπt (α, β, π,$) = log[fπ2,t(α, β, π,$)], and in the π–parameterization equation (9) reads as

LRT (α) = 2[LπT (α, β̂Tα, π̂Tα, $̂Tα)− LπT (α, β∗, φ∗, 0)]− 2[L0
T (

ˆ̃
φT )− L0

T (φ̃∗)] + opα(1). (11)

3.2.1 Examples (continued)

LMAR Example. The reparameterization we employ in the LMAR model is

(π,$) = πα(φ, ϕ) = (φ, φ− ϕ) so that (φ, ϕ) = π−1
α (π,$) = (π, π −$).

In this case the reparameterization (via πα(·, ·)) does not depend on α, and the same is true for the
parameter space of (π,$). Verification of Assumption 3 is straightforward using Lemma A.1 (for
details, see Appendix B). In the LMAR case, the only benefit of the reparameterization is to transform
the null hypothesis into a point null hypothesis.

GMAR Example. We reparameterize the GMAR model by setting, for any fixed α ∈ A,

(π,$) = πα(φ, ϕ) = (αφ+ (1− α)ϕ, φ− ϕ) so that (φ, ϕ) = π−1
α (π,$) = (π + (1− α)$,π − α$).

Verifying Assumption 3 is again straightforward using Lemma A.1 (see Appendix C). In the GMAR
model simplifying the null hypothesis is not the only benefit of the reparameterization. As discussed be-
fore Assumption 3, the relevant derivatives when expanding LT (α, β, φ, ϕ) are with respect to (β, φ, ϕ)

and in the GMAR case these derivatives are linearly dependent under the null hypothesis. To see this
and how the reparameterization affects this feature, note that straightforward differentiation yields

∇(β,φ,ϕ)lt(α, β, φ, φ) =

(
∇βft(β, φ)

ft(β, φ)
, α
∇φft(β, φ)

ft(β, φ)
, (1− α)

∇φft(β, φ)

ft(β, φ)

)
,

where the null hypothesis φ = ϕ is imposed and ∇ denotes differentiation with respect to the indicated
parameters. As (ft(β, φ))−1∇(β,φ)ft(β, φ) is the score vector obtained from a linear Gaussian AR(p)
model, it is clear that the covariance matrix of the (2p + 3)–dimensional vector ∇(β,φ,ϕ)lt(α, β, φ, φ),
and hence the (Fisher) information matrix, is singular with rank p + 2. In contrast to the above, in
the π–parameterization the score vector is given by (see Supplementary Appendix F)

∇(β,π,$)l
π
t (α, β, π, 0) =

(
∇βft(β, π)

ft(β, π)
,
∇πft(β, π)

ft(β, π)
,0p+1

)
when the null hypothesis $ = 0 is imposed. Now the score of $ is identically zero so that the
reparameterization simplifies linear dependencies of the scores which turns out to be very useful in
subsequent asymptotic analyses.

3.3 Quadratic expansion of the (reparameterized) log-likelihood function

As alluded to above, in standard testing problems the asymptotic analysis of a LR test statistic is based
on a second-order Taylor expansion of the (average) log-likelihood function around the true parameter
value. An essential assumption here is positive definiteness of the (limiting) information matrix but,
as illustrated above, this assumption does not necessarily hold in our testing problem due to linear
dependencies among the derivatives of the log-likelihood function. As in Rotnitzky et al. (2000), Zhu
and Zhang (2006), and Kasahara and Shimotsu (2012, 2015), we thus consider a quadratic expansion
of the log-likelihood function that is not based on a second-order Taylor expansion but (possibly) on
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a higher-order Taylor expansion. The need for higher-order derivatives is illustrated by the GMAR
example: as the score of $ is identically zero, the second derivative (which turns out to be linearly
independent of the score of (β, π)) now provides the first (nontrivial) local approximation for $.

The following assumption ensures that the (reparameterized) log-likelihood function (10) is (at
least) twice continuously differentiable.

Assumption 4. For some integer k ≥ 2, and for every fixed α ∈ A, the functions αt(α, β, φ, ϕ) and
π−1
α (π,$) are k times continuously differentiable (with respect to (β, φ, ϕ) and (π,$) in the interior

of B × Φ× Φ and Πα, respectively).

We assume the reparameterized log-likelihood function to have, for each α ∈ A, a quadratic expan-
sion in a transformed parameter vector θ(α, β, π,$) around (β∗, π∗, 0) given by

LπT (α, β, π,$)− LπT (α, β∗, π∗, 0)

= (T−1/2STα)′[T 1/2θ(α, β, π,$)]− 1
2 [T 1/2θ(α, β, π,$)]′Iα[T 1/2θ(α, β, π,$)] +RT (α, β, π,$). (12)

To illustrate this expansion, suppose the information matrix is positive definite so that the quantities on
the right hand side are (typically) based on a second-order Taylor expansion with STα and Iα functions
of (α, β∗, π∗, 0). As already mentioned, this is the case for the LMAR model where (the following will
be justified shortly) the parameter θ(α, β, π,$) is independent of α and given by (π − π∗, $) and,
for each α ∈ A, STα is the score vector, Iα is the (positive definite) Fisher information matrix, and
RT (α, β, π,$) is a remainder term. As the notation indicates, these three terms depend on α, and
in general they may involve partial derivatives of the log-likelihood function of order higher than two
(this is the case for the GMAR model, as will be demonstrated shortly). Then it may also get more
complicated to find the reparameterization of the previous subsection and the transformed parameter
vector θ(α, β, π,$), as the examples of Kasahara and Shimotsu (2015, 2018) and the discussion on the
GMAR model below show; one possibility is to consider the iterative procedure discussed by Rotnitzky
et al. (2000, Secs 4.4, 4.5) (for an illuminating illustration of this approach, see Hallin and Ley (2014)).

Our next assumption provides further details on expansion (12). We use ⇒ to signify weak con-
vergence of a sequence of stochastic processes on a function space. In the assumption below, the
weak convergence of interest is that of the process STα (indexed by α ∈ A) to a process Sα. The
two function spaces relevant in this paper are B(A,Rk) and C(A,Rk), the former is the space of
all Rk–valued bounded functions defined on (the compact set) A equipped with the uniform metric
(d(x, y) = supa∈A ‖x(a)− y(a)‖), and the latter is the same but with the continuity of the functions
(with respect to α ∈ A) also assumed.

Assumption 5. For each α ∈ A, LπT (α, β, π,$) has a quadratic expansion given in (12), where

(i) for each α ∈ A, θ(α, β, π,$) is a mapping from B × Πα to Θα = {θ ∈ Rr : θ = θ(α, β, π,$)

for some (β, π,$) ∈ B ×Πα} such that (a) θ(α, β∗, π∗, 0) = 0 and (b) for all ε > 0,
infα∈A inf(β,π,$)∈B×Πα:‖(β,π,$)−(β∗,π∗,0)‖≥ε ‖θ(α, β, π,$)‖ ≥ δε for some δε > 0.

(ii) STα =
∑T

t=1 stα is a sequence of Rr–valued FT –measurable stochastic processes indexed by α ∈ A;
STα does not depend on (β, π,$); STα has sample paths that are continuous as functions of α;
the process T−1/2STα obeys T−1/2ST• ⇒ S• for some mean zero Rr-valued Gaussian process
{Sα : α ∈ A} that satisfies E[SαS

′
α] = E[stαs

′
tα] = Iα for all α ∈ A and has continuous sample

paths (as functions of α) with probability 1.

(iii) Iα is, for each α ∈ A, a non-random symmetric r × r matrix (independent of (β, π,$)); Iα is
continuous as a function of α and such that 0 < infα∈A λmin(Iα), sup α∈Aλmax(Iα) <∞.
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(iv) RT (α, β, π,$) is a remainder term such that

sup
(β,π,$)∈B×Πα:‖(β,π,$)−(β∗,π∗,0)‖≤γT

|RT (α, β, π,$)|
(1 + ‖T 1/2θ(α, β, π,$)‖)2

= opα(1)

for all sequences of (non-random) positive scalars {γT , T ≥ 1} for which γT → 0 as T →∞.

Assumption 5(i) describes the transformed parameter θ(α, β, π,$) with part (b) being an iden-
tification condition, 5(ii) is the main ingredient needed to derive the limiting distribution of our LR
test and would typically be verified relying on a functional central limit theorem, 5(iii) imposes rather
standard conditions on the counterpart of the information matrix, and 5(iv) ensures that the remainder
term RT (α, β, π,$) has no effect on the final result.

As in Andrews (1999, 2001), Zhu and Zhang (2006), and Kasahara and Shimotsu (2012, 2015), for
further developments it will be convenient to write the expansion (12) in an alternative form as

LπT (α, β, π,$)− LπT (α, β∗, π∗, 0)

= 1
2Z
′
TαIαZTα − 1

2

[
T 1/2θ(α, β, π,$)− ZTα

]′Iα[T 1/2θ(α, β, π,$)− ZTα
]

+RT (α, β, π,$), (13)

where ZTα = I−1
α T−1/2STα. Assumptions 5(ii) and (iii) imply the following facts (that will be justified

in the proof of Lemma 1 in Appendix A): ZTα is FT –measurable, independent of (β, π,$), continuous
as a function of α with probability 1, and ZT• ⇒ Z• where the mean zero Rr–valued Gaussian process
Zα = I−1

α Sα satisfies E[ZαZ
′
α] = I−1

α for all α ∈ A and has continuous sample paths (as functions of
α) with probability 1.

3.3.1 Examples (continued)

LMAR Example. For the LMAR model, expansion (12) (with the unnecessary β being dropped
everywhere) is obtained from a standard second-order Taylor expansion. Specifically, for an arbitrary
fixed α ∈ A, a standard second-order Taylor expansion of LπT (α, π,$) =

∑T
t=1 l

π
t (α, π,$) around

(π∗, 0) with respect to the parameters (π,$) yields

LπT (α, π,$)− LπT (α, π∗, 0) = (π − π∗, $)′∇(π,$)L
π
T (α, π∗, 0)

+ 1
2(π − π∗, $)′∇2

(π,$)(π,$)′L
π
T (α, π̇, $̇)(π − π∗, $), (14)

where (π̇, $̇) denotes a point between (π,$) and (π∗, 0), ∇(π,$)L
π
T (α, π∗, 0) =

∑T
t=1∇(π,$)l

π
t (α, π∗, 0)

and∇2
(π,$)(π,$)′L

π
T (α, π,$) =

∑T
t=1∇2

(π,$)(π,$)′ l
π
t (α, π,$) (explicit expressions for the required deriva-

tives are provided in Appendix B), and ∇ and ∇2 denote first- and second-order differentiation with
respect to the indicated parameters. Set θ(α, π,$) = (π−π∗, $) = (θ, ϑ) and note that the parameter
space Θα = Θ is independent of α and contains the origin, corresponding to the true model, as an
interior point. Then define the vector STα and the matrix Iα as7

STα = ∇(π,$)L
π
T (α, π∗, 0) =

T∑
t=1

(
∇ft(π∗)
ft(π∗)

,−(1− αL1,t(α))
∇ft(π∗)
ft(π∗)

)
, (15)

Iα =

 E
[
∇ft(π∗)
ft(π∗)

∇′ft(π∗)
ft(π∗)

]
−E

[
(1− αL1,t(α))∇ft(π

∗)
ft(π∗)

∇′ft(π∗)
ft(π∗)

]
−E

[
(1− αL1,t(α))∇ft(π

∗)
ft(π∗)

∇′ft(π∗)
ft(π∗)

]
E
[
(1− αL1,t(α))2∇ft(π∗)

ft(π∗)
∇′ft(π∗)
ft(π∗)

]  .
7In what follows, ∇ft(·) denotes differentiation of ft(·) in (3) with respect to φ̃ = (φ̃0, φ̃1, . . . , φ̃p, σ̃

2
1).
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Adding and subtracting terms and reorganizing, expansion (14) can be written as

LπT (α, π,$)− LπT (α, π∗, 0) = (T−1/2STα)′[T 1/2θ(α, π,$)]

− 1
2 [T 1/2θ(α, π,$)]′Iα[T 1/2θ(α, π,$)] +RT (α, π,$), (16)

with the remainder term

RT (α, π,$) = 1
2 [T 1/2θ(α, π,$)]′[T−1∇2

(π,$)(π,$)′L
π
T (α, π̇, $̇)− (−Iα)][T 1/2θ(α, π,$)]. (17)

These equations yield the expansion (12) in the case of the LMAR model. For details of verifying
Assumptions 4 and 5, we refer to Appendix B.

As mentioned in the LMAR example of Section 3.1.1, the treatment of the special case where the
mixing weight αLt is constant is more complicated than that of the ‘real’ LMAR case. Indeed, replacing
the mixing weight αLt by a constant in the preceding expression of the score vector STα immediately
shows that the second-order Taylor expansion (16) breaks down because, contrary to Assumption 5(iii),
the components of STα are not linearly independent and, consequently, the Fisher information matrix
Iα is singular. Thus, a higher-order Taylor expansion is needed to analyze the LR test statistic.

To give an idea of how one could proceed, we first note that the partial derivatives of the log-
likelihood function behave in the same way as their counterparts in Kasahara and Shimotsu (2015)
where mixtures of normal regression models (with constant mixing weights) are considered (see par-
ticularly the discussion following their Proposition 1). This is due to the fact that in the special case
of constant mixing weights the LMAR model is obtained from the model considered in Kasahara and
Shimotsu (2015) by replacing the exogenous regressors therein by lagged values of yt. Thus, the ar-
guments employed in that paper could be used to obtain the asymptotic distribution of the LR test
statistic. Instead of a conventional second-order Taylor expansion this would require a more compli-
cated reparameterization and an expansion based on partial derivatives of the log-likelihood function
up to order eight. As most of the details appear very similar to those in Kasahara and Shimotsu (2015)
we have preferred not to pursue this matter in this paper.

The preceding discussion means that, in the case of the LMAR model, time varying mixing weights
are beneficial when the purpose is to derive a LR test for the adequacy of a single-regime model. A
similar observation was made already by Jeffries (1998, p. 80). However, this does not happen in all
mixture autoregressive models with time varying mixing weights, as the following discussion on the
GMAR model demonstrates.

GMAR Example. As alluded to earlier, in the case of the GMAR model the expansion (12)
cannot be based on a second-order Taylor expansion of the log-likelihood function. A higher-order
expansion is required, and similarly to Kasahara and Shimotsu (2012) the appropriate order turns out
to be the fourth one with the elements of ∇βlπt (α, β∗, π∗, 0) and ∇πlπt (α, β∗, π∗, 0) and the distinctive
elements of ∇$$′ lπt (α, β∗, π∗, 0) (suitably normalized) used to define the vector STα. In Appendix C
we present, for an arbitrary fixed α ∈ A, the explicit form of a standard fourth-order Taylor expansion
of LπT (α, β, π,$) =

∑T
t=1 l

π
t (α, β, π,$) around (β∗, π∗, 0) with respect to the parameters (β, π,$).

Therein we also demonstrate that this fourth-order Taylor expansion can be written as a quadratic
expansion of the form (12) (or (13)) with the different quantities appearing therein defined as follows.

Define the vector θ(α, β, π,$) in (12) as

θ(α, β, π,$) =

[
θ(α, β, π,$)
ϑ(α, β, π,$)

]
=

 β − β∗
π − π∗

α(1− α)v($)

 ,
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where θ(α, β, π,$) is (q1 + q2) × 1 and ϑ(α, β, π,$) is qϑ × 1 with qϑ = q2(q2 + 1)/2 (where q1 = 1

and q2 = p+ 1) and where the vector v($) contains the unique elements of $$′, that is,

v($) = ($2
1, . . . , $

2
q2 , $1$2, . . . , $1$q2 , $2$3, . . . , $q2−1$q2)

(note that v($) is just a re-ordering of vech($$′)). The parameter space

Θα = {θ = (θ, ϑ) ∈ Rq1+q2+qϑ : θ = (β − β∗, π − π∗), ϑ = α(1− α)v($) for some (β, π,$) ∈ B ×Πα}

now depends on α and has the origin, corresponding to the true model, as a boundary point (due to
the particular shape of the range of ϑ = α(1 − α)v($)); both of these features will complicate the
subsequent analysis. Next set

ST (= STα) =
T∑
t=1

∇̃θl
π∗
t where ∇̃θl

π∗
t = (∇̃θlπ∗t , ∇̃ϑlπ∗t ) ((q1 + q2 + qϑ)× 1) (18)

with the component vectors ∇̃θlπ∗t and ∇̃ϑlπ∗t given by

∇̃θlπ∗t = (∇βlπt (α, β∗, π∗, 0),∇πlπt (α, β∗, π∗, 0)),

∇̃ϑlπ∗t =
(
c11∇2

$1$1
lπt (α, β∗, π∗, 0), . . . , cq2q2∇2

$q2$q2
lπt (α, β∗, π∗, 0),

c12∇2
$1$2

lπt (α, β∗, π∗, 0), . . . , cq2−1,q2∇2
$q2−1$q2

lπt (α, β∗, π∗, 0)
)
/(α(1− α)), (19)

where cij = 1/2 if i = j and cij = 1 if i 6= j. Explicit expressions for ∇̃θlπ∗t and ∇̃ϑlπ∗t can be found in
Appendix C, and from them it can be seen that ST depends on (β∗, π∗) only and not on (α, β, π,$).
The same is true for the matrix I (= Iα) ((q1 + q2 + qϑ) × (q1 + q2 + qϑ)) whose expression is also
given in Appendix C. Finally, an explicit expression of the remainder term RT (α, β, π,$) is given in
Appendix C. For the verification of Assumptions 4 and 5, see Appendix C.

In the GMAR example we have assumed that the intercept terms φ̃0 and ϕ̃0 in the two regimes are
the same. We are now in a position to describe the difficulties that allowing for φ̃0 6= ϕ̃0 (and, hence,
dropping β) would entail. In this case, the additional parameter ϕ̃0 would correspond to $1, the first
component of $. As in Section 3.2.1, it would again be the case that ∇$1 l

π
t (α, π∗, 0) = 0, leading us to

consider second derivatives. But now, due to the properties of the Gaussian distribution, it would be
the case that ∇2

$1$1
lπt (α, π∗, 0) is linearly dependent with the components of ∇πlπt (α, π∗, 0), making

it unsuitable to serve as a component of ST . A reparameterization more complicated than that used
in Section 3.2.1 would be needed, with the aim of obtaining ∇2

$1$1
lπt (α, π∗, 0) = 0 and, instead of

∇2
$1$1

lπt (α, π∗, 0), using ∇3
$1$1$1

lπt (α, π∗, 0) or perhaps ∇4
$1$1$1$1

lπt (α, π∗, 0) as the counterpart of
the score of the parameter $1. It turns out that (restricting the discussion to the case p = 1 only) the
third derivative is suitable when α 6= 1/2 and φ̃1 6= −1/2, but that fourth (or higher) order derivatives
are needed when α = 1/2 or φ̃1 = −1/2. Similar difficulties (involving situations comparable to the
cases α = 1/2 vs. α 6= 1/2, but apparently not ones involving also a counterpart of φ̃1) were faced by
Cho and White (2007, Sec 2.3.3) and Kasahara and Shimotsu (2018, Sec 6.2), whose analyses suggest
that expanding the log-likelihood at least to the eighth order is required. As the required analysis gets
excessively complicated, we have chosen to leave it for future research.

3.4 Asymptotic analysis of the quadratic expansion

We continue by analyzing expansion (13) evaluated at (β̂Tα, π̂Tα, $̂Tα). Previously, a similar analysis
was provided by Andrews (2001) but his approach is not directly applicable in our setting. The reason
for this is that in the quadratic expansion in (13) the dependence of the parameter θ(α, β, π,$) and its
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parameter space Θα on the nuisance parameter α is not compatible with the formulation of Andrews
(2001, eqn (3.3)). The results of Zhu and Zhang (2006) probably cover our case but instead of trying
to verify their assumptions we prove the needed results directly by adapting the arguments used in
Andrews (1999, 2001) and Zhu and Zhang (2006) to our setting. We proceed in several steps.

Asymptotic insignificance of the remainder term. We first establish that the remainder term
RT (α, β, π,$), when evaluated at (β̂Tα, π̂Tα, $̂Tα), has no effect on the asymptotic distribution of the
quadratic expansion. A crucial ingredient in showing this is that the transformed parameter vector
θ(α, β̂Tα, π̂Tα, $̂Tα) is root-T consistent in the sense that ‖T 1/2θ(α, β̂Tα, π̂Tα, $̂Tα)‖ = Opα(1). This,
together with Assumption 5(iv), allows us to obtain the result RT (α, β̂Tα, π̂Tα, $̂Tα) = opα(1). The
following lemma collects these results; assertion (iii) below is analogous to Andrews (1999, Thm 2b).

Lemma 1. If Assumptions 1–5 hold 8, then (i) ‖T 1/2θ(α, β̂Tα, π̂Tα, $̂Tα)‖ = Opα(1),
(ii) RT (α, β̂Tα, π̂Tα, $̂Tα) = opα(1), and (iii)

LπT (α, β̂Tα, π̂Tα, $̂Tα)− LπT (α, β∗, π∗, 0)

= 1
2Z
′
TαIαZTα − 1

2

[
T 1/2θ(α, β̂Tα, π̂Tα, $̂Tα)− ZTα

]′Iα[T 1/2θ(α, β̂Tα, π̂Tα, $̂Tα)− ZTα
]

+ opα(1).(20)

Maximization of the likelihood vs. minimization of a related quadratic form. For later
developments it would be convenient if the ML estimator (β̂Tα, π̂Tα, $̂Tα) on the right hand side
of (20) could be replaced by an (approximate) minimizer of the quadratic form [T 1/2θ(α, β, π,$) −
ZTα]′Iα[T 1/2θ(α, β, π,$)−ZTα]. To this end, note that by definition (cf. Andrews (1999, eqn (3.6)))

inf
(β,π,$)∈B×Πα

{[
T 1/2θ(α, β, π,$)−ZTα

]′Iα[T 1/2θ(α, β, π,$)−ZTα
]}

= inf
λ∈Θα,T

{
(λ− ZTα)′Iα(λ− ZTα)

}
where, for each T ,

Θα,T = {λ ∈ Rr : λ = T 1/2θ for some θ ∈ Θα}

and Θα is as defined in Assumption 5(i). Now, for each α ∈ A, let λ̂Tαq = T 1/2θ(α, β̂Tαq, π̂Tαq, $̂Tαq)

(with the additional ‘q’ in the subscripts referring to quadratic form) denote an approximate minimizer
of (λ− ZTα)′Iα(λ− ZTα) over Θα,T , that is, (cf. Zhu and Zhang (2006, eqn (12)))

(λ̂Tαq − ZTα)′Iα(λ̂Tαq − ZTα) = inf
λ∈Θα,T

{
(λ− ZTα)′Iα(λ− ZTα)

}
+ opα(1). (21)

The following lemma justifies the discussed replacement of (β̂Tα, π̂Tα, $̂Tα) with λ̂Tαq.

Lemma 2. If Assumptions 1–5 hold, then

LπT (α, β̂Tα, π̂Tα, $̂Tα)− LπT (α, β∗, π∗, 0) = 1
2Z
′
TαIαZTα − 1

2(λ̂Tαq − ZTα)′Iα(λ̂Tαq − ZTα) + opα(1).

Approximating the parameter space with a cone. In (21) the quadratic form (λ−ZTα)′Iα(λ−
ZTα) is minimized over the set Θα,T ; this minimization can in fact be done over a simpler set. We
first introduce some terminology and say that a collection of sets {Γα, α ∈ A} (where for each α ∈ A,
Γα ⊂ Rr) is ‘locally (at the origin) uniformly equal’ to a set Λ ⊂ Rr if there exists a δ > 0 such that
Γα ∩ (−δ, δ)r = Λ ∩ (−δ, δ)r for all α ∈ A. Note that ‘{Γα, α ∈ A} is locally uniformly equal to Λ’
implies that (i) ‘for all α ∈ A, Γα is locally equal to Λ in the sense of Andrews (1999, p. 1359)’, but
the reverse does not hold; and also that (ii) {Γα, α ∈ A} is uniformly approximated by the set Λ in

8Here and in what follows, a subset of the listed assumptions would sometimes suffice for the stated results.
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the sense of Zhu and Zhang (2006, Defn 3). We also say that a set Λ ⊂ Rr is a ‘cone’ if λ ∈ Λ implies
that aλ ∈ Λ for all positive real scalars a. We can now state the following assumption.

Assumption 6. The collection of sets {Θα, α ∈ A} is locally uniformly equal to a cone Λ (⊂ Rr).

By Assumption 5(i)(a), 0 ∈ Θα for all α ∈ A, so that the cone Λ in Assumption 6 necessarily
contains 0 (∈ Rr). The cone Λ also does not depend on α. Now we can establish the following result.

Lemma 3. If Assumptions 1–6 hold, then

inf
λ∈Θα,T

{
(λ− ZTα)′Iα(λ− ZTα)

}
= inf

λ∈Λ

{
(λ− ZTα)′Iα(λ− ZTα)

}
+ opα(1).

Describing the limiting random process. From Lemmas 2–3 and the definition of λ̂Tαq we obtain

2[LπT (α, β̂Tα, π̂Tα, $̂Tα)−LπT (α, β∗, π∗, 0)] = Z ′TαIαZTα− inf
λ∈Λ

{
(λ− ZTα)′Iα(λ− ZTα)

}
+opα(1).(22)

The assumed weak convergence of STα (and hence that of Zα = I−1
α Sα) allows us to derive the weak

limit of this random process described in the following lemma.

Lemma 4. If Assumptions 1–6 hold, then

2[LπT (•, β̂T•, π̂T•, $̂T•)− LπT (•, β∗, π∗, 0)]⇒ Z ′•I•Z• − inf
λ∈Λ

{
(λ− Z•)′I•(λ− Z•)

}
.

The limiting random process in Lemma 4 can be written in a somewhat simpler form (cf. Andrews
(1999, Thm 4; 2001, Thm 2)). The motivation for this comes from the fact that in our applications
θ(α, β, π,$) can be decomposed into two parts as θ(α, β, π,$) = (θ(α, β, π,$), ϑ(α, β, π,$)) with
θ(α, β, π,$) ∈ Rqθ and ϑ(α, β, π,$) ∈ Rqϑ (with qθ = q1 + q2 and r = qθ + qϑ) such that (i) the
values of θ(α, β, π,$) are not restricted by the null hypothesis and do not lie on the boundary of the
parameter space and (ii) the values of ϑ(α, β, π,$) are restricted by the null hypothesis and potentially
lie on the boundary of the parameter space. Specifically, we assume the following.

Assumption 7. The cone Λ of Assumption 6 satisfies Λ = Rqθ × Λϑ with Λϑ a cone in Rqϑ .

Partition Sα, Zα, λ, and Iα conformably with the partition θ = (θ, ϑ) as

Sα =

[
Sθα
Sϑα

]
, Zα =

[
Zθα
Zϑα

]
, λ =

[
λθ
λϑ

]
, Iα =

[
Iθθα Iθϑα
Iϑθα Iϑϑα

]
and let (I−1

α )ϑϑ denote the (qϑ×qϑ) bottom right block of I−1
α . Assumption 7 together with properties

of partitioned matrices yields the following result.

Lemma 5. If Assumptions 1–7 hold, then

Z ′αIαZα − inf
λ∈Λ

{
(λ− Zα)′Iα(λ− Zα)

}
= Z ′ϑα(I−1

α )−1
ϑϑZϑα − inf

λϑ∈Λϑ

{
(λϑ − Zϑα)′(I−1

α )−1
ϑϑ(λϑ − Zϑα)

}
+ S′θαI−1

θθαSθα.

Explicit expressions for (I−1
α )ϑϑ and Zϑα in terms of Sα and Iα are given in the proof of this lemma

in Supplementary Appendix D.
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3.5 The LR test statistic

3.5.1 Derivation of the test statistic

The previous subsection described the asymptotic behavior of 2[LπT (α, β̂Tα, π̂Tα, $̂Tα)−LπT (α, β∗, π∗, 0)],

the first term in the expression of LRT (α) in (11). Now consider the second term, namely 2[L0
T (

ˆ̃
φT )−

L0
T (φ̃∗)], corresponding to the model restricted by the null hypothesis. Recall that L0

T (φ̃) =
∑T

t=1 l
0
t (φ̃)

with l0t (φ̃) = log[ft(φ̃)] so that ∇φ̃l
0
t (φ̃
∗) = (ft(φ̃

∗))−1∇ft(φ̃∗) with φ̃∗ an interior point of Φ̃. Denote
the score vector and limiting information matrix by

S0
T =

T∑
t=1

∇ft(φ̃∗)
ft(φ̃∗)

, I0 = E

[
∇ft(φ̃∗)
ft(φ̃∗)

∇′ft(φ̃∗)
ft(φ̃∗)

]
,

respectively. For the following assumption, partition the process STα of Assumption 5 as STα =

(STθα, STϑα) (with STθα qθ–dimensional and STϑα qϑ–dimensional). The following simplifying as-
sumption, which holds in our examples (see the expressions of STα in (15) and (18)), allows us to
obtain a neat expression for the likelihood ratio test statistic in Theorem 1 below.

Assumption 8. STθα = S0
T .

Together with the earlier assumptions, Assumption 8 implies that T−1/2STθα = T−1/2S0
T

d→ S0, a
qθ–dimensional Gaussian random vector with mean zero and covariance matrix Iθθα = E[S0S0′] = I0.
Standard likelihood theory now implies the following result.

Lemma 6. If Assumptions 1–8 hold, then 2[L0
T (

ˆ̃
φT ) − L0

T (φ̃∗)]
d→ S0′(I0)−1S0, and the convergence

is joint with that in Lemma 4.

The preceding results, in particular Lemmas 4–6, now yield the distribution of the LR test statistic.

Theorem 1. If Assumptions 1–8 hold, then

(i) LRT (•)⇒ Z ′ϑ•(I−1
• )−1

ϑϑZϑ• − infλϑ∈Λϑ{(λϑ − Zϑ•)′(I−1
• )−1

ϑϑ(λϑ − Zϑ•)}, and

(ii) LRT = supα∈A LRT (α)
d→ supα∈A

{
Z ′ϑα(I−1

α )−1
ϑϑZϑα−infλϑ∈Λϑ{(λϑ−Zϑα)′(I−1

α )−1
ϑϑ(λϑ−Zϑα)}

}
.

The asymptotic distribution of the LR test statistic is similar to that in Andrews (2001, Thm 4).
As we next discuss, this distribution simplifies in both the LMAR and the GMAR examples.

3.5.2 Examples (continued)

LMAR Example. As was noted in Section 3.3.1, the LMAR case is rather standard in the sense
that a conventional second-order Taylor expansion with a nonsingular information matrix and with no
parameters on the boundary was sufficient to study the LR test. The only nonstandard feature in this
case is the presence of unidentified parameters under the null hypothesis. Validity of Assumptions 6–8
is easy to check (see Appendix B) with the cone Λ of Assumption 6 equal to Rr. Thus the infimum in
the distribution of the LRT statistic in Theorem 1(ii) equals zero and the result therein simplifies to9

LRT = sup
α∈A

LRT (α)
d→ sup
α∈A

{
Z ′ϑα(I−1

α )−1
ϑϑZϑα

}
.

For every fixed α ∈ A, the quantity Z ′ϑα(I−1
α )−1

ϑϑZϑα is a chi-squared random variable, so that the
limiting distribution is a supremum of a chi-squared process similarly as in, for example, Davies (1987),
Hansen (1996, Thm 1), and Andrews (2001, eqn (5.7)).

9This result could also be obtained from Andrews and Ploberger (1995, Sec 2.2, 2.4) as their assumptions 1–5 appear
to be satisfied in the LMAR case.
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GMAR Example. In Section 3.3.1 it was seen that in the GMAR example Zα and Iα do not
depend on α. As the cone Λ of Assumption 6 does not depend on α either, the weak limit of LRT (α)

does not depend on α. Therefore the result of Theorem 1 (validity of Assumptions 6–8 is checked in
Appendix C) simplifies to

LRT = sup
α∈A

LRT (α)
d→ Z ′ϑ(I−1)−1

ϑϑZϑ − inf
λϑ∈Λϑ

{
(λϑ − Zϑ)′(I−1)−1

ϑϑ(λϑ − Zϑ)
}
,

where the unnecessary α has been dropped from the notation. Here Zϑ follows an qϑ-variate Gaussian
distribution with covariance matrix (I−1)ϑϑ, and the limiting distribution, which is sometimes referred
to as the chi-bar-squared distribution, is similar to the one in Kasahara and Shimotsu (2012, Propn
3c,d). Note that the cone Λϑ = v(Rq2) (see Appendix C) is not convex (in contrast to at least most of
the examples in Andrews (2001), but similarly to Kasahara and Shimotsu (2012, Propn 3c,d)) and the
dimension of this cone, qϑ = q2(q2 +1)/2, may not be small either (qϑ = 3, 6, 10, . . . for q2 = 2, 3, 4, . . .).

4 Simulating the asymptotic null distribution and the bootstrap

4.1 Simulating the asymptotic null distribution

Similarly to Hansen (1996) and Andrews (2001), the asymptotic null distribution of the LR statistic
in Theorem 1 is typically application-specific and cannot be tabulated. Following these papers, one
option is to use simulation methods to obtain critical values of the asymptotic null distribution. The
following procedure is analogous to the ones used by Hansen (1996) in a rather general setting involving
unidentified nuisance parameters (and also specifically in threshold models), Andrews (2001, Sec 5.6)
in a random coefficient model, and Zhu and Zhang (2004, Sec 2.1) in a mixture regression model.

To set notation, assume the (observed or simulated) sample is (y1−p, . . . , y0, y1, . . . , yT ), obtain the

estimator under the null hypothesis ˆ̃
φT = (

ˆ̃
φ0,T ,

ˆ̃
φ1,T , . . . ,

ˆ̃
φp,T , ˆ̃σ

2
T ) (e.g. the OLS estimator), the esti-

mator under the alternative hypothesis (α̂T , β̂T , φ̂T , ϕ̂T ), and the LR statistic LRT = 2[LT (α̂T , β̂T , φ̂T , ϕ̂T )−
L0
T (

ˆ̃
φT )]. Let AG be some finite grid of α values in A. For each fixed α ∈ AG, let ŝtα signify an empir-

ical counterpart of stα (see Assumption 5) where the unknown parameter φ̃∗ (or (β∗, π∗)) is replaced
by its consistent estimator under the null, ˆ̃

φT . (The specific forms of ŝtα in the LMAR and GMAR
examples are provided in Appendices B and C, respectively.) Set ÎTα = T−1

∑T
t=1 ŝtαŝ

′
tα. Now, for

each j = 1, . . . , J (where J denotes the number of repetitions), do the following.

(i) Generate a sequence {vtj}Tt=1 of T i.i.d. N(0, 1) random variables.

(ii) For each α ∈ AG, set ŜjTα =
∑T

t=1 ŝtαvtj , Ẑ
j
Tα = Î−1

TαT
−1/2ŜjTα, and (using similar partitioning

notation as before)

L̂R
j

T (α) = Ẑj′Tϑα(Î−1
Tα)−1

ϑϑ Ẑ
j
Tϑα − inf

λϑ∈Λϑ

{
(λϑ − ẐjTϑα)′(Î−1

Tα)−1
ϑϑ(λϑ − ẐjTϑα)

}
;

here the minimization of the quadratic form over the cone Λϑ has to be performed numerically.

(iii) Set L̂R
j

T,AG
= maxα∈AG L̂R

j

T (α).

This yields a sample {L̂R
1

T,AG
, . . . , L̂R

J

T,AG
} of J realizations. An approximate p–value corresponding

to an observed LR test statistic LRT is computed as J−1
∑J

j=1 1(L̂R
j

T,AG
> LRT ) (here 1(·) denotes

the indicator function). The precision of this approximation can be controlled by choosing J large
enough, see Hansen (1996) (in the illustration below we use J = 2500).
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4.2 Parametric bootstrap

An alternative to simulating the asymptotic null distribution is to use bootstrap. The following re-
stricted parametric bootstrap procedure was found to work well in simulations. Related bootstrap
procedures for LR tests are discussed by Qu and Zhuo (2017) and Kasahara and Shimotsu (2018)
when testing for regime switching in Markov switching models.

For each b = 1, . . . , B (where B denotes the number of bootstrap repetitions), do the following.

(i) Generate a sequence {ε?bt }Tt=1 of T i.i.d. N(0, 1) bootstrap errors.

(ii) To generate the bth bootstrap sample, set (y?b1−p, . . . , y
?b
0 ) = (y1−p, . . . , y0) as initial values and

obtain (y?b1 , . . . , y
?b
T ) using the recursion y?bt =

ˆ̃
φ0,T +

∑p
i=1

ˆ̃
φi,T y

?b
t−i + ˆ̃σT ε

?b
t .

(iii) Using the bootstrap sample (y?b1−p, . . . , y
?b
T ), perform estimation under the null and alternative

hypotheses and obtain ˆ̃
φ?bT = (

ˆ̃
φ?b0,T ,

ˆ̃
φ?b1,T , . . . ,

ˆ̃
φ?bp,T ,

ˆ̃σ?b2T ) and (α̂?bT , β̂
?b
T , φ̂

?b
T , ϕ̂

?b
T ). The bth bootstrap

LR statistic is LR?bT = 2[LT (α̂?bT , β̂
?b
T , φ̂

?b
T , ϕ̂

?b
T )− L0

T (
ˆ̃
φ?bT )].

This yields B (conditionally) independent bootstrap statistics LR?1T , . . . , LR
?B
T and an approximate

bootstrap p–value is computed as B−1
∑B

b=1 1(LR?bT > LRT ).
Our (somewhat limited) simulation results below indicate that this procedure works well in the

LMAR and GMAR examples. Nevertheless, one should be cautious when using bootstrap in mixture
models as the validity of bootstrap in the presence of parameters on the boundary and singular infor-
mation matrices is not clear (see, e.g., Andrews (2000)). We also note that additional (unreported)
simulations indicated that restricted residual bootstrap in which the bootstrap errors {ε?bt }Tt=1 are
obtained by sampling with replacement from {ε̂t}Tt=1, the residuals from restricted estimation (i.e.,
ε̂t = (yt − ˆ̃

φ0,T −
∑p

i=1
ˆ̃
φi,T yt−i)/ˆ̃σT , t = 1, . . . , T ), may not work well in the present setting.

4.3 A small Monte Carlo study

We now study how well simulating the asymptotic null distribution and using the parametric bootstrap
procedure work in finite samples. The results are presented in Tables 1 and 2. We consider two LR
test statistics, one based on an estimated LMAR model, and another based on an estimated GMAR
model (as in our two examples in the preceding sections). In all simulations, we use an autoregressive
order p = 1, J = 2500 repetitions, B = 1000 bootstrap repetitions, and three different sample sizes:
T = 250, 500, and 1000. For the bootstrap, fewer parameter combinations and a smaller number of
repetitions are used to keep the computational load manageable.

The top parts of Tables 1 and 2 present results for size simulations. Data is generated from an
AR(1) model (for a range of different parameter values shown in Tables 1 and 2) and AR(1), LMAR(1),
and GMAR(1) models are estimated (LMAR with m = 1; GMAR with the restriction φ̃0 = ϕ̃0; in
estimation of the mixture models we use a genetic algorithm as singularity of the information matrix
may render gradient based methods unreliable). Two LR test statistics are calculated based on the
estimated LMAR and GMAR models, respectively, and labelled ‘LMAR LRT ’ and ‘GMAR LRT ’.
For Table 1, simulation-based p–values are computed based on the asymptotic distributions in Section
3.5.2 and using the simulation procedure in Section 4.1; for Table 2, bootstrap p–values are computed
as described in Section 4.2. Using nominal levels 10%, 5%, and 1%, a reject/not-reject decision is
recorded. This exercise is repeated 2500 times for Table 1 and 1000 times for Table 2, and the six
rightmost columns in Tables 1 and 2 present the empirical rejection frequencies (for the LMAR LRT
and GMAR LRT tests and the three nominal levels used).

As can be seen from the results in Table 1 (top part), based on the simulated asymptotic null
distribution the LMAR LRT test’s size is satisfactory overall, typically being somewhat oversized for the
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DGP Parameter values T LMAR LRT GMAR LRT
10% 5% 1% 10% 5% 1%

AR φ̃0 φ̃1 σ̃2
1

0 0.20 1 250 0.13 0.07 0.018 0.14 0.07 0.017
500 0.10 0.05 0.012 0.11 0.06 0.014

1000 0.08 0.04 0.012 0.11 0.06 0.010

0 0.40 1 250 0.14 0.07 0.015 0.12 0.07 0.015
500 0.10 0.05 0.010 0.12 0.07 0.018

1000 0.08 0.04 0.008 0.11 0.06 0.014

0 0.60 1 250 0.12 0.07 0.018 0.12 0.06 0.016
500 0.09 0.05 0.013 0.11 0.06 0.012

1000 0.09 0.04 0.007 0.11 0.06 0.014

0 0.80 1 250 0.12 0.06 0.017 0.12 0.06 0.013
500 0.09 0.05 0.010 0.13 0.07 0.018

1000 0.07 0.04 0.010 0.11 0.06 0.015

0 0.85 1 250 0.12 0.07 0.013 0.13 0.07 0.018
500 0.09 0.05 0.010 0.11 0.06 0.014

1000 0.08 0.04 0.010 0.12 0.06 0.014

0 0.90 1 250 0.11 0.05 0.014 0.13 0.07 0.014
500 0.10 0.05 0.010 0.12 0.06 0.016

1000 0.08 0.04 0.009 0.12 0.07 0.016

GMAR φ̃0 φ̃1 σ̃2
1 ϕ̃1 σ̃2

2 α

0 0.4 1 0.6 1 0.33 250 0.13 0.08 0.02 0.16 0.09 0.02
500 0.11 0.07 0.01 0.16 0.09 0.03

1000 0.09 0.05 0.01 0.20 0.13 0.04

0 0.3 1 0.7 1 0.33 250 0.15 0.09 0.03 0.31 0.20 0.06
500 0.17 0.10 0.03 0.44 0.32 0.13

1000 0.19 0.12 0.04 0.61 0.48 0.24

0 0.2 1 0.8 1 0.33 250 0.24 0.16 0.05 0.62 0.49 0.25
500 0.32 0.22 0.09 0.84 0.76 0.52

1000 0.49 0.40 0.23 0.98 0.95 0.87

0 0.5 1 0.5 2 0.33 250 0.23 0.13 0.04 0.32 0.22 0.08
500 0.24 0.16 0.05 0.45 0.32 0.13

1000 0.32 0.22 0.09 0.62 0.50 0.26

0 0.5 1 0.5 3 0.33 250 0.41 0.30 0.12 0.66 0.54 0.31
500 0.55 0.45 0.25 0.88 0.81 0.60

1000 0.77 0.69 0.49 0.98 0.97 0.91

LMAR φ̃0 φ̃1 σ̃2
1 ϕ̃0 ϕ̃1 σ̃2

2 α0 α1

0 0.4 1 0 0.6 1 0 1 250 0.19 0.11 0.03 0.17 0.11 0.02
500 0.24 0.15 0.05 0.19 0.11 0.03

1000 0.39 0.27 0.12 0.22 0.13 0.04

0 0.3 1 0 0.7 1 0 1 250 0.44 0.32 0.14 0.36 0.24 0.10
500 0.68 0.59 0.35 0.50 0.39 0.19

1000 0.94 0.89 0.76 0.71 0.59 0.36

0 0.2 1 0 0.8 1 0 1 250 0.77 0.67 0.46 0.70 0.58 0.36
500 0.98 0.96 0.88 0.91 0.87 0.70

1000 1.00 1.00 1.00 0.99 0.99 0.96

0 0.5 1 0 0.5 2 0 1 250 0.52 0.37 0.18 0.30 0.19 0.07
500 0.73 0.64 0.41 0.39 0.28 0.11

1000 0.95 0.91 0.79 0.54 0.42 0.21

0 0.5 1 0 0.5 3 0 1 250 0.89 0.83 0.64 0.62 0.49 0.27
500 0.99 0.98 0.93 0.82 0.74 0.55

1000 1.00 1.00 1.00 0.98 0.95 0.85

Table 1: Results of a Monte Carlo study, simulating the asymptotic null distribution. Empirical rejection frequen-
cies (six rightmost columns) for LMAR LRT and GMAR LRT tests for nominal sizes 10%, 5%, and 1%. Different
rows correspond to results with data generated from AR, GMAR, or LMAR models (with parameter values used
shown in the table) with different sample sizes (T = 250, 500, or 1000).
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DGP Parameter values T LMAR LRT GMAR LRT
10% 5% 1% 10% 5% 1%

AR φ̃0 φ̃1 σ̃2
1

0 0.40 1 250 0.11 0.05 0.015 0.10 0.05 0.008
500 0.10 0.05 0.007 0.10 0.05 0.009

1000 0.11 0.06 0.007 0.11 0.06 0.008

0 0.60 1 250 0.10 0.05 0.010 0.11 0.05 0.008
500 0.08 0.04 0.012 0.10 0.05 0.012

1000 0.12 0.06 0.006 0.10 0.05 0.011

0 0.80 1 250 0.10 0.05 0.009 0.09 0.03 0.005
500 0.09 0.05 0.011 0.09 0.05 0.007

1000 0.11 0.06 0.013 0.10 0.05 0.012

0 0.90 1 250 0.11 0.05 0.006 0.10 0.05 0.010
500 0.11 0.05 0.015 0.11 0.06 0.007

1000 0.10 0.04 0.007 0.09 0.03 0.005

GMAR φ̃0 φ̃1 σ̃2
1 ϕ̃1 σ̃2

2 α

0 0.2 1 0.8 1 0.33 250 0.22 0.13 0.03 0.57 0.42 0.20
500 0.32 0.21 0.09 0.82 0.71 0.47

1000 0.48 0.38 0.22 0.97 0.94 0.84

0 0.5 1 0.5 3 0.33 250 0.35 0.25 0.09 0.67 0.51 0.28
500 0.57 0.45 0.24 0.89 0.81 0.59

1000 0.78 0.69 0.48 0.98 0.97 0.90

LMAR φ̃0 φ̃1 σ̃2
1 ϕ̃0 ϕ̃1 σ̃2

2 α0 α1

0 0.2 1 0 0.8 1 0 1 250 0.78 0.69 0.42 0.69 0.55 0.31
500 0.98 0.95 0.88 0.90 0.83 0.66

1000 1.00 1.00 1.00 0.99 0.99 0.95

0 0.5 1 0 0.5 3 0 1 250 0.88 0.79 0.59 0.58 0.46 0.22
500 0.99 0.98 0.94 0.83 0.72 0.49

1000 1.00 1.00 1.00 0.97 0.94 0.84

Table 2: Results of a Monte Carlo study, parametric bootstrap. Empirical rejection frequencies (six rightmost
columns) for LMAR LRT and GMAR LRT tests for nominal sizes 10%, 5%, and 1%. Different rows correspond to
results with data generated from AR, GMAR, or LMAR models (with parameter values used shown in the table)
with different sample sizes (T = 250, 500, or 1000).

smallest sample size T = 250, and somewhat conservative for the larger sample sizes (T = 500, 1000).
The parameter values used in simulation do not seem to have a large effect on the size. The GMAR
LRT test, on the other hand, appears to be slightly oversized across all sample sizes and parameter
values used. The top part of Table 2 indicates that parametric bootstrap works very well already for
small sample sizes.

The lower parts of Tables 1 and 2 present results for power simulations. Data is generated either
from a GMAR model or from an LMAR model (for a range of different parameter values shown in
Tables 1 and 2), and empirical rejection frequencies are calculated as above. Both the LMAR LRT
test and the GMAR LRT test appear to have good overall power, and the powers based on asymptotic
and bootstrap p–values in Tables 1 and 2 are quite close to each other. As expected, when the two
regimes differ more from each other, the tests have higher power, and the same happens when sample
size is increased. Besides having good power against the ‘right’ alternatives, the tests also turn out
to have decent power against ‘wrong’ alternatives: When data is generated from the GMAR (resp.,
LMAR) model, the LMAR LRT (resp., GMAR LRT ) test rejects reasonably often (the GMAR LRT
test in particular seems capable of picking up LMAR type regime switching).

As a computational remark we note that the LMAR LRT and GMAR LRT tests and their
simulation-based asymptotic p–values are reasonably straightforward to compute in a matter of sec-
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onds using a standard, modern desktop computer. In contrast, a drawback of computing bootstrap
p–values is that it requires repeated estimation of the mixture model under the alternative, leading to
a notable increase, roughly B–fold, in computation time. The value of having an asymptotic distribu-
tion available would be particularly pronounced if one were to consider testing for the need of mixture
models in a larger collection of different data sets in an automated manner.

5 Conclusions

This paper has studied the asymptotic distribution of the LR test statistic for testing a linear au-
toregressive model against a two-regime mixture autoregressive model. A distinguishing feature of
the paper is that the regime switching probabilities are observation-dependent. Technical challenges
resulting from unidentified parameters under the null, parameters on the boundary, and singularity of
the information matrix were dealt with by considering an appropriately reparameterized model and
higher-order expansions of the log-likelihood function. The resulting asymptotic distribution of the
LR test statistic is non-standard and application-specific. One can either simulate the asymptotic null
distribution or use parametric bootstrap, and a Monte Carlo study indicated the proposed tests to
have good size and power properties.

The general theory of the paper was illustrated using two concrete examples, the LMAR model of
Wong and Li (2001) and (a version of the) GMAR model of Kalliovirta et al. (2015). Considering other
mixture AR models, as well as the general GMAR model, is left for future research. This paper was
concerned with testing linearity against a two-regime model, and considering tests of M ≥ 2 regimes
versusM+1 regimes, similarly as in Kasahara and Shimotsu (2015) in a related setting, forms another
interesting research topic. Extensions of the testing theory to mixture autoregressive models with
exogeneous variables or to mixtures of vector autoregressions could also be considered.

Appendix

A Details for the general results

Lemma A.1. If Assumptions 2(ii) and 3(i,ii) hold, a sufficient condition for Assumption 3(iii) is that
‖πα(φ, ϕ)− πα(φ∗, φ∗)‖ ≤ Ch (‖(φ, ϕ)− (φ∗, φ∗)‖∗) for all (φ, ϕ) ∈ Φ × Φ and some C < ∞, where
h : [0,∞)→ [0,∞) is a strictly increasing function such that h (x) ↓ 0 as x ↓ 0 and ‖·‖∗ is any vector
norm on R2q2.

Proof of Lemma A.1. See Supplementary Appendix D. �

Proof of Lemma 1. Set θTα = I1/2
α T 1/2θ(α, β̂Tα, π̂Tα, $̂Tα), and rewrite equation (12) evaluated at

(α, β̂Tα, π̂Tα, $̂Tα) as

opα(1) ≤ LπT (α, β̂Tα, π̂Tα, $̂Tα)−LπT (α, β∗, π∗, 0) = (I1/2
α ZTα)′θTα−1

2 ‖θTα‖
2+RT (α, β̂Tα, π̂Tα, $̂Tα) (23)

(the lower bound is due to Assumption 2(i) and the definitions of (β̂Tα, π̂Tα, $̂Tα) and LπT (α, β, π,$)).
As to the first term on the right hand side, note that

sup
α∈A
‖I1/2

α ZTα‖ = sup
α∈A

(
Z ′TαIαZTα

)1/2 ≤ sup
α∈A

(λmax (Iα))1/2 sup
α∈A
‖ZTα‖ ≤ Csup

α∈A
‖ZTα‖ = Op (1) , (24)
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where the latter inequality holds with some finite C in view of Assumption 5(iii), and the last equality
will be justified below. Thus

I1/2
α ZTα = Opα(1), (25)

a result which also implies ‖(I1/2
α ZTα)′θTα‖ ≤ ‖θTα‖‖I1/2

α ZTα‖ = ‖θTα‖Opα(1).
Next consider the third term on the right hand side of (23), where the assumption (β̂Tα, π̂Tα, $̂Tα) =

(β∗, π∗, 0) + opα(1) (see Assumption 3(iii)) allows us to choose a sequence {γT , T ≥ 1} of (non-
random) positive scalars converging to zero slowly enough to ensure that P (supα∈A‖(β̂Tα, π̂Tα, $̂Tα)−
(β∗, π∗, 0)‖ ≤ γT )→ 1, and with this sequence {γT , T ≥ 1}, Assumption 5(iv) implies that

|RT (α, β̂Tα, π̂Tα, $̂Tα)| = (1 + ‖T 1/2θ(α, β̂Tα, π̂Tα, $̂Tα)‖)2opα(1) (26)

(cf. Pakes and Pollard (1989, proof of Thm 3.3)). Here ‖T 1/2θ(α, β̂Tα, π̂Tα, $̂Tα)‖ = ‖I−1/2
α θTα‖ so

that, as 0 < infα∈A λmin(Iα) by Assumption 5(iii),

|RT (α, β̂Tα, π̂Tα, $̂Tα)| ≤ opα(1) + ‖θTα‖ opα(1) + ‖θTα‖2 opα(1). (27)

Combining the results above (see (23), the inequality below (25), and (27)), organizing terms, and
absorbing ‖θTα‖ opα(1) into ‖θTα‖Opα(1) leads to

0 ≤ ‖θTα‖Opα(1) + opα(1) + (opα(1)− 1
2) ‖θTα‖2 . (28)

In Supplementary Appendix D we show that the last term on the right hand side of (28) is dominated
by −1

4 ‖θTα‖
2 + opα(1) so that (absorbing constants into the Opα(1) and opα(1) terms) ‖θTα‖2 ≤

2 ‖θTα‖Opα(1) + opα(1). Denoting the Opα(1) term on the majorant side with ξTα and reorganizing,

(‖θTα‖ − ξTα)2 = ‖θTα‖2 − 2 ‖θTα‖ ξTα + ξ2
Tα ≤ ξ2

Tα + opα(1) = Opα(1).

Taking square roots yields ‖θTα‖ = Opα(1) so that ‖T 1/2θ(α, β̂Tα, π̂Tα, $̂Tα)‖ = Opα(1), establishing
part (i) of the lemma. Part (ii) follows from ‖θTα‖ = Opα(1) and (27). Part (iii) follows from part (ii).

To complete the proof of Lemma 1, we now justify the last equality in (24). By Assumption 5(ii),
T−1/2ST• ⇒ S• in C(A,Rr), and by the continuous mapping theorem (justification in Supplementary
Appendix D), ZTα = I−1

α T−1/2STα converges weakly in C(A,Rr) to a mean zero Rr-valued Gaussian
process Zα = I−1

α Sα whose sample paths are continuous in α with probability one and that has
E[ZαZ

′
α] = I−1

α for all α ∈ A. A further application of the continuous mapping theorem (justification
in Supplementary Appendix D) implies that supα∈A ‖ZTα‖ converges in distribution in R and, as all
probability measures on R are tight, the limit must be tight. This justifies the last equality in (24). �

Proof of Lemma 2. By the definition of λ̂Tαq, the fact that 0 ∈ Θα,T , and (25),

‖I1/2
α (λ̂Tαq − ZTα)‖2 = (λ̂Tαq − ZTα)′Iα(λ̂Tαq − ZTα) ≤ Z ′TαIαZTα + opα(1) = Opα(1),

implying that I1/2
α (λ̂Tαq−ZTα) = Opα(1). A further use of (25) and the condition 0 < infα∈A λmin(Iα)

in Assumption 5(iii) yields λ̂Tαq = Opα(1). We next show that RT (α, β̂Tαq, π̂Tαq, $̂Tαq) = opα(1).
First, λ̂Tαq = T 1/2θ(α, β̂Tαq, π̂Tαq, $̂Tαq) and λ̂Tαq = Opα(1) imply that θ(α, β̂Tαq, π̂Tαq, $̂Tαq) =

opα(1). Second, to show that (β̂Tαq, π̂Tαq, $̂Tαq) = (β∗, π∗, 0) + opα(1), pick arbitrary ε, δ > 0, and
conclude from Assumption 5(i)(b) that infα∈A inf(β,π,$)∈B×Πα:‖(β,π,$)−(β∗,π∗,0)‖≥ε ‖θ(α, β, π,$)‖ ≥
δε > 0 for some δε. Now, as θ(α, β̂Tαq, π̂Tαq, $̂Tαq) = opα(1), we can find a Tδ,δε such that for
all T ≥ Tδ,δε , P (supα∈A‖θ(α, β̂Tαq, π̂Tαq, $̂Tαq)‖ < δε) > 1 − δ. Note that whenever the event
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{supα∈A‖θ(α, β̂Tαq, π̂Tαq, $̂Tαq)‖ < δε} occurs, the event {supα∈A‖(β̂Tαq, π̂Tαq, $̂Tαq)− (β∗, π∗, 0)‖ <
ε} must also occur (if, on the contrary, ‖(β̂Tαq, π̂Tαq, $̂Tαq) − (β∗, π∗, 0)‖ ≥ ε for some α ∈ A,
then necessarily ‖θ(α, β̂Tαq, π̂Tαq, $̂Tαq)‖ ≥ δε)). We therefore conclude that for all T ≥ Tδ,δε ,
1 − δ < P (supα∈A‖θ(α, β̂Tαq, π̂Tαq, $̂Tαq)‖ < δε) ≤ P (supα∈A‖(β̂Tαq, π̂Tαq, $̂Tαq) − (β∗, π∗, 0)‖ < ε),
so that supα∈A‖(β̂Tαq, π̂Tαq, $̂Tαq) − (β∗, π∗, 0)‖ = op(1), as desired. Third, as (β̂Tαq, π̂Tαq, $̂Tαq) =

(β∗, π∗, 0) + opα(1), using the same argument as in the derivation of (26) now leads to

|RT (α, β̂Tαq, π̂Tαq, $̂Tαq)| = (1 + ‖T 1/2θ(α, β̂Tαq, π̂Tαq, $̂Tαq)‖)2opα(1) = (1 +
∥∥λ̂Tαq∥∥)2opα(1).

Together with λ̂Tαq = Opα(1) established above, this yields RT (α, β̂Tαq, π̂Tαq, $̂Tαq) = opα(1).
Now, by expansion (13), the definitions of (β̂Tα, π̂Tα, $̂Tα) and λ̂Tαq, and making use of results

RT (α, β̂Tα, π̂Tα, $̂Tα) = opα(1) and RT (α, β̂Tαq, π̂Tαq, $̂Tαq) = opα(1),

opα(1) ≤ LπT (α, β̂Tα, π̂Tα, $̂Tα)− LπT (α, β̂Tαq, π̂Tαq, $̂Tαq)

= 1
2(λ̂Tαq − ZTα)′Iα(λ̂Tαq − ZTα)

− 1
2

[
T 1/2θ(α, β̂Tα, π̂Tα, $̂Tα)− ZTα

]′Iα[T 1/2θ(α, β̂Tα, π̂Tα, $̂Tα)− ZTα
]

+ opα(1)

≤ opα(1),

implying, by (20), the desired result. �

Proof of Lemma 3. For any vectors a, b ∈ Rr, we denote ‖a− b‖I−1
α

= [(a − b)′Iα(a − b)]1/2, and
for any point p ∈ Rr and a set S ⊂ Rr, we define ‖p− S‖I−1

α
via ‖p− S‖2I−1

α
= infs∈S ‖s− p‖2I−1

α
=

infs∈S [(s−p)′Iα(s−p)]. With this notation, we need to prove that ‖ZTα −Θα,T ‖2I−1
α

= ‖ZTα − Λ‖2I−1
α

+

opα(1). First note that, because Λ is a cone, we have, for any T ,

‖ZTα − Λ‖2I−1
α

= T inf
λ∈Λ

{
(T−1/2λ− T−1/2ZTα)′Iα(T−1/2λ− T−1/2ZTα)

}
= T

∥∥T−1/2ZTα − Λ
∥∥2

I−1
α
.

Similarly, by the definitions of Θα,T and Θα,

‖ZTα −Θα,T ‖2I−1
α

= inf
λ∈Θα

{
(T 1/2λ− ZTα)′Iα(T 1/2λ− ZTα)

}
= T

∥∥T−1/2ZTα −Θα

∥∥2

I−1
α
.

Now let GT (α,x) = T ‖x−Θα‖2I−1
α
− T ‖x− Λ‖2I−1

α
define a (non-random) function on A × Rr.

Because {Θα, α ∈ A} is locally uniformly equal to the cone Λ, we can find a δ > 0 such that
Θα ∩ (−δ, δ)r = Λ ∩ (−δ, δ)r for all α ∈ A. Furthermore, 0 ∈ Θα and 0 ∈ Λ (here 0 ∈ Rr). Therefore,
we can find a neighborhood N0 of 0 such that for all (α,x) ∈ A×N0,

GT (α,x) = T ‖x−Θα ∩ (−δ, δ)r‖2I−1
α
− T ‖x− Λ ∩ (−δ, δ)r‖2I−1

α
= 0.

Define GT (α), a random function of α, as GT (α) = GT (α, T−1/2ZTα). In the proof of Lemma 1 it was
shown that supα∈A‖ZTα‖ = Op(1) (see (24)) so that T−1/2‖ZTα‖ = opα(1). Therefore, for all ε > 0,

P (supα∈A |GT (α)| > ε) ≤ P (supα∈A |GT (α)| > ε ; T−1/2 supα∈A ‖ZTα‖ ∈ N0)

+ P (supα∈A |GT (α)| > ε ; T−1/2 supα∈A ‖ZTα‖ /∈ N0).

The first term on the right hand side equals zero as GT (α,x) = 0 for all (α,x) ∈ A×N0 and the second
one is dominated by P (T−1/2 supα∈A ‖ZTα‖ /∈ N0) which converges to zero because T−1/2‖ZTα‖ =

opα(1). Thus supα∈A |GT (α)| = op(1), implying ‖ZTα −Θα,T ‖2I−1
α

= ‖ZTα − Λ‖2I−1
α

+ opα(1). �
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Proof of Lemma 4. It was shown in the proof of Lemma 1 that ZT• ⇒ Z• in C(A,Rr). Therefore also
(ZT•, I•)⇒ (Z•, I•) in C(A,Rr)× {Iα} (Billingsley (1999, Thm 3.9)). As the function g : C(A,Rr)×
{Iα} → B(A,R) mapping (x•, I•) (∈ C(A,Rr) × {Iα}) to x′•I•x• − infλ∈Λ {(λ− x•)′I•(λ− x•)} is
continuous (justification in Supplementary Appendix D), the continuous mapping theorem is appli-
cable. This, together with Billingsley (1999, Thm 3.1) (for which it is necessary that the remainder
term in (22) is opα(1) and not only op(1)), implies that 2[LπT (•, β̂T•, π̂T•, $̂T•) − LπT (•, β∗, π∗, 0)] ⇒
Z ′•I•Z• − infλ∈Λ {(λ− Z•)′I•(λ− Z•)}. �

Proofs of Lemmas 5 & 6. Proof of Lemma 5 consists of straightforward matrix algebra. The argu-
ments required for proving Lemma 6 are standard. For details, see Supplementary Appendix D. �

Proof of Theorem 1. Under Assumption 8, the random process S′θαI
−1
θθαSθα in Lemma 5 coincides

with the random variable S0′(I0)−1S0 in Lemma 6. Therefore the expression of LRT (α) in (9), Lemmas
4, 5, and 6, and Billingsley (1999, Thm 3.1) (for which it is necessary that the remainder term in (9) is
opα(1) and not only op(1)) imply the weak convergence result for LRT (α). The result for LRT follows
from the continuous mapping theorem. �

B Details for the LMAR example

In this appendix it appears convenient to denote αL1,t instead of αLt and to set αL2,t = 1−αL1,t. In some
cases we also include the argument α and denote αL1,t(α) and αL2,t(α). The same notation is employed
in the Supplementary Appendix and a similar modification is used in the case of the GMAR model.

Assumptions 1–4. Assumption 1(i) is assumed to hold, 1(ii) holds as A is compact, and 1(iii)
holds by the definition of the mixing weight. For the verification of Assumption 2, see the GMAR
example in Appendix C; the LMAR case is treated there as well. To verify Assumption 3, note first
that conditions (i) and (ii) clearly hold, and for condition (iii), we have πα(φ, ϕ) − πα(φ∗, φ∗) =

(φ, φ− ϕ)− (φ∗, 0) = (φ− φ∗, (φ− φ∗)− (ϕ− φ∗)). Choosing ‖x‖∗ = ‖x‖1 =
∑2q

i=1 |xi| and using the
triangle inequality it is straightforward to check that ‖(φ− φ∗, (φ− φ∗)− (ϕ− φ∗))‖ ≤ 2 ‖φ− φ∗‖ +

‖ϕ− φ∗‖ ≤ 2 ‖(φ, ϕ)− (φ∗, φ∗)‖1. Thus condition (iii) holds by Lemma A.1. Regarding Assumption 4,
as αL1,t does not depend on (φ, ϕ) and π−1

α (π,$) = (π, π−$), the required differentiability conditions
hold for all positive integers k.

Assumption 5: Computation of the required derivatives. As αL1,t does not depend on (φ, ϕ)

and π−1
α (π,$) = (π, π −$), the quantities fπ2,t(α, π,$) and lπt (α, π,$) take the form

fπ2,t(α, π,$) = αL1,t(α)ft(π) + (1− αL1,t(α))ft(π −$),

lπt (α, π,$) = log[αL1,t(α)ft(π) + (1− αL1,t(α))ft(π −$)].

Straightforward differentiation yields the following expressions for the first and second partial deriva-
tives with respect to π and $ (recall that ∇ and ∇2 denote first and second order differentiation with
respect to the indicated parameters; ∇ft(·) denotes differentiation of ft(·) in (3) with respect to φ̃):

∇πlπt (α, π,$) = [αL1,t(α)∇ft(π) + αL2,t(α)∇ft(π −$)]/fπ2,t(α, π,$),

∇$lπt (α, π,$) = [−αL2,t(α)∇ft(π −$)]/fπ2,t(α, π,$),
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∇2
ππ′ l

π
t (α, π,$) = αL1,t(α)

(
∇2ft(π)

fπ2,t(α, π,$)
− ∇ft(π)

fπ2,t(α, π,$)

αL1,t(α)∇′ft(π) + αL2,t(α)∇′ft(π −$)

fπ2,t(α, π,$)

)
+ αL2,t(α)

(
∇2ft(π −$)

fπ2,t(α, π,$)
− ∇ft(π −$)

fπ2,t(α, π,$)

αL1,t(α)∇′ft(π) + αL2,t(α)∇′ft(π −$)

fπ2,t(α, π,$)

)
,

∇2
π$′ l

π
t (α, π,$) = αL1,t(α)

(
− ∇ft(π)

fπ2,t(α, π,$)

−αL2,t(α)∇′ft(π −$)

fπ2,t(α, π,$)

)
+ αL2,t(α)

(
−∇

2ft(π −$)

fπ2,t(α, π,$)
+
∇ft(π −$)

fπ2,t(α, π,$)

αL2,t(α)∇′ft(π −$)

fπ2,t(α, π,$)

)
,

∇2
$$′ l

π
t (α, π,$) = −αL2,t(α)

(
−∇

2ft(π −$)

fπ2,t(α, π,$)
+
∇ft(π −$)

fπ2,t(α, π,$)

αL2,t(α)∇′ft(π −$)

fπ2,t(α, π,$)

)
.

The corresponding expressions evaluated at (α, π,$) = (α, π∗, 0) take the form

∇(π,$)l
π
t (α, π∗, 0) = (1,−(1− αL1,t(α)))⊗ ∇ft(π

∗)

ft(π∗)
, (29)

∇2
ππ′ l

π
t (α, π∗, 0) =

∇2ft(π
∗)

ft(π∗)
− ∇ft(π

∗)

ft(π∗)

∇′ft(π∗)
ft(π∗)

, (30)

∇2
π$′ l

π
t (α, π∗, 0) = −(1− αL1,t(α))

∇2ft(π
∗)

ft(π∗)
+ (1− αL1,t(α))

∇ft(π∗)
ft(π∗)

∇′ft(π∗)
ft(π∗)

, (31)

∇2
$$′ l

π
t (α, π∗, 0) = (1− αL1,t(α))

∇2ft(π
∗)

ft(π∗)
− (1− αL1,t(α))2∇ft(π∗)

ft(π∗)

∇′ft(π∗)
ft(π∗)

. (32)

Assumption 5: Verifying the assumption. Omitting the unnecessary β from θ(α, β, π,$), we
have θ(α, π,$) = (π − π∗, $) = (θ, ϑ) so that part (i) is clearly satisfied with the parameter space

Θα = Θ = {θ = (θ, ϑ) ∈ R2q2 : θ = π − π∗, ϑ = $ for some (π,$) ∈ Π}
= {θ = (θ, ϑ) ∈ R2q2 : θ = φ− φ∗, ϑ = φ− ϕ for some (φ, ϕ) ∈ Φ× Φ}

independent of α and with 0 (∈ R2q2) an interior point of Θ. The first two requirements in part (ii) are
similarly clear, whereas the third requirement follows from the continuity of αL1,t(α) in α. The weak
convergence requirement in part (ii) is verified in Supplementary Appendix E.1.

For part (iii), first consider the positive definiteness of Iα for a fixed α ∈ A. It suffices to show that

a′∇ft(π∗)/ft(π∗) = αL2,t(α)b′∇ft(π∗)/ft(π∗) a.s. (33)

only if a = (a1, . . . , aq2) = 0 and b = (b1, . . . , bq2) = 0. For brevity, denote gt(π) = [yt− (π1 + π2yt−1 +

· · ·+πp+1yt−p)]/π
1/2
p+2 = [yt− (φ̃0 + φ̃1yt−1 + · · ·+ φ̃pyt−p)]/σ̃1 and zt−1 = (1,yt−1) so that gt(π∗) = εt.

Straightforward differentiation yields

∇ft(π)

ft(π)
=

[
zt−1gt(π)/σ̃1

(g2
t (π)− 1)/(2σ̃2

1)

]
so that

∇ft(π∗)
ft(π∗)

=

[
zt−1εt/σ̃

∗
1

(ε2
t − 1)/(2σ̃∗21 )

]
(34)

(where σ̃2
1 = πp+2). Multiplying both sides of equation (33) by (ε2

t − 1)2σ̃∗21 , taking expectations
conditional on Ft−1, and making use of the fact that odd moments of the normal distribution are zero,
yields aq2E[(ε2

t − 1)2] = αL2,t(α)bq2E[(ε2
t − 1)2] a.s. Because αL2,t(α) 6= 0 and not equal to a constant

(see Section 3.1.1), it follows that aq2 = bq2 = 0. Therefore, equation (33) (multiplied by σ∗1) now
reduces to (a1, . . . , aq2−1)′zt−1εt = αL2,t(α)(b1, . . . , bq2−1)′zt−1εt a.s. Multiplying this equation by εt,
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taking expectations conditional on Ft−1, and dividing by E[ε2
t ] = σ∗21 yields (a1, . . . , aq2−1)′zt−1 =

αL2,t(α)(b1, . . . , bq2−1)′zt−1 a.s. This is clearly impossible unless a1 = . . . = aq2−1 = b1 = . . . =

bq2−1 = 0, because αL2,t(α) is a positive and strictly decreasing function of α′zt−1 (6= α0) and because
(a1, . . . , aq2−1)′zt−1 and (b1, . . . , bq2−1)′zt−1 are normally distributed or constants (if only a1 and b1
are nonzero). Therefore, a = b = 0, so that Iα is positive definite (for any fixed α ∈ A).

To complete the verification of part (iii), we show that Iα is a continuous function of α and such
that 0 < infα∈A λmin(Iα) and sup α∈Aλmax(Iα) < ∞. For continuity, let αn be a sequence of points
in A converging to α• ∈ A. It suffices to demonstrate that limn→∞E

[
αL2,t(αn)∇ft(π

∗)
ft(π∗)

∇′ft(π∗)
ft(π∗)

]
=

E
[
αL2,t(α•)

∇ft(π∗)
ft(π∗)

∇′ft(π∗)
ft(π∗)

]
and similarly with αL2,t(·) replaced by its square. This, however, is an

immediate consequence of the dominated convergence theorem because αL2,t(α) is a continuous positive
function of α and smaller than 1, and because E

[∥∥∇ft(π∗)
ft(π∗)

∇′ft(π∗)
ft(π∗)

∥∥] < ∞ due to Lemma F.1 (in
Supplementary Appendix F.5). The statements on the eigenvalues follow from the continuity of Iα,
the compactness of its domain A, and the positive definiteness of Iα for all fixed α ∈ A shown above.

As for Assumption 5(iv), based on the expression of the remainder term in (17) it suffices to show
that for all sequences of (non-random) positive scalars {γT , T ≥ 1} for which γT → 0 as T →∞,

sup (π,$)∈Π:‖(π,$)−(π∗,0)‖≤γT
∥∥T−1∇2

(π,$)(π,$)′L
π
T (α, π,$)− (−Iα)

∥∥ = opα(1); (35)

as noted above, the parameter space of (π,$), denoted by Π, is independent of α. First we show that
a uniform law of large numbers applies to the matrix T−1∇2

(π,$)(π,$)′L
π
T (α, π,$) on A×Π, that is,

sup α∈A sup(π,$)∈Π

∥∥T−1∇2
(π,$)(π,$)′L

π
T (α, π,$)− E[∇2

(π,$)(π,$)′ l
π
t (α, π,$)]

∥∥ = op(1). (36)

As T−1∇2
(π,$)(π,$)′L

π
T (α, π,$) = T−1

∑T
t=1∇2

(π,$)(π,$)′ l
π
t (α, π,$) with ∇2

(π,$)(π,$)′ l
π
t (α, π,$) a func-

tion of the stationary and ergodic process (yt,yt−1) (by Assumption 1(i)), we only need to establish
that E

[
supα∈A sup(π,$)∈Π‖∇2

(π,$)(π,$)′ l
π
t (α, π,$)‖

]
< ∞ (see Ranga Rao (1962)); we verify this in

Supplementary Appendix E.2. Furthermore, using the dominated convergence theorem and arguments
similar to those used in part (iii), it can be shown that E[∇2

(π,$)(π,$)′ l
π
t (α, π,$)] is a (uniformly)

continuous function of (α, π,$) on A×Π. Now note that the left hand side of (35) is dominated by

sup(π,$)∈Π

∥∥T−1∇2
(π,$)(π,$)′L

π
T (α, π,$)− E[∇2

(π,$)(π,$)′ l
π
t (α, π,$)]

∥∥
+ sup(π,$)∈Π:‖(π,$)−(π∗,0)‖≤γT

∥∥E[∇2
(π,$)(π,$)′ l

π
t (α, π,$)]− (−Iα)

∥∥.
The former term is, due to (36), of order opα(1). Regarding the latter term, the supremum of it over
α ∈ A converges to zero due to the uniform continuity of E[∇2

(π,$)(π,$)′ l
π
t (α, π,$)] and the fact that

E[∇2
(π,$)(π,$)′ l

π
t (α, π∗, 0)] = −Iα (this fact follows from the expression of ∇2

(π,$)(π,$)′ l
π
t (α, π∗, 0) given

in (30)–(32) and Lemma F.3). Thus, we have verified (35), and hence Assumption 5(iv).

Assumptions 6–8. That Θ is locally (uniformly) equal to the cone Λ = R2q follows from the
expression of the set Θ given in the verification of Assumption 5 above and the fact that 0 (∈ R2q)
is an interior point of Θ. Assumption 7 is clear, as Assumption 6 holds with the cone Λ = R2q.
Assumption 8 is clear from the verification of Assumption 5.

Expression of ŝtα in Section 4.1. Let ε̂t denote the OLS residuals rescaled by the estimated stan-
dard deviation, i.e., ε̂t = (yt− ˆ̃

φT,0− ˆ̃
φT,1yt−1−· · ·− ˆ̃

φT,pyt−p)/ˆ̃σT , and set ŝtα =
(
∇ft( ˆ̃

φT )/ft(
ˆ̃
φT ),−(1−

αL1,t(α))∇ft( ˆ̃
φT )/ft(

ˆ̃
φT )

)
with ∇ft( ˆ̃

φT )/ft(
ˆ̃
φT ) = (zt−1ε̂t/ˆ̃σT , (ε̂

2
t − 1)/(2ˆ̃σ2

T )) (see (15) and (34)).
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C Details for the GMAR example

Assumption 1. Assumption 1(i) is assumed to hold. Assumption 1(ii) holds as A is a compact
subset of (0, 1). Assumption 1(iii) holds by the definition of the mixing weight.

Assumption 2. For each fixed α ∈ A, compactness of B and Φ together with the continuity of
LT (α, β, φ, ϕ) ensures the existence of a measurable maximizer (β̂Tα, φ̂Tα, ϕ̂Tα). Hence part (i) holds
(with the opα(1) term equal to zero). (In the GMAR case, this maximizer is not unique when α = 1/2,
but this does not matter for Assumption 2.) To prove that supα∈A ||(β̂Tα, φ̂Tα, ϕ̂Tα)−(β∗, φ∗, φ∗)|| p→ 0,
by Andrews (1993, Lemma A1) it suffices to show that (a) sup(α,β,φ,ϕ)∈A×B×Φ×Φ

∣∣T−1LT (α, β, φ, ϕ)−
E[lt(α, β, φ, ϕ)]

∣∣ p→ 0 as T → ∞ and that (b) for every neighborhood N(β∗, φ∗, φ∗) of (β∗, φ∗, φ∗),
supα∈Asup(β,φ,ϕ)∈B×Φ×Φ\N(β∗,φ∗,φ∗)(E[lt(α, β, φ, ϕ)]− E[lt(α, β

∗, φ∗, φ∗)]) < 0.
Property (a) can be verified by using the uniform law of large numbers given in Ranga Rao (1962).

As T−1LT (α, β, φ, ϕ) = T−1
∑T

t=1 lt(α, β, φ, ϕ) with lt(α, β, φ, ϕ) a function of the stationary and
ergodic process (yt,yt−1), we only need to show that E

[
sup(α,β,φ,ϕ)∈A×B×Φ×Φ |lt(α, β, φ, ϕ)|

]
< ∞.

Making use of Assumption 1, it is easy to show that C1 exp{−C2(1+y2
t + · · ·+y2

t−p)}) ≤ ft(β, φ) ≤ C2

for some 0 < C1, C2 < ∞ and for all (β, φ) ∈ B × Φ, so that log(C1) − C2(1 + y2
t + · · · + y2

t−p) ≤
lt(α, β, φ, ϕ) ≤ log(C2) for all (α, β, φ, ϕ) ∈ A×B×Φ×Φ (cf. Kalliovirta et al. (2015, pp. 264–265));
this holds in both the LMAR and GMAR cases. The required moment condition follows from this.

As for property (b), the uniform law of large numbers used above also delivers the continuity of
the limit function E[lt(α, β, φ, ϕ)] on the compact set A × B × Φ × Φ. Therefore it suffices to show
that, for each fixed α ∈ A, E[lt(α, β, φ, ϕ)] − E[lt(α, β

∗, φ∗, φ∗)] ≤ 0 with equality if and only if
(β, φ, ϕ) = (β∗, φ∗, φ∗). For the GMAR model, this can be straightforwardly shown with arguments
used in the proof of Theorem 2 in Kalliovirta et al. (2015). To this end, define n1(ν1,t | ν1,t−1; (β, φ)) =

(2π̄σ̃2
1)−1/2 exp

(
−(ν1,t−φ̃0−

∑p
i=1φ̃iν1,t−i)

2/(2σ̃2
1)
)
, where ν1,t is the auxiliary Gaussian AR(p) process

introduced in the GMAR example of Section 2.2. Clearly, n1(ν1,t | ν1,t−1; (β, φ)) is the conditional
density of ν1,t given ν1,t−1 = (ν1,t−1, . . . , ν1,t−p). The notation n1(ν2,t | ν2,t−1; (β, ϕ)) is defined
similarly by using ϕ̃i and σ̃2

2 instead of φ̃i and σ̃2
1.

Now, in the same way as in the above-mentioned proof of Kalliovirta et al. (2015) we can use argu-
ments based on the Kullback-Leibler divergence and conclude that, for each fixed α ∈ A, E[lt(α, β, φ, ϕ)]−
E[lt(α, β

∗, φ∗, φ∗)] ≤ 0 with equality if and only if for almost all (y,y) ∈ R× Rp

αG1 n1(y | y; (β, φ)) + αG2 n1(y | y; (β, ϕ)) = n1(y | y; (β∗, φ∗)), (37)

where we use αGm to stand for αGm,t but with yt−1 therein replaced by y (m = 1, 2). Using well-known
results on identification of finite mixtures of Gaussian distributions we find that, for each fixed α ∈ A,
and for each fixed y ∈ Rp at a time, n1(y | y; (β, φ)) = n1(y | y; (β, ϕ)) = n1(y | y; (β∗, φ∗)) for almost
all y. Using the arguments following equation (A.4) in Kalliovirta et al. (2015) we can now establish
the desired result (β, φ, ϕ) = (β∗, φ∗, φ∗).

The arguments used for the GMAR model above can also be used for the LMAR model, but two
things are worth noting. First, the proof given for the GMAR model above goes through even when
there are no common parameters so that φ and ϕ could be used in place of (β, φ) and (β, ϕ). Second,
equation (37) can be obtained in the same way as in the GMAR case even though the derivation of the
related equation (A.4) in Kalliovirta et al. (2015) made use of the explicit expression of the stationary
density of (yt,yt−1) which is known for the GMAR model but, in general, unknown for the LMAR
model. The reason for this is that the null hypothesis is here assumed to hold so that yt is a linear
Gaussian AR(p) process, implying that (yt,yt−1) is normally distributed with density function a p+ 1

dimensional counterpart of the p dimensional normal density function np(ν1,t; φ̃) defined in equation
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(8) (see the GMAR example of Section 2.2). After observing these two facts we can proceed in the
same way as in the GMAR case and conclude that equation (37) holds also for the LMAR model as
long as we replace the mixing weights of the GMAR model with those of the LMAR model. As the
arguments employed in the proof of the GMAR case after equation (37) made no use of the mixing
weights they apply also to the LMAR model and can be used to complete the proof.

Assumptions 3 and 4. Conditions (i) and (ii) of Assumption 3 clearly hold and condition (iii) can
be verified in the same way as in the case of the LMAR model. Specifically, we have

πα(φ, ϕ)−πα(φ∗, φ∗) = (αφ+(1−α)ϕ, φ−ϕ)−(φ∗, 0) = (α(φ− φ∗) + (1− α)(ϕ− φ∗), (φ− φ∗)− (ϕ− φ∗)) ,

and choosing ‖x‖∗ = ‖x‖1 =
∑2q

i=1 |xi| it can straightforwardly be seen that condition (iii) holds by
Lemma A.1. Regarding Assumption 4, based on the expression of αGt and the definition of π−1

α (π,$) =

(π + (1− α)$,π − α$), the required differentiability holds for all positive integers k.

Assumption 5: Derivation of expansion (12). First note that, as π−1
α (π,$) = (π+(1−α)$,π−

α$), the reparameterized mixing weight in the GMAR model is given by

αGπ1,t (α, β, π,$) =
αnp(yt−1; (β, π + (1− α)$))

αnp(yt−1; (β, π + (1− α)$)) + (1− α)np(yt−1; (β, π − α$))

and the quantities fπ2,t(α, β, π,$) and lπt (α, β, π,$) take the form

fπ2,t(α, β, π,$) = αGπ1,t (α, β, π,$)ft(β, π + (1− α)$) + (1− αGπ1,t (α, β, π,$))ft(β, π − α$),

lπt (α, β, π,$) = log[αGπ1,t (α, β, π,$)ft(β, π + (1− α)$) + (1− αGπ1,t (α, β, π,$))ft(β, π − α$)].

Partial derivatives of lπt (α, β, π,$) can be obtained with straightforward differentation; as the calcu-
lations are rather lengthy, they are relegated to Supplementary Appendix F.1.

Now consider, for an arbitrary fixed α ∈ A, a standard fourth-order Taylor expansion of LπT (α, β, π,$) =∑T
t=1 l

π
t (α, β, π,$) around (β∗, π∗, 0) with respect to (β, π,$). For brevity, write π̃ = (β, π) and

π̃∗ = (β∗, π∗). Collecting terms that turn out to be asymptotically negligible into a remainder term,

LπT (α, π̃,$)− LπT (α, π̃∗, 0) = (π̃ − π̃∗)′∇π̃LπT (α, π̃∗, 0) + 1
2!(π̃ − π̃

∗)′∇2
π̃π̃′L

π
T (α, π̃∗, 0)(π̃ − π̃∗)

+ 1
2!$

′∇2
$$′L

π
T (α, π̃∗, 0)$ + 3

3!

q1+q2∑
i=1

q2∑
j=1

q2∑
k=1

∇3
π̃i$j$k

LπT (α, π̃∗, 0)(π̃i − π̃∗i )$j$k

+ 1
4!

q2∑
i=1

q2∑
j=1

q2∑
k=1

q2∑
l=1

∇4
$i$j$k$l

LπT (α, π̃∗, 0)$i$j$k$l +R
(1)
T (α, π̃,$) (38)

with an explicit expression of the remainder term R
(1)
T (α, π̃,$) available in Supplementary Appendix

F.2. Therein we also demonstrate that this fourth-order Taylor expansion can be written as a quadratic
expansion of the form (12) given by

LπT (α, β, π,$)− LπT (α, β∗, π∗, 0)

= S′Tθ(α, β, π,$)− 1
2 [T 1/2θ(α, β, π,$)]′I[T 1/2θ(α, β, π,$)] +RT (α, β, π,$) (39)

or, setting ZT = I−1T−1/2ST , in an alternative form corresponding to (13), with an explicit expression
of the remainder term RT (α, β, π,$) available in Supplementary Appendix F.2.

The required derivatives are available in Supplementary Appendix F.1. Here we only present
the derivatives that appear in the expression of ST in (18), that is, the components of ∇̃θl

π∗
t =
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(∇̃θlπ∗t , ∇̃ϑlπ∗t ). From Supplementary Appendix F.1 we obtain (here ∇i denotes the ith component of
a derivative, and ∇np(·) denotes differentiation of np(·) in (8) with respect to φ̃ = (φ̃0, φ̃1, . . . , φ̃p, σ̃

2
1))

∇βlπt (α, β∗, π∗, 0) =
∇1f

∗
t

f∗t
(40)

∇πi lπt (α, β∗, π∗, 0) =
∇i+1f

∗
t

f∗t
(41)

∇2
$i$j l

π
t (α, β∗, π∗, 0) = α(1− α)

[∇i+1n
∗
p

n∗p

∇j+1f
∗
t

f∗t
+
∇i+1f

∗
t

f∗t

∇j+1n
∗
p

n∗p
+
∇2
i+1,j+1f

∗
t

f∗t

]
(42)

where i, j = 1, . . . , p+ 1; for brevity, we denote f∗t = ft(β
∗, π∗), n∗p = np(β

∗, π∗), and similarly for their
derivatives. Explicit expressions for the derivatives of ft and np are in Supplementary Appendix F.3.

Assumption 5: Verifying the assumption. As θ(α, β, π,$) = (β − β∗, π − π∗, α(1 − α)v($)),
part (i.a) is clearly satisfied. Assumption 1 requires α to be bounded away from zero and one, so that
also part (i.b) is satisfied. For part (ii), notice from (18), (19), and (40)–(42) that ST =

∑T
t=1 st with

st =

(
∇f∗t
f∗t

, c11X
∗
t,1,1, . . . , cq2−1,q2X

∗
t,q2−1,q2

)
(43)

where, for i, j ∈ {1, . . . , q2}, the cij ’s are as in Section 3.3.1 (cij = 1/2 if i = j and cij = 1 if i 6= j) and

X∗t,i,j =
∇i+1n

∗
p

n∗p

∇j+1f
∗
t

f∗t
+
∇i+1f

∗
t

f∗t

∇j+1n
∗
p

n∗p
+
∇2
i+1,j+1f

∗
t

f∗t
(44)

(note that st, and hence ST , does not involve α as it cancels out from the expressions in (19) and
(42)). Therefore the first three requirements in part (ii) are clearly satisfied. For the weak convergence
requirement in part (ii) it now suffices to show that T−1/2ST

d→ S in Rr for some multivariate Gaussian
random vector S with mean zero and E[SS′] = I. To this end, st clearly forms a stationary and
ergodic process. Moreover, due to Lemma F.3 in Supplementary Appendix F.5, E[∇if∗t /f∗t | yt−1] =

E[∇2
ijf
∗
t /f

∗
t | yt−1] = 0 for any i, j ∈ {1, . . . , q2} so that st is a martingale difference sequence. From

the expression of I in (51) in Supplementary Appendix F.2 it is clear that E[sts
′
t] = I. Positive

definiteness of I is proven in Supplementary Appendix F.3. The stated convergence result now follows
from the central limit theorem of Billingsley (1961) in conjunction with the Cramér-Wold device.

For part (iii), it suffices to show the finiteness and positive definiteness of I; these are proven in
Supplementary Appendices F.2 and F.3. Part (iv) is proven in Supplementary Appendix F.4.

Assumption 6. By the definition of the set Θα and the transformation (φ, ϕ)→ (π,$), the set Θα

(see Sec 3.3.1) can equivalently be expressed as

Θα = {θ = (θ, ϑ) ∈ Rq1+q2+qϑ : θ = (β − β∗, α(φ− φ∗) + (1− α)(ϕ− φ∗)), ϑ = α(1− α)v(φ− ϕ)

for some (β, φ, ϕ) ∈ B × Φ2}.

We aim to show that the collection of sets {Θα, α ∈ A} is locally uniformly equal to the cone
Λ = Rq1+q2 × v(Rq2) where v(Rq2) = {v($) : $ ∈ Rq2}. Let S̄((β∗, φ∗), δ) denote a closed (q1 + q2)-
sphere centered at (β∗, φ∗) with radius δ, and S̄(φ∗, δ) a similar q2-sphere. As (β∗, φ∗) is an interior
point of B×Φ, we can find a δ1 > 0 such that S̄((β∗, φ∗), δ1)× S̄(φ∗, δ1) ⊂ B×Φ2. By the definitions
of the transformations (α, β, φ, ϕ) → θ(α, β, φ, ϕ) and (α, β, φ, ϕ) → ϑ(α, β, φ, ϕ) (defined implicitly
by the definition of Θα above), we can find a δ2 ∈ (0, 1) such that (−δ2, δ2)q1+q2 × v((−δ2, δ2)q2) ⊂
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⋂
α∈AΘα(δ1) ⊂

⋂
α∈AΘα where

Θα(δ1) = {θ = (θ, ϑ) ∈ Rq1+q2+qϑ : θ = (β − β∗, α(φ− φ∗) + (1− α)(ϕ− φ∗)), ϑ = α(1− α)v(φ− ϕ)

for some (β, φ, ϕ) ∈ S̄((β∗, φ∗), δ1)× S̄(φ∗, δ1)}.

Thus (−δ2, δ2)q1+q2 × v((−δ2, δ2)q2) ⊂ Θα for all α ∈ A so that (as δ2 < 1)

(−δ2
2 , δ

2
2)q1+q2+qϑ ∩Θα = (−δ2

2 , δ
2
2)q1+q2 × v((−δ2, δ2)q2) = (−δ2

2 , δ
2
2)q1+q2+qϑ ∩ [Rq1+q2 × v(Rq2)]

for all α ∈ A. Hence, {Θα, α ∈ A} is locally uniformly equal to the cone Λ = Rq1+q2 × v(Rq2).

Assumptions 7 and 8. Assumption 7 is satisfied as Assumption 6 holds with the cone Λ = Rq1+q2×
v(Rq2); note that now qϑ = q2(q2 + 1)/2. Assumption 8 is clear from the verification of Assumption 5.

Expression of ŝtα in Section 4.1. Let ε̂t and ∇ft( ˆ̃
φT )/ft(

ˆ̃
φT ) be as in the LMAR example (see Ap-

pendix B) and set (see (43) and (44)) ŝt =
(
∇ft( ˆ̃

φT )/ft(
ˆ̃
φT ), c11Xt,1,1(

ˆ̃
φT ), . . . , cq2−1,q2Xt,q2−1,q2(

ˆ̃
φT )

)
where, for i, j ∈ {1, . . . , q2}, the cij ’s are as in Section 3.3.1 (cij = 1/2 if i = j and cij = 1 if i 6= j) and

Xt,i,j(
ˆ̃
φT ) =

∇i+1np(
ˆ̃
φT )

np(
ˆ̃
φT )

∇j+1ft(
ˆ̃
φT )

ft(
ˆ̃
φT )

+
∇i+1ft(

ˆ̃
φT )

ft(
ˆ̃
φT )

∇j+1np(
ˆ̃
φT )

np(
ˆ̃
φT )

+
∇2
i+1,j+1ft(

ˆ̃
φT )

ft(
ˆ̃
φT )

.

Explicit expressions for the elements of ∇2ft(
ˆ̃
φT )/ft(

ˆ̃
φT ) can be obtained from (52) in Supplementary

Appendix F.3 by replacing εt and σ̃∗1 therein with ε̂t and ˆ̃σT , respectively. Expressions for the elements
of ∇np( ˆ̃

φT )/np(
ˆ̃
φT ) can be obtained by evaluating (53) in Supplementary Appendix F.3 at φ̃ =

ˆ̃
φT .

References

Andrews, D. W., 1992. Generic uniform convergence. Econometric Theory 8, 241–257.

Andrews, D. W., 1993. Tests for parameter instability and structural change with unknown change
point. Econometrica 61, 821–856.

Andrews, D. W., 1999. Estimation when a parameter is on a boundary. Econometrica 67, 1341–1383.

Andrews, D. W., 2000. Inconsistency of the bootstrap when a parameter is on the boundary of the
parameter space. Econometrica 68, 399–405.

Andrews, D. W., 2001. Testing when a parameter is on the boundary of the maintained hypothesis.
Econometrica 69, 683–734.

Andrews, D. W., Ploberger, W., 1995. Admissibility of the likelihood ratio test when a nuisance
parameter is present only under the alternative. Annals of Statistics 23, 1609–1629.

Bec, F., Rahbek, A., Shephard, N., 2008. The ACR model: a multivariate dynamic mixture autore-
gression. Oxford Bulletin of Economics and Statistics 70, 583–618.

Billingsley, P., 1961. The Lindeberg-Levy theorem for martingales. Proceedings of the American Math-
ematical Society 12, 788–792.

Billingsley, P., 1999. Convergence of Probability Measures, 2nd Edition. Wiley.

32



Carrasco, M., Hu, L., Ploberger, W., 2014. Optimal test for Markov switching parameters. Economet-
rica 82, 765–784.

Chang, Y., Choi, Y., Park, J. Y., 2017. A new approach to model regime switching. Journal of Econo-
metrics 196 (1), 127–143.

Cho, J. S., White, H., 2007. Testing for regime switching. Econometrica 75, 1671–1720.

Davies, R. B., 1977. Hypothesis testing when a nuisance parameter is present only under the alternative.
Biometrika 64, 247–254.

Davies, R. B., 1987. Hypothesis testing when a nuisance parameter is present only under the alternative.
Biometrika 74, 33–43.

Diebold, F. X., Lee, J.-H., Weinbach, G. C., 1994. Regime switching with time-varying transition prob-
abilities. In: Hargreaves, C. (Ed.), Nonstationary Time Series Analysis and Cointegration. Oxford
University Press, pp. 283–302.

Dueker, M. J., Psaradakis, Z., Sola, M., Spagnolo, F., 2011. Multivariate contemporaneous-threshold
autoregressive models. Journal of Econometrics 160, 311–325.

Dueker, M. J., Sola, M., Spagnolo, F., 2007. Contemporaneous threshold autoregressive models: esti-
mation, testing and forecasting. Journal of Econometrics 141, 517–547.

Filardo, A. J., 1994. Business-cycle phases and their transitional dynamics. Journal of Business &
Economic Statistics 12, 299–308.

Frühwirth-Schnatter, S., 2006. Finite Mixture and Markov Switching Models. Springer.

Garcia, R., 1998. Asymptotic null distribution of the likelihood ratio test in Markov switching models.
International Economic Review 39, 763–788.

Gouriéroux, C., Robert, C. Y., 2006. Stochastic unit root models. Econometric Theory 22, 1052–1090.

Hallin, M., Ley, C., 2014. Skew-symmetric distributions and Fisher information: the double sin of the
skew-normal. Bernoulli 20, 1432–1453.

Hamilton, J. D., 2016. Macroeconomic regimes and regime shifts. In: Uhlig, H., Taylor, J. (Eds.),
Handbook of Macroeconomics. Vol. 2A. Elsevier, pp. 163–201.

Hansen, B. E., 1992. The likelihood ratio test under nonstandard conditions: testing the Markov
switching model of GNP. Journal of Applied Econometrics 7, S61–S82.

Hansen, B. E., 1996. Inference when a nuisance parameter is not identified under the null hypothesis.
Econometrica 64, 413–430.

Jeffries, N. O., 1998. Logistic mixtures of generalized linear model times series. Ph.D. thesis, University
of Maryland, College Park.

Kalliovirta, L., Meitz, M., Saikkonen, P., 2015. A Gaussian mixture autoregressive model for univariate
time series. Journal of Time Series Analysis 36, 247–266.

Kalliovirta, L., Meitz, M., Saikkonen, P., 2016. Gaussian mixture vector autoregression. Journal of
Econometrics 192, 485–498.

33



Kasahara, H., Shimotsu, K., 2012. Testing the number of components in finite mixture models, un-
published working paper.

Kasahara, H., Shimotsu, K., 2015. Testing the number of components in normal mixture regression
models. Journal of the American Statistical Association 110, 1632–1645.

Kasahara, H., Shimotsu, K., 2018. Testing the number of regimes in Markov regime switching models,
available as arXiv:1801.06862.

Kim, C.-J., Piger, J., Startz, R., 2008. Estimation of Markov regime-switching regression models with
endogenous switching. Journal of Econometrics 143, 263–273.

Lanne, M., Saikkonen, P., 2003. Modeling the US short-term interest rate by mixture autoregressive
processes. Journal of Financial Econometrics 1, 96–125.

Lütkepohl, H., 2005. New Introduction to Multiple Time Series Analysis. Springer.

McLachlan, G., Peel, D., 2000. Finite Mixture Models. Wiley.

Pakes, A., Pollard, D., 1989. Simulation and the asymptotics of optimization estimators. Econometrica
57, 1027–1057.

Qu, Z., Zhuo, F., 2017. Likelihood ratio based tests for Markov regime switching, unpublished working
paper.

Ranga Rao, R., 1962. Relations between weak and uniform convergence of measures with applications.
Annals of Mathematical Statistics 33, 659–680.

Rotnitzky, A., Cox, D. R., Bottai, M., Robins, J., 2000. Likelihood-based inference with singular
information matrix. Bernoulli 6, 243–284.

Shen, J., He, X., 2015. Inference for subgroup analysis with a structured logistic-normal mixture model.
Journal of the American Statistical Association 110, 303–312.

van Dijk, D., Teräsvirta, T., Franses, P. H., 2002. Smooth transition autoregressive models — a survey
of recent developments. Econometric Reviews 21 (1), 1–47.

Villani, M., Kohn, R., Giordani, P., 2009. Regression density estimation using smooth adaptive Gaus-
sian mixtures. Journal of Econometrics 153 (2), 155–173.

Wong, C. S., Li, W. K., 2000. On a mixture autoregressive model. Journal of the Royal Statistical
Society: Series B 62, 95–115.

Wong, C. S., Li, W. K., 2001. On a logistic mixture autoregressive model. Biometrika 88, 833–846.

Zhu, H., Zhang, H., 2004. Hypothesis testing in mixture regression models. Journal of the Royal
Statistical Society: Series B 66, 3–16.

Zhu, H., Zhang, H., 2006. Asymptotics for estimation and testing procedures under loss of identifiability.
Journal of Multivariate Analysis 97, 19–45.

34



Supplementary Appendix to
‘Testing for observation-dependent regime switching in mixture autore-
gressive models’ by Meitz and Saikkonen (not meant for publication)

D Further details for the general results

Proof of Lemma A.1. Note that supα∈A‖(β̂Tα, π̂Tα, $̂Tα) − (β∗, π∗, 0)‖ ≤ supα∈A‖β̂Tα − β∗‖ +

supα∈A‖(π̂Tα, $̂Tα) − (π∗, 0)‖. The former term on the majorant side is op(1) by Assumption 2(ii).
The latter term equals supα∈A‖πα(φ̂Tα, ϕ̂Tα)−πα(φ∗, φ∗)‖ which, due to the assumptions made, can
be bounded by C supα∈A h

(
‖(φ̂Tα, ϕ̂Tα) − (φ∗, φ∗)‖∗

)
≤ Ch

(
supα∈A‖(φ̂Tα, ϕ̂Tα) − (φ∗, φ∗)‖∗

)
. By

Assumption 2(ii) and the equivalence of all vector norms on R2q2 , the majorant side is op(1). �

Proof of Lemma 1, further details. To justify that the last term on the right hand side of (28) is
dominated by −1

4 ‖θTα‖
2 + opα(1), note first that(

opα (1)− 1

2

)
‖θTα‖2 =

(
opα (1)− 1

4

)
‖θTα‖2 −

1

4
‖θTα‖2 := WTα ‖θTα‖2 −

1

4
‖θTα‖2 ,

where WTα = −1
4 + opα (1). Thus, P (supα∈AWTα ≤ 0) → 1 and (here 1(·) denotes the indicator

function)

sup
α∈A

WTα ‖θTα‖2 = sup
α∈A

WTα ‖θTα‖2 1

(
sup
α∈A

WTα ≤ 0

)
+ sup
α∈A

WTα ‖θTα‖2 1

(
sup
α∈A

WTα > 0

)
≤ sup

α∈A
WTα ‖θTα‖2 1

(
sup
α∈A

WTα > 0

)
,

where the last term is non-negative and positive with probability that is at most P (supα∈AWTα > 0)→
0. Thus, combining the above derivations yields the desired result

(
opα (1)− 1

2

)
‖θTα‖2 ≤ −1

4 ‖θTα‖
2 +

opα (1).
To justify the use of the continuous mapping theorem, note that in the first instance it is applied

with the function g : C(A,Rr)×{Iα} → C(A,Rr) mapping (x•, I•) to I−1
• x•. Here I−1

α xα is continuous
in α by Assumption 5(iii). Also, the latter set in the product C(A,Rr) × {Iα} contains only the
non-random function Iα; this product space can be equipped with essentially the same metric as
C(A,Rr); cf. Andrews and Ploberger (1994, p. 1392 and 1407) and Zhu and Zhang (2006, proof of
Theorem 5). In the second instance, the continuous mapping theorem is applied with the function
g : B(A,Rr)→ R mapping x• (∈ B(A,Rr)) to supα∈A ‖xα‖. For continuity, we need to establish that
if a sequence xn• converges to x• in B(A,Rr), then g(xn•)→ g(x•) in R (i.e., if supα∈A ‖xnα − xα‖ →
0, then |supα∈A ‖xnα‖ − supα∈A ‖xα‖| → 0). The triangle inequality implies that supα∈A ‖xnα‖ ≤
supα∈A ‖xnα − xα‖+ supα∈A ‖xα‖, as well as the same result with xnα and xα interchanged, and the
desired result follows from these inequalities. �

Proof of Lemma 4, further details. It remains to verify the continuity mentioned in the proof. For
simplicity, consider the continuity of the functions g1 : C(A,Rr) × {Iα} → B(A,R) mapping (x•, I•)
to x′•I•x• and g2 : C(A,Rr) × {Iα} → B(A,R) mapping (x•, I•) to infλ∈Λ {(λ− x•)′I•(λ− x•)}
separately. For g1, continuity is rather clear, for if a sequence (xn•, I•) converges to (x•, I•) in
C(A,Rr) × {Iα}, then g1((xn•, I•)) → g1((x•, I•)) in B(A,R) (i.e., if supα∈A ‖xnα − xα‖ → 0, then
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supα∈A |x′nαIαxnα − x′αIαxα| → 0). For the continuity of g2, suppose that supα∈A ‖xnα − xα‖ → 0,
and consider supα∈A |infλ∈Λ {(λ− xnα)′Iα(λ− xnα)} − infλ∈Λ {(λ− xα)′Iα(λ− xα)}|. Noting that

inf
λ∈Λ

{
(λ− xnα)′Iα(λ− xnα)

}
=
{

inf
λ∈Λ
‖I1/2

α (λ− xnα)‖
}2

and similarly for the other infimum, we need to consider

sup
α∈A

{∣∣ inf
λ∈Λ
‖I1/2

α (λ− xnα)‖ − inf
λ∈Λ
‖I1/2

α (λ− xα)‖
∣∣( inf

λ∈Λ
‖I1/2

α (λ− xnα)‖+ inf
λ∈Λ
‖I1/2

α (λ− xα)‖
)}
. (45)

Using the triangle inequality and properties of the Euclidean vector norm,

‖I1/2
α (λ− xnα)‖ ≤ ‖I1/2

α (λ− xα)‖+ ‖I1/2
α (xnα− xα)‖ ≤ ‖I1/2

α (λ− xα)‖+ (λmax (Iα))1/2 ‖xnα − xα‖ ,

and similarly with xnα and xα exchanged, so that∣∣∣ inf
λ∈Λ
‖I1/2

α (λ− xnα)‖ − inf
λ∈Λ
‖I1/2

α (λ− xα)‖
∣∣∣ ≤ (λmax (Iα))1/2 ‖xnα − xα‖ .

As was noted after Assumption 6, the cone Λ contains the origin, so that the term in (45) in parentheses
is dominated by (λmax (Iα))1/2 (‖xnα‖ + ‖xα‖). Now, due to Assumption 5(iii), the fact that xn•, x•
are bounded, and the assumed supα∈A ‖xnα − xα‖ → 0, the quantity in (45) converges to zero. �

Proof of Lemma 5. For brevity and clarity, within this proof we use somewhat simplified notation
and let

I−1
α =

[
A B
B′ C

]
denote the partition of I−1

α (so that, e.g., C is shorthand for (I−1
α )ϑϑ). This implies that Iα can be

expressed as

Iα =

[
D−1 −D−1BC−1

−C−1B′D−1 C−1 + C−1B′D−1BC−1

]
where D = A− BC−1B′ (thus, e.g., D−1 = Iθθα). Note also that A, C, and D are symmetric (as Iα
is symmetric).

First note that Sα = IαZα can be expressed as

Sα =

[
D−1 −D−1BC−1

−C−1B′D−1 C−1 + C−1B′D−1BC−1

] [
Zθα
Zϑα

]
=

[
D−1Zθα −D−1BC−1Zϑα

−C−1B′D−1Zθα + C−1Zϑα + C−1B′D−1BC−1Zϑα

]
so that S′θαDSθα equals

S′θαDSθα = (D−1Zθα −D−1BC−1Zϑα)′D(D−1Zθα −D−1BC−1Zϑα)

= Z ′θαD
−1Zθα − Z ′θαD−1BC−1Zϑα − Z ′ϑαC−1B′D−1Zθα + Z ′ϑαC

−1B′D−1BC−1Zϑα.

Now, since Z ′αIαZα can be written as

Z ′αIαZα =

[
Zθα
Zϑα

]′ [
D−1 −D−1BC−1

−C−1B′D−1 C−1 + C−1B′D−1BC−1

] [
Zθα
Zϑα

]
= Z ′θαD

−1Zθα − Z ′θαD−1BC−1Zϑα − Z ′ϑαC−1B′D−1Zθα

+ Z ′ϑαC
−1Zϑα + Z ′ϑαC

−1B′D−1BC−1Zϑα,
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we obtain
Z ′αIαZα = Z ′ϑαC

−1Zϑα + S′θαDSθα. (46)

Now consider infλ∈Λ {(λ− Zα)′Iα(λ− Zα)}. Similarly as above,

(λ− Zα)′Iα(λ− Zα)

= (λθ − Zθα)′D−1(λθ − Zθα)− (λθ − Zθα)′D−1BC−1(λϑ − Zϑα)− (λϑ − Zϑα)′C−1B′D−1(λθ − Zθα)

+ (λϑ − Zϑα)′C−1(λϑ − Zϑα) + (λϑ − Zϑα)′C−1B′D−1BC−1(λϑ − Zϑα)

= (λθ − Zθα)′D−1(λθ − Zθα)− (λθ − Zθα)′D−1[BC−1(λϑ − Zϑα)]− [BC−1(λϑ − Zϑα)]′D−1(λθ − Zθα)

+ (λϑ − Zϑα)′C−1(λϑ − Zϑα) + [BC−1(λϑ − Zϑα)]′D−1[BC−1(λϑ − Zϑα)]

= (λϑ − Zϑα)′C−1(λϑ − Zϑα) + {(λθ − Zθα)− [BC−1(λϑ − Zϑα)]}′D−1{(λθ − Zθα)− [BC−1(λϑ − Zϑα)]}.

Now, for any fixed λϑ ∈ Rqϑ , Assumption 7 implies that

inf
λθ∈Rqθ

{(λθ − Zθα)− [BC−1(λϑ − Zϑα)]}′D−1{(λθ − Zθα)− [BC−1(λϑ − Zϑα)]} = 0

(cf. Andrews (1999, eqn. (7.35))) so that

inf
λ∈Λ

{
(λ− Zα)′Iα(λ− Zα)

}
= inf

λϑ∈Λϑ

{
(λϑ − Zϑα)′C−1(λϑ − Zϑα)

}
. (47)

Combining (46) and (47) and recalling that C−1 = (I−1
α )−1

ϑϑ and D = I−1
θθα yields the equality stated

in the lemma.
Finally, (I−1

α )ϑϑ and Zϑα can be expressed as

(I−1
α )ϑϑ = (Iϑϑα − IϑθαI−1

θθαIθϑα)−1 [= I−1
ϑϑα + I−1

ϑϑαIϑθα(Iθθα − IθϑαI−1
ϑϑαIϑθα)−1IθϑαI−1

ϑϑα],

Zϑα = (I−1
α )ϑϑ(Sϑα − IϑθαI−1

θθαSθα) [= I−1
ϑϑαSϑα + I−1

ϑϑαIϑθα(Iθθα − IθϑαI−1
ϑϑαIϑθα)−1(IθϑαI−1

ϑϑαSϑα − Sθα)],

where the two different expressions result from two different ways of writing the inverse of a partitioned
matrix. �

Proof of Lemma 6. The required arguments are standard but presented for completeness and to
contrast them with arguments that lead to Lemma 4. The reparameterization described in Assumption
3 is unnecessary and the original φ̃–parameterization may be used (alternatively, consider the identity
mapping π = π(φ̃) = φ̃). As for the quadratic expansion of the log-likelihood function, let θ(φ̃) =

(φ̃− φ̃∗) take the role of θ(α, β, π,$), and note that straightforward derivations (similar to those used
in the LMAR example in Section 3.3.1) yield

L0
T (φ̃)− L0

T (φ̃∗) = (T−1/2S0
T )′[T 1/2θ(φ̃)]− 1

2 [T 1/2θ(φ̃)]′I0[T 1/2θ(φ̃)] +RT (φ̃),

RT (φ̃) = 1
2 [T 1/2θ(φ̃)]′[T−1∇φφ′L0

T (φ̇)− (−I0)][T 1/2θ(φ̃)],

with φ̇ denoting a point between φ̃ and φ̃∗. Validity of Assumption 5 follows from the arguments used in
connection with the LMAR example together with Assumption 8. Assumption 6 holds with Λ = Rp+2.
Arguments analogous to those that lead to Lemma 4 now yield the stated convergence result, and the
convergence is joint as in both cases it follows from the weak convergence result T−1/2ST• ⇒ S•. �
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E Further details for the LMAR example

E.1 Verification of Assumption 5(ii), further details

As for the weak convergence requirement in part (ii), we rely on Theorem 2 (and the remarks that
follow it) in Andrews and Ploberger (1995). As can be seen from the proof of their Theorem 2,
it suffices to verify their conditions EP1(a), EP1(e), and EP4 (omitting the weakly exogeneous Xt

variables therein). Under the null hypothesis, yt is a linear Gaussian AR(p) process so that condition
EP1(a) is satisfied with geometrically declining mixing numbers. To check condition EP1(e), we show
that E

[
supα∈A sup(π,$)∈Π|lπt (α, π,$)|

]
<∞, E

[
supα∈A‖∇(π,$)l

π
t (α, π∗, 0)‖r

]
<∞ for any positive r,

and E
[
supα∈A sup(π,$)∈Π‖∇2

(π,$)(π,$)′ l
π
t (α, π,$)‖

]
<∞. The first of these moment conditions follows

from the arguments used to verify our Assumption 2 (see the verification of this Assumption for the
GMAR model; the details for the LMAR model are presented there). The second holds due to the
expression of ∇(π,$)l

π
t (α, π∗, 0) in (29), the fact that 0 < αL1,t(α) < 1, and Lemma F.1. The third is

verified below in Supplementary Appedix E.2. As the compactness requirement of condition EP4(a)
holds by our Assumption 1(ii), it remains to verify EP4(b). To this end, note that for arbitrary a, b ∈ A,

‖∇(π,$)l
π
t (a, π∗, 0)−∇(π,$)l

π
t (b, π∗, 0)‖r = |αL1,t(a)− αL1,t(b)|r

∥∥∥∥∇ft(π∗)ft(π∗)

∥∥∥∥r .
By straightforward differentiation, ∇ααL1,t(α) = αL1,t(α)(1− αL1,t(α))(1, yt−1, . . . , yt−m), so that by the
mean value theorem

αL1,t(a)− αL1,t(b) = αL1,t(ca,b)(1− αL1,t(ca,b))(1, yt−1, . . . , yt−m)′(a− b)

for some ca,b ∈ Rm+1 between a and b (as A is not necessarily convex, ca,b does not necessarily belong
to A, but this has no effect in what follows as the expression αL1,t(ca,b) is nevertheless well defined for
all ca,b ∈ Rm+1). Setting Bt = 1 + |yt−1|+ . . .+ |yt−m| and noting that 0 < αL1,t(ca,b) < 1 this implies
that

|αL1,t(a)− αL1,t(b)| ≤ |(1, yt−1, . . . , yt−m)′(a− b)| ≤ (1 + |yt−1|+ . . .+ |yt−m|)‖a− b‖ = Bt‖a− b‖.

Hence

E
[

sup
a,b∈A,‖a−b‖<δ

‖∇(π,$)l
π
t (a, π∗, 0)−∇(π,$)l

π
t (b, π∗, 0)‖r

]
< δrE

[
Br
t

∥∥∥∥∇ft(π∗)ft(π∗)

∥∥∥∥r]
where on the majorant side the expectation is finite (due to the fact that the yt’s possess moments
of all orders, see also the proof of Lemma F.1). Hence condition EP4(b) holds, and the desired weak
convergence follows.

E.2 Verification of Assumption 5(iv), further details

It remains to show that E
[
supα∈A sup(π,$)∈Π‖∇2

(π,$)(π,$)′ l
π
t (α, π,$)‖

]
< ∞. This in turn follows

if we show the same with ∇2
(π,$)(π,$)′ l

π
t (α, π,$) replaced by ∇2

ππ′ l
π
t (α, π,$), ∇2

$$′ l
π
t (α, π,$), and

∇2
π$′ l

π
t (α, π,$). Consider the expression of ∇2

ππ′ l
π
t (α, π,$) given in Appendix B and recall that

0 < αL1,t(α), αL2,t(α) < 1 and ∇ft(π) = ft(π)∇πl0t (π) with l0t (π) = log[ft(π)]. Then we can, for
instance, write
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∥∥∥∥αL1,t(α)∇ft(π)

fπ2,t(α, π,$)

∥∥∥∥ =

∥∥∥∥ αL1,t(α)ft(π)∇πl0t (π)

αL1,t(α)ft(π) + αL2,t(α)ft(π −$)

∥∥∥∥ ≤ ∥∥∇πl0t (π)
∥∥

and∥∥∥∥αL1,t(α)∇′ft(π) + αL2,t(α)∇′ft(π −$)

fπ2,t(α, π,$)

∥∥∥∥ =

∥∥∥∥αL1,t(α)ft(π)∇πl0t (π) + αL2,t(α)ft(π −$)∇πl0t (π −$)

αL1,t(α)ft(π) + αL2,t(α)ft(π −$)

∥∥∥∥
≤
∥∥∇πl0t (π)

∥∥+
∥∥∇πl0t (π −$)

∥∥ .
As similar inequalities can be obtained for the second term of ∇2

ππ′ l
π
t (α, π,$), we get

∥∥∇2
ππ′ l

π
t (α, π,$)

∥∥ ≤ ∥∥∥∥αL1,t(α)
∇2ft(π)

fπ2,t(α, π,$)

∥∥∥∥+
∥∥∇πl0t (π)

∥∥2
+
∥∥∇πl0t (π)

∥∥∥∥∇πl0t (π −$)
∥∥

+

∥∥∥∥αL2,t(α)
∇2ft(π −$)

fπ2,t(α, π,$)

∥∥∥∥+
∥∥∇πl0t (π −$)

∥∥2
+
∥∥∇πl0t (π)

∥∥∥∥∇πl0t (π −$)
∥∥ .

Next note that

∇2ft(π)

fπ2,t(α, π,$)
=
∇(ft(π)∇πl0t (π))

fπ2,t(α, π,$)
=
ft(π)∇πl0t (π)∇π′ l0t (π)

fπ2,t(α, π,$)
+
ft(π)∇2

ππ′ l
0
t (π)

fπ2,t(α, π,$)
,

so that arguments similar to those already used above give∥∥∥∥αL1,t(α)
∇2ft(π)

fπ2,t(α, π,$)

∥∥∥∥ ≤ ∥∥∇πl0t (π)
∥∥2

+
∥∥∇2

ππ′ l
0
t (π)

∥∥
and ∥∥∥∥αL2,t(α)

∇2ft(π −$)

fπ2,t(α, π,$)

∥∥∥∥ ≤ ∥∥∇πl0t (π −$)
∥∥2

+
∥∥∇2

ππ′ l
0
t (π −$)

∥∥ .
Hence, we can conclude that∥∥∇2

ππ′ l
π
t (α, π,$)

∥∥ ≤ 2
∥∥∇πl0t (π)

∥∥2
+ 2

∥∥∇πl0t (π −$)
∥∥2

+ 2
∥∥∇πl0t (π)

∥∥∥∥∇πl0t (π −$)
∥∥

+
∥∥∇2

ππ′ l
0
t (π)

∥∥+
∥∥∇2

ππ′ l
0
t (π −$)

∥∥ .
To bound the expression on the dominant side, note that ∇πl0t (π) = ∇ft(π)

ft(π) and ∇2
ππ′ l

0
t (π) = ∇2ft(π)

ft(π) −
∇ft(π)
ft(π)

∇′ft(π)
ft(π) so that Lemma F.1 ensures that E

[
supα∈A sup(π,$)∈Π

∥∥∇2
ππ′ l

π
t (α, π,$)

∥∥] < ∞. An
inspection of the expressions of ∇2

π$′ l
π
t (α, π,$) and ∇2

$$′ l
π
t (α, π,$) in Appendix B shows that a

similar result can be obtained with ∇2
ππ′ l

π
t (α, π,$) replaced by ∇2

π$′ l
π
t (α, π,$) and ∇2

$$′ l
π
t (α, π,$),

yielding the desired result.
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F Further details for the GMAR example

F.1 Partial derivatives of the reparameterized log-likelihood function

Here we present certain partial derivatives of lπt (α, β, π,$) with respect to (β, π,$). For brevity, set
π̃ = (β, π) (and similarly π̃∗ = (β∗, π∗)), so that the desired derivatives are with respect to π̃ and $
or, elementwise, with respect to π̃i and $j for i = 1, . . . , p+ 2 and j = 1, . . . , p+ 1. In the derivative
expressions below, the subindices in π̃ and $ are tacitly assumed to be withing these ranges. For
brevity, denote lπ∗t = lπt (α, π̃∗, 0), f∗t = ft(π̃

∗), n∗p = np(π̃
∗), and similarly for their partial derivatives.

The following derivatives are obtained with straightforward (but tedious and lengthy) differentia-
tion. The necessary calculations for the first- and second-order derivatives are presented in Supplemen-
tary Appendix F.7, but for brevity we omit the detailed calculations for the third- and fourth-order
derivatives.

First- and second-order derivatives:

∇π̃i lπ∗t =
∇if∗t
f∗t

∇$j lπ∗t = 0

∇2
π̃iπ̃j l

π∗
t =

∇2
ijf
∗
t

f∗t
− ∇if

∗
t

f∗t

∇jf∗t
f∗t

.

∇2
π̃i$j l

π∗
t = 0

∇2
$i$j l

π∗
t = α1α2

[
∇i+1n

∗
p

n∗p

∇j+1f
∗
t

f∗t
+
∇i+1f

∗
t

f∗t

∇j+1n
∗
p

n∗p
+
∇2
i+1,j+1f

∗
t

f∗t

]

Third-order derivatives:

∇3
π̃iπ̃j π̃k

lπ∗t =
∇3
ijkf

∗
t

f∗t
−
∇2
ijf
∗
t

f∗t

∇kf∗t
f∗t

−
∇2
ikf
∗
t

f∗t

∇jf∗t
f∗t
−
∇2
jkf
∗
t

f∗t

∇if∗t
f∗t

+ 2
∇if∗t
f∗t

∇jf∗t
f∗t

∇kf∗t
f∗t

∇3
π̃iπ̃j$k

lπ∗t = −α1α2
∇if∗t
f∗t

(
∇2
j,k+1n

∗
p

n∗p
−
∇jn∗p
n∗p

∇k+1n
∗
p

n∗p

)

∇3
π̃i$j$k

lπ∗t = α1α2

[∇k+1n
∗
p

n∗p

(
∇2
i,j+1f

∗
t

f∗t
− ∇if

∗
t

f∗t

∇j+1f
∗
t

f∗t

)
+
∇j+1n

∗
p

n∗p

(
∇2
i,k+1f

∗
t

f∗t
− ∇if

∗
t

f∗t

∇k+1f
∗
t

f∗t

)

+

(
∇3
i,j+1,k+1f

∗
t

f∗t
− ∇if

∗
t

f∗t

∇2
j+1,k+1f

∗
t

f∗t

)
+

(
∇2
i,k+1n

∗
p

n∗p
−
∇in∗p
n∗p

∇k+1n
∗
p

n∗p

)
∇j+1f

∗
t

f∗t

+

(
∇2
i,j+1n

∗
p

n∗p
−
∇in∗p
n∗p

∇j+1n
∗
p

n∗p

)
∇k+1f

∗
t

f∗t

]

∇3
$i$j$k

lπ∗t = α1α2(α2 − α1)

[∇2
i+1,j+1n

∗
p

n∗p

∇k+1f
∗
t

f∗t
+
∇2
i+1,k+1n

∗
p

n∗p

∇j+1f
∗
t

f∗t
+
∇2
j+1,k+1n

∗
p

n∗p

∇i+1f
∗
t

f∗t

+
∇i+1n

∗
p

n∗p

∇2
j+1,k+1f

∗
t

f∗t
+
∇j+1n

∗
p

n∗p

∇2
i+1,k+1f

∗
t

f∗t
+
∇k+1n

∗
p

n∗p

∇2
i+1,j+1f

∗
t

f∗t

+
∇3
i+1,j+1,k+1f

∗
t

f∗t

]
Fourth-order derivative (fourth-order derivatives with respect to π̃ will not be explicitly needed, and
thus we omit their expressions):
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∇4
$i$j$k$l

lπ∗t

= −α2
1α

2
2

[(
∇i+1n

∗
p

n∗p

∇2
j+1,k+1n

∗
p

n∗p
+
∇j+1n

∗
p

n∗p

∇2
i+1,k+1n

∗
p

n∗p
+
∇k+1n

∗
p

n∗p

∇2
i+1,j+1n

∗
p

n∗p

)
∇l+1f

∗
t

f∗t

+

(
∇i+1n

∗
p

n∗p

∇2
j+1,l+1n

∗
p

n∗p
+
∇j+1n

∗
p

n∗p

∇2
i+1,l+1n

∗
p

n∗p
+
∇l+1n

∗
p

n∗p

∇2
i+1,j+1n

∗
p

n∗p

)
∇k+1f

∗
t

f∗t

+

(
∇i+1n

∗
p

n∗p

∇2
k+1,l+1n

∗
p

n∗p
+
∇k+1n

∗
p

n∗p

∇2
i+1,l+1n

∗
p

n∗p
+
∇l+1n

∗
p

n∗p

∇2
i+1,k+1n

∗
p

n∗p

)
∇j+1f

∗
t

f∗t

+

(
∇j+1n

∗
p

n∗p

∇2
k+1,l+1n

∗
p

n∗p
+
∇k+1n

∗
p

n∗p

∇2
j+1,l+1n

∗
p

n∗p
+
∇l+1n

∗
p

n∗p

∇2
j+1,k+1n

∗
p

n∗p

)
∇i+1f

∗
t

f∗t

+

(
∇i+1n

∗
p

n∗p

∇j+1f
∗
t

f∗t
+
∇j+1n

∗
p

n∗p

∇i+1f
∗
t

f∗t
+
∇2
i+1,j+1f

∗
t

f∗t

)

×

(
∇k+1n

∗
p

n∗p

∇l+1f
∗
t

f∗t
+
∇l+1n

∗
p

n∗p

∇k+1f
∗
t

f∗t
+
∇2
k+1,l+1f

∗
t

f∗t

)

+

(
∇i+1n

∗
p

n∗p

∇k+1f
∗
t

f∗t
+
∇k+1n

∗
p

n∗p

∇i+1f
∗
t

f∗t
+
∇2
i+1,k+1f

∗
t

f∗t

)

×

(
∇j+1n

∗
p

n∗p

∇l+1f
∗
t

f∗t
+
∇l+1n

∗
p

n∗p

∇j+1f
∗
t

f∗t
+
∇2
j+1,l+1f

∗
t

f∗t

)

+

(
∇i+1n

∗
p

n∗p

∇l+1f
∗
t

f∗t
+
∇l+1n

∗
p

n∗p

∇i+1f
∗
t

f∗t
+
∇2
i+1,l+1f

∗
t

f∗t

)

×

(
∇j+1n

∗
p

n∗p

∇k+1f
∗
t

f∗t
+
∇k+1n

∗
p

n∗p

∇j+1f
∗
t

f∗t
+
∇2
j+1,k+1f

∗
t

f∗t

)]

+ α1α2(1− 3α1α2)

[
∇3
i+1,j+1,k+1n

∗
p

n∗p

∇l+1f
∗
t

f∗t
+
∇3
i+1,j+1,l+1n

∗
p

n∗p

∇k+1f
∗
t

f∗t
+
∇3
i+1,k+1,l+1n

∗
p

n∗p

∇j+1f
∗
t

f∗t

+
∇3
j+1,k+1,l+1n

∗
p

n∗p

∇i+1f
∗
t

f∗t
+
∇i+1n

∗
p

n∗p

∇3
j+1,k+1,l+1f

∗
t

f∗t
+
∇j+1n

∗
p

n∗p

∇3
i+1,k+1,l+1f

∗
t

f∗t

+
∇k+1n

∗
p

n∗p

∇3
i+1,j+1,l+1f

∗
t

f∗t
+
∇l+1n

∗
p

n∗p

∇3
i+1,j+1,k+1f

∗
t

f∗t
+
∇4
i+1,j+1,k+1,l+1f

∗
t

f∗t

]

+ α1α2(α2 − α1)2

[
∇2
i+1,j+1n

∗
p

n∗p

∇2
k+1,l+1f

∗
t

f∗t
+
∇2
i+1,k+1n

∗
p

n∗p

∇2
j+1,l+1f

∗
t

f∗t
+
∇2
i+1,l+1n

∗
p

n∗p

∇2
j+1,k+1f

∗
t

f∗t

+
∇2
j+1,k+1n

∗
p

n∗p

∇2
i+1,l+1f

∗
t

f∗t
+
∇2
j+1,l+1n

∗
p

n∗p

∇2
i+1,k+1f

∗
t

f∗t
+
∇2
k+1,l+1n

∗
p

n∗p

∇2
i+1,j+1f

∗
t

f∗t

]
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F.2 Fourth-order expansion of the log-likelihood function

Justification of (38) and expression of R
(1)
T (α, π̃,$). Straightforward calculation yields the

fourth-order Taylor expansion (38) with the remainder term (for brevity, we again write π̃ = (β, π)

and π̃∗ = (β∗, π∗))

R
(1)
T (α, π̃,$) = $′∇$LπT (α, π̃∗, 0) +

2

2!
(π̃ − π̃∗)′∇2

π̃$′L
π
T (α, π̃∗, 0)$

+
1

3!

q1+q2∑
i=1

q1+q2∑
j=1

q1+q2∑
k=1

∇3
π̃iπ̃j π̃k

LπT (α, π̃∗, 0)(π̃i − π̃∗i )(π̃j − π̃∗j )(π̃k − π̃∗k)

+
3

3!

q1+q2∑
i=1

q1+q2∑
j=1

q2∑
k=1

∇3
π̃iπ̃j$k

LπT (α, π̃∗, 0)(π̃i − π̃∗i )(π̃j − π̃∗j )$k

+
1

3!

q2∑
i=1

q2∑
j=1

q2∑
k=1

∇3
$i$j$k

LπT (α, π̃∗, 0)$i$j$k

+
1

4!

q1+q2∑
i=1

q1+q2∑
j=1

q1+q2∑
k=1

q1+q2∑
l=1

∇4
π̃iπ̃j π̃kπ̃l

LπT (α, ˙̃π, $̇)(π̃i − π̃∗i )(π̃j − π̃∗j )(π̃k − π̃∗k)(π̃l − π̃∗l )

+
4

4!

q1+q2∑
i=1

q1+q2∑
j=1

q1+q2∑
k=1

q2∑
l=1

∇4
π̃iπ̃j π̃k$l

LπT (α, ˙̃π, $̇)(π̃i − π̃∗i )(π̃j − π̃∗j )(π̃k − π̃∗k)$l

+
6

4!

q1+q2∑
i=1

q1+q2∑
j=1

q2∑
k=1

q2∑
l=1

∇4
π̃iπ̃j$k$l

LπT (α, ˙̃π, $̇)(π̃i − π̃∗i )(π̃j − π̃∗j )$k$l

+
4

4!

q1+q2∑
i=1

q2∑
j=1

q2∑
k=1

q2∑
l=1

∇4
π̃i$j$k$l

LπT (α, ˙̃π, $̇)(π̃i − π̃∗i )$j$k$l

+
1

4!

q2∑
i=1

q2∑
j=1

q2∑
k=1

q2∑
l=1

(
∇4
$i$j$k$l

LπT (α, ˙̃π, $̇)−∇$i$j$k$lL
π
T (α, π̃∗, 0)

)
$i$j$k$l, (48)

where ( ˙̃π, $̇) denotes a point between (π̃, $) and (π̃∗, 0).

Justification of (39) and expression of RT (α, π̃,$). We begin with some useful notation. Let I
denote the index set

I = ((1, 1), (2, 2), . . . , (q2, q2), (1, 2), (1, 3), . . . , (1, q2), (2, 3), . . . , (q2 − 1, q2)).

For any scalars (or d × 1 column vectors) Aij indexed by i and j (here and elsewhere it is tacitly
assumed these indices belong to {1, . . . , q2}), let [Aij ](i,j)∈I denote the following 1× q2(q2 + 1)/2 row
vector (or d× q2(q2 + 1)/2 matrix):

[Aij ](i,j)∈I = [A11 : · · · : Aq2q2 : A12 : · · · : Aq2−1,q2 ] .

For instance, v($) = [$i$j ]
′
(i,j)∈I. Similarly, for any scalarsAijkl indexed by i, j, k, l, let [Aijkl](i,j,k,l)∈I×I
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denote the following q2(q2 + 1)/2× q2(q2 + 1)/2 matrix

[Aijkl](i,j,k,l)∈I×I =



A1111 · · · A11q2q2 A1112 · · · A1,1,q2−1,q2
...

. . .
...

...
. . .

...
Aq2q211 · · · Aq2q2q2q2 Aq2q212 · · · Aq2,q2,q2−1,q2

A1211 · · · A12q2q2 A1212 · · · A1,2,q2−1,q2
...

. . .
...

...
. . .

...
Aq2−1,q2,1,1 · · · Aq2−1,q2,q2,q2 Aq2−1,q2,1,2 · · · Aq2−1,q2,q2−1,q2


.

With this notation, and for any scalars Aijkl and Bij such that Aijkl = Ajikl, Aijkl = Aijlk, and
Bij = Bji for all i, j, k, l, it holds that10

[Bij ](i,j)∈I [cijcklAijkl](i,j,k,l)∈I×I [Bkl]
′
(k,l)∈I =

1

4

q2∑
i=1

q2∑
j=1

q2∑
k=1

q2∑
l=1

AijklBijBkl, (49)

where the cij ’s are as in Section 3.3.1 (cij = 1/2 if i = j and cij = 1 if i 6= j).
Now, to obtain (39), introduce the matrix

JT =

[
JT,π̃π̃ J ′T,π̃$$
JT,π̃$$ JT,$$$$

]
where the matrices JT,π̃π̃ ((q1 + q2)× (q1 + q2)), J ′T,π̃$$ ((q1 + q2)× qϑ), and JT,$$$$ (qϑ × qϑ) are
defined as follows (here ∇2

π̃π̃′L
π∗
T stands for ∇2

π̃π̃′L
π
T (α, π̃∗, 0) etc.)

JT,π̃π̃ = −T−1∇2
π̃π̃′L

π∗
T ,

J ′T,π̃$$ = −T−1 1

α1α2

[
cij∇3

π̃$i$jL
π∗
T

]
(i,j)∈I

= −T−1 1

α1α2
[c11∇3

π̃$1$1
Lπ∗T : · · · : cq2−1,q2∇3

π̃$q2−1$q2
Lπ∗T ],

JT,$$$$ = −T−1 8

4!

1

α2
1α

2
2

[
cijckl∇4

$i$j$k$l
Lπ∗T

]
(i,j,k,l)∈I×I

= −T−1 8

4!

1

α2
1α

2
2

 c11c11∇4
$1$1$1$1

Lπ∗T · · · cq2−1,q2c11∇4
$q2−1$q2$1$1

Lπ∗T
...

. . .
...

c11cq2−1,q2∇4
$1$1$q2−1$q2

Lπ∗T · · · cq2−1,q2cq2−1,q2∇4
$q2−1$q2$q2−1$q2

Lπ∗T

 .
10To justify (49), partition the index set I as I = (I1, I2) with I1 = ((1, 1), (2, 2), . . . (q2, q2)) and I2 =

((1, 2), (1, 3), . . . , (1, q2), (2, 3), . . . , (q2 − 1, q2)). With straightforward algebra,

[Bij ](i,j)∈I [cijcklAijkl](i,j,k,l)∈I×I [Bkl]
′
(k,l)∈I

=
∑

(i,j)∈I

∑
(k,l)∈I

cijcklAijklBijBkl

=
1

4

∑
(i,j)∈I1

∑
(k,l)∈I1

AijklBijBkl +
1

2

∑
(i,j)∈I1

∑
(k,l)∈I2

AijklBijBkl +
1

2

∑
(i,j)∈I2

∑
(k,l)∈I1

AijklBijBkl +
∑

(i,j)∈I2

∑
(k,l)∈I2

AijklBijBkl

=
1

4

[∑
i=j

∑
k=l

AijklBijBkl + 2
∑
i=j

∑
k<l

AijklBijBkl + 2
∑
i<j

∑
k=l

AijklBijBkl + 4
∑
i<j

∑
k<l

AijklBijBkl

]

=
1

4

q2∑
i=1

q2∑
j=1

q2∑
k=1

q2∑
l=1

AijklBijBkl,

where the properties Aijkl = Ajikl, Aijkl = Aijlk, and Bij = Bji for all i, j, k, l, are used in the last equality.
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Straightforward computations (for the third one, use property (49)) now show that

−1

2
T 1/2(π̃ − π̃∗)′JT,π̃π̃T 1/2(π̃ − π̃∗) =

1

2
(π̃ − π̃∗)′∇2

π̃π̃′L
π
T (α, π̃∗, 0)(π̃ − π̃∗),

− T 1/2(π̃ − π̃∗)′J ′T,π̃$$T 1/2α1α2v($)

= (π̃ − π̃∗)′
[
c11∇3

π̃$1$1
LπT (α, π̃∗, 0)$2

1 + ...+ cq2−1,q2∇3
π̃$q2−1$q2

LπT (α, π̃∗, 0)$q2−1$q2

]
=

3

3!

q∑
i=1

q2∑
j=1

q2∑
k=1

∇3
π̃i$j$k

LπT (α, π̃∗, 0)(π̃i − π̃∗i )$j$k,

−1

2
Tα2

1α
2
2v($)′JT,$$$$v($) =

1

4!

q2∑
i=1

q2∑
j=1

q2∑
k=1

q2∑
l=1

∇4
$i$j$k$l

LπT (α, π̃∗, 0)$i$j$k$l.

Therefore the fourth-order Taylor expansion of LπT (α, π̃,$) in (38) can be written as a quadratic
expansion given by

LπT (α, π̃,$)−LπT (α, π̃∗, 0) = S′Tθ(α, π̃,$)−1

2
[T 1/2θ(α, π̃,$)]′JT [T 1/2θ(α, π̃,$)]+R

(1)
T (α, π̃,$). (50)

Next, define

I =

[
Iπ̃π̃ I ′π̃$$
Iπ̃$$ I$$$$

]
, (51)

where the matrices Iπ̃π̃ ((q1 + q2)× (q1 + q2)), I ′π̃$$ ((q1 + q2)× qϑ), and I$$$$ (qϑ× qϑ) are defined
as follows

Iπ̃π̃ = E

[
∇ft(π̃∗)
ft(π̃∗)

∇′ft(π̃∗)
ft(π̃∗)

]
,

I ′π̃$$ =

[
cijE

[
∇ft(π̃∗)
ft(π̃∗)

X∗t,i,j

]]
(i,j)∈I

,

I$$$$ =
[
cijcklE

[
X∗t,i,jX

∗
t,k,l

]]
(i,j,k,l)∈I×I ,

and where we have used the short-hand notation X∗t,i,j , i, j ∈ {1, . . . , q2} (see (44)). Finiteness of I
follows from Lemma F.1. Now, defining

R
(2)
T (α, π̃,$) = −1

2
[T 1/2θ(α, π̃,$)]′(JT − I)[T 1/2θ(α, π̃,$)]

and adding and subtracting terms, expansion (50) can be written as (39) with

RT (α, π̃,$) = R
(1)
T (α, π̃,$) +R

(2)
T (α, π̃,$).

F.3 Some more explicit derivatives and the verification of Assumption 5(iii)

Some more explicit derivative expressions. We will require more explicit expressions for the
components of st in (43) (see also (40)–(42) and (44)). Straightforward computation shows that (as
before, ∇ft(·) denotes differentiation of ft(·) in (3) with respect to φ̃ = (φ̃0, φ̃1, . . . , φ̃p, σ̃

2
1))

∇ft(φ̃)

ft(φ̃)
= ∇ log(ft(φ̃)),

∇2ft(φ̃)

ft(φ̃)
= ∇2 log(ft(φ̃)) +∇ log(ft(φ̃))∇′ log(ft(φ̃)),
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where (as log(ft(φ̃)) = −1
2 log(2π̄)− 1

2 log(σ̃2
1)− 1

2g
2
t (φ̃) with gt(φ̃) = [yt−(φ̃0+φ̃1yt−1+· · ·+φ̃pyt−p)]/σ̃1)

∇ log(ft(φ̃)) =


1
σ̃1
gt(φ̃)

1
σ̃1
yt−1gt(φ̃)

1
2σ̃2

1
(g2
t (φ̃)− 1)

 , ∇2 log(ft(φ̃)) =


− 1
σ̃2
1

− 1
σ̃2
1
y′t−1 − 1

σ̃3
1
gt(φ̃)

− 1
σ̃2
1
yt−1 − 1

σ̃2
1
yt−1y

′
t−1 − 1

σ̃3
1
gt(φ̃)yt−1

− 1
σ̃3
1
gt(φ̃) − 1

σ̃3
1
gt(φ̃)y′t−1 − 1

2σ̃4
1
(2g2

t (φ̃)− 1)

 ,
so that

∇ft(π∗)
ft(π∗)

=


1
σ̃∗1
εt

1
σ̃∗1
yt−1εt

1
2σ̃∗21

(ε2
t − 1)

 ,
∇2ft(π

∗)

ft(π∗)
=

 − 1
σ̃∗21

− 1
σ̃∗21
y′t−1 − 1

σ̃∗31
εt

− 1
σ̃∗21
yt−1 − 1

σ̃∗21
yt−1y

′
t−1 − 1

σ̃∗31
yt−1εt

− 1
σ̃∗31

εt − 1
σ̃∗31
y′t−1εt − 1

2σ̃∗41
(2ε2

t − 1)

+


1
σ̃∗1
εt

1
σ̃∗1
yt−1εt

1
2σ̃∗21

(ε2
t − 1)




1
σ̃∗1
εt

1
σ̃∗1
yt−1εt

1
2σ̃∗21

(ε2
t − 1)


′

=


1
σ̃∗21

(ε2
t − 1) 1

σ̃∗21
y′t−1(ε2

t − 1) 1
2σ̃∗31

(ε3
t − 3εt)

1
σ̃∗21
yt−1(ε2

t − 1) 1
σ̃∗21
yt−1y

′
t−1(ε2

t − 1) 1
2σ̃∗31

yt−1(ε3
t − 3εt)

1
2σ̃∗31

(ε3
t − 3εt)

1
2σ̃∗31

y′t−1(ε3
t − 3εt)

1
4σ̃∗41

(ε4
t − 6ε2

t + 3)

 . (52)

Similar formulas hold for np(yt−1; φ̃). As log(np(yt−1; φ̃)) = −p
2 log(2π̄)− 1

2 log(det(Γ1,p))− 1
2(yt−1−

µ11p)
′Γ−1

1,p(yt−1 − µ11p) (see Section 2.2), we obtain, for each i = 1, . . . , p + 2, (cf. Magnus and
Neudecker (1999, p. 325))11

∇i log(np(yt−1; φ̃)) =
1

2
tr

(
∂Γ−1

1,p

∂φ̃i
Γ1,p

)
+(yt−1−µ11p)

′Γ−1
1,p(

∂µ1

∂φ̃i
1p)−

1

2
(yt−1−µ11p)

′∂Γ−1
1,p

∂φ̃i
(yt−1−µ11p),

where (see Section 2.2 for the notation)

∂µ1

∂φ̃
=

 (φ̃(1))−1

φ̃0(φ̃(1))−21p
0

 .
For the expression of

∂Γ−1
1,p

∂φ̃i
, first note that Γ−1

1,p can be expressed as (see, e.g., Galbraith and Galbraith

(1974)) Γ−1
1,p = 1

σ̃2
1
(U ′U − V ′V ) with U and V being p× p Toeplitz matrices given by

U =


1

−φ̃1
. . .

...
. . . . . .

−φ̃p−1 · · · −φ̃1 1

 , V =


φ̃p

φ̃p−1
. . .

...
. . . . . .

φ̃1 · · · φ̃p−1 φ̃p

 .

Thus
∂Γ−1

1,p

∂φ̃i
equals a zero matrix when differentiating with respect to φ̃0, − 1

σ̃2
1
Γ−1

1,p when differentiating
with respect to σ̃2

1, and

∂Γ−1
1,p

∂φ̃i
=

1

σ̃2
1

(
∂U ′

∂φ̃i
U + U ′

∂U

∂φ̃i
− ∂V ′

∂φ̃i
V − V ′ ∂V

∂φ̃i
)

11As before, ∇ denotes differentiation with respect to φ̃ = (φ̃0, φ̃1, . . . , φ̃p, σ̃
2
1) and ∇i, i = 1, . . . , p + 2, with respect

to the ith component of φ̃.
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when differentiating with respect to the autoregressive parameters. To summarize,

∇np(φ̃)

np(φ̃)
= ∇ log(np(yt−1; φ̃)) =

d1(yt−1; φ̃)

d2(yt−1; φ̃)

d3(yt−1; φ̃)

 , (53)

where (note that tr
(
∂Γ−1

1,p

∂φ̃i
Γ1,p

)
=

∂vec(Γ−1
1,p)′

∂φ̃i
vec(Γ1,p))

d1(yt−1; φ̃) = (φ̃(1))−1(yt−1 − µ11p)
′Γ−1

1,p1p,

d2(yt−1; φ̃) =
1

2

∂vec(Γ−1
1,p)
′

∂(φ̃1, . . . , φ̃p)
vec(Γ1,p) + φ̃0(φ̃(1))−21p(1

′
pΓ
−1
1,p(yt−1 − µ11p))

− 1

2

∂vec(Γ−1
1,p)
′

∂(φ̃1, . . . , φ̃p)
((yt−1 − µ11p)⊗ (yt−1 − µ11p)),

d3(yt−1; φ̃) = − p

2σ̃2
1

+
1

2σ̃2
1

(yt−1 − µ11p)
′Γ−1

1,p(yt−1 − µ11p)

(first and last scalars, middle one p× 1). Therefore

∇np(π∗)
np(π∗)

= ∇ log(np(yt−1;π∗)) =

d1(yt−1;π∗)
d2(yt−1;π∗)
d3(yt−1;π∗)

 .
Based on the preceding derivations, the derivatives appearing in (40)–(42) can now be expressed

as

∇βlπt (α, β∗, π∗, 0) =
1

σ̃∗1
εt

∇πlπt (α, β∗, π∗, 0) =

[
1
σ̃∗1
yt−1εt

1
2σ̃∗21

(ε2
t − 1)

]
((p+ 1)× 1)

∇2
$$′ l

π
t (α, β∗, π∗, 0) = α(1− α)

{[
d2(yt−1;π∗) 1

σ̃∗1
y′t−1εt d2(yt−1;π∗) 1

2σ̃∗21
(ε2
t − 1)

d3(yt−1;π∗) 1
σ̃∗1
y′t−1εt d3(yt−1;π∗) 1

2σ̃∗21
(ε2
t − 1)

]

+

[
1
σ̃∗1
yt−1εtd

′
2(yt−1;π∗) 1

σ̃∗1
yt−1εtd3(yt−1;π∗)

1
2σ̃∗21

(ε2
t − 1)d′2(yt−1;π∗) 1

2σ̃∗21
(ε2
t − 1)d3(yt−1;π∗)

]

+

[
1
σ̃∗21
yt−1y

′
t−1(ε2

t − 1) 1
2σ̃∗31

yt−1(ε3
t − 3εt)

1
2σ̃∗31

y′t−1(ε3
t − 3εt)

1
4σ̃∗41

(ε4
t − 6ε2

t + 3)

]}
.

Verification of Assumption 5(iii). Finiteness of I was already established in Supplementary
Appendix F.2. For positive definiteness, it suffices to show that the components of the vector st
are linearly independent. Note that for linear independence, it does not matter if the order of the
elements is changed or if some of the elements are multiplied by nonzero constants. Therefore, making
use of the explicit expressions given above, it suffices to show that the components of the vector
s̃t = (s̃t,1, s̃t,2, s̃t,3, s̃t,4, s̃t,5, s̃t,6) (where the dimensions of the six components are 1, p, 1, p(p+1)/2, p, 1,
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respectively) are linearly independent, where



s̃t,1
s̃t,2
s̃t,3
s̃t,4
s̃t,5
s̃t,6

 =



1
σ̃∗1
εt

1
σ̃∗1
yt−1εt

1
2σ̃∗21

(ε2
t − 1)

vech[d2(yt−1;π∗)y′t−1 + yt−1d
′
2(yt−1;π∗)] 1

σ̃∗1
εt + vech[yt−1y

′
t−1] 1

σ̃∗21
(ε2
t − 1)

d2(yt−1;π∗) 1
2σ̃∗21

(ε2
t − 1) + yt−1d3(yt−1;π∗) 1

σ̃∗1
εt + 1

2σ̃∗31
yt−1(ε3

t − 3εt)

d3(yt−1;π∗) 1
σ̃∗21

(ε2
t − 1) + 1

4σ̃∗41
(ε4
t − 6ε2

t + 3)


.

To this end, suppose that c′s̃t = (c1, c2, c3, c4, c5, c6)′(s̃t,1, s̃t,2, s̃t,3, s̃t,4, s̃t,5, s̃t,6) = 0 (with the dimension
of c and its subvectors chosen conformably). Note that the only random quantities s̃t depends on
are yt−1 and εt which are independent. First, as the term ε4

t only appears in s̃t,6, the equality
E[c′s̃t | εt] = 0 can be expressed as c6ε

4
t /(4σ̃

∗4
1 ) + P3(εt) = 0, where P3(εt) is a third-order polynomial

in εt. As the components of the vector (εt, ε
2
t , ε

3
t , ε

4
t ) are linearly independent (this clearly follows

from normality), it follows that c6 = 0. Next, basic properties of the standard normal distribution
imply that E[c′s̃t(ε

3
t − 3εt) | yt−1] = c′5

1
2σ̃∗31

yt−1E[(ε3
t − 3εt)

2] = 0, so that necessarily c5 = 0 (as the
components of yt−1 are linearly independent and E[(ε3

t − 3εt)
2] > 0). Next note that (as c5 = 0,

c6 = 0)

0 = E[c′s̃t(ε
2
t − 1) | yt−1] = c3E[(ε2

t − 1)2]/(2σ̃∗21 ) + c′4vech[yt−1y
′
t−1]E[(ε2

t − 1)2]/σ̃∗21

so that c′4vech[yt−1y
′
t−1] = −c3/2. As the components of vech[yt−1y

′
t−1] are linearly independent (as

vech(yt−1y
′
t−1) = D+

p vec(yt−1y
′
t−1) = D+

p (yt−1⊗yt−1), with D+
p denoting the Moore-Penrose inverse

of the duplication matrix Dp, Cov[vech(yt−1y
′
t−1)] = D+

p Cov(yt−1 ⊗ yt−1)D+′
p ; because D+

p is of full
row rank and Cov(yt−1⊗yt−1) has rank p(p+ 1)/2, see Thm 4.3(v) of Magnus and Neudecker (1979),
Cov[vech(yt−1y

′
t−1)] is positive definite), it necessarily follows that c4 = 0 and c3 = 0. Finally, as only

c1 and c2 may be nonzero, E[c′s̃tεt | yt−1] = c1
1
σ̃∗1

+ c′2
1
σ̃∗1
yt−1 = 0, from which c2 = 0 and c1 = 0 follow

(as the components of yt−1 are linearly independent).

F.4 Verification of Assumption 5(iv)

First consider R(1)
T (α, π̃,$). Of the quantities on the right hand side of (48), the first two are equal to

zero because ∇$lπt (α, π̃∗, 0) = 0 and ∇π̃$′ lπt (α, π̃∗, 0) = 0; for the other eight quantities, Lemma F.4
provides upper bounds that aid in bounding them. Now, to verify Assumption 5(iv) (for R(1)

T (α, π̃,$)),
let {γT , T ≥ 1} be an arbitrary sequence of (non-random) positive scalars such that γT → 0 as T →∞.
Condition ‖(β, π,$)− (β∗, π∗, 0)‖ ≤ γT (appearing in Assumption 5(iv)), together with the properties
‖θ(α, β, π,$)‖2 = ‖π̃ − π̃∗‖2 + α2

1α
2
2 ‖v($)‖2 and ‖v($)‖ ≤ ‖$‖2, implies that

‖θ(α, β, π,$)‖1/2 ≤ ‖π̃ − π̃∗‖1/2 + α
1/2
1 α

1/2
2 ‖v($)‖1/2 ≤ γ1/2

T + α
1/2
1 α

1/2
2 γT .

This, Lemma F.4, and the fact that α is bounded away from zero and one on A, imply that for some
sequence {γ̃T , T ≥ 1} of (non-random) positive scalars such that γ̃T → 0 as T → ∞ and for some
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finite C,

sup
α∈A

sup
(π̃,$)∈B×Πα,

‖(π̃,$)−(π̃∗,0)‖≤γT

|R(1)
T (α, π̃,$)|(

1 +
∥∥T 1/2θ(α, π̃,$)

∥∥)2
≤ γ̃T

∑
i,j,k

sup
α∈A

[
|T−1∇3

π̃iπ̃j π̃k
LπT (α, π̃∗, 0)|+ |T−1∇3

π̃iπ̃j$k
LπT (α, π̃∗, 0)|+ |T−1/2∇3

$i$j$k
LπT (α, π̃∗, 0)|

]
+ γ̃T

∑
i,j,k,l

sup
α∈A

sup
(π̃,$)∈B×Πα,

‖(π̃,$)−(π̃∗,0)‖≤γT

[
|T−1∇4

π̃iπ̃j π̃kπ̃l
LπT (α, π̃,$)|+ |T−1∇4

π̃iπ̃j π̃k$l
LπT (α, π̃,$)|

+ |T−1∇4
π̃iπ̃j$k$l

LπT (α, π̃,$)|+ |T−1∇4
π̃i$j$k$l

LπT (α, π̃,$)|
]

+ C
∑
i,j,k,l

sup
α∈A

sup
(π̃,$)∈B×Πα,

‖(π̃,$)−(π̃∗,0)‖≤γT

|T−1(∇4
$i$j$k$l

LπT (α, π̃,$)−∇4
$i$j$k$l

LπT (α, π̃∗, 0))|, (54)

where the summations above are understood to contain counterparts of each term in (48). As the data
is assumed to be generated by a linear autoregression (Assumption 1), the yt’s form a stationary and
ergodic process. Moreover, as the reparameterized log-likelihood of the GMAR model is four times
continuously differentiable (see Assumption 4 and its verification), also the ∇3

π̃iπ̃j π̃k
lπt (α, π̃∗, 0)’s form

a stationary and ergodic process (for any i,j,k). An analogous result holds for all the third and fourth
partial derivatives of lπt (α, π̃,$) appearing on the majorant side of (54).

Now, Lemma F.2(iii) together with the ergodic theorem implies that supα∈A[|T−1∇3
π̃iπ̃j π̃k

LπT (α, π̃∗, 0)|] =

Op(1) (for any i,j,k). Similarly, supα∈A[|T−1∇3
π̃iπ̃j$k

LπT (α, π̃∗, 0)|] = Op(1) (for any i,j,k). Expression
of ∇3

$i$j$k
lπt (α, π̃∗, 0) in Supplementary Appendix F.1, Lemmas F.1 and F.3, and the compactness of

A, imply that supα∈A|T−1/2∇3
$i$j$k

LπT (α, π̃∗, 0)| ≤ C|T−1/2
∑T

t=1MDSt,i,j,k(π
∗)| for some finite C

and for some square integrable martingale difference sequence MDSt,i,j,k(π
∗). Moreover, for any i,j,k,

the last upper bound is Op(1) by an appropriate central limit theorem (Billingsley (1961)).
As for the fourth-order partial derivatives appearing on the majorant side of (54), Lemma F.2(iv)

and a uniform law of large numbers for stationary and ergodic processes (Ranga Rao (1962)) imply
that supα∈A sup(π̃,$)∈B×Πα,‖(π̃,$)−(π̃∗,0)‖≤γT |T

−1∇4
π̃iπ̃j π̃kπ̃l

LπT (α, π̃,$)| = Op(1) (for any i,j,k,l). The
next three terms in (54) can be handled similarly. As for the last term on the majorant side of (54),

sup
α∈A

sup
(π̃,$)∈B×Πα,

‖(π̃,$)−(π̃∗,0)‖≤γT

|T−1(∇4
$i$j$k$l

LπT (α, π̃,$)−∇4
$i$j$k$l

LπT (α, π̃∗, 0))|

≤ 2 sup
α∈A

sup
(π̃,$)∈B×Πα,

‖(π̃,$)−(π̃∗,0)‖≤γT

|T−1∇4
$i$j$k$l

LπT (α, π̃,$)− E[∇4
$i$j$k$l

lπt (α, π̃,$)]|

where the dominant side is op(1) (again relying on Lemma F.2(iv) and a uniform LLN). To conclude,
the upper bound in (54) is γ̃TOp(1) + Cop(1) = op(1). This completes the verification of Assumption
5(iv) for the term R

(1)
T (α, π̃,$).

Now consider R(2)
T (α, π̃,$) = −1

2 [T 1/2θ(α, π̃,$)]′(JT − I)[T 1/2θ(α, π̃,$)]. We will below show
that (a) JT

p→ J as T → ∞, where the matrix J will be specified below (and JT ,J do not depend
on α). Write (−2 times) R(2)

T (α, π̃,$) as

[T 1/2θ(α, π̃,$)]′(JT − J )[T 1/2θ(α, π̃,$)] + [T 1/2θ(α, π̃,$)]′(J − I)[T 1/2θ(α, π̃,$)].

We will below also show that (b) the latter term above equals zero. The validity of Assumption 5(iv) for
the term R

(2)
T (α, π̃,$) follows from results (a) and (b) (together with usual properties of the Euclidean
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norm).
To prove claim (a), we first define the matrix J as

J =

[
Jππ J ′π$$
Jπ$$ J$$$$

]
where the matrices Jπ̃π̃ ((q1 + q2)× (q1 + q2)), J ′π̃$$ ((q1 + q2)× qϑ), and J$$$$ (qϑ× qϑ) are defined
as

Jπ̃π̃ = E

[
∇f∗t
f∗t

∇′f∗t
f∗t

]
J ′π̃$$ = E

[[
cij
∇f∗t
f∗t

X∗t,i,j

]
(i,j)∈I

]
J$$$$ =

1

3

[
cijckl

(
E[X∗t,i,jX

∗
t,k,l] + E[X∗t,i,kX

∗
t,j,l] + E[X∗t,i,lX

∗
t,j,k]

)]
(i,j,k,l)∈I×I

where the X∗t,i,j (i, j ∈ {1, . . . , q2}) are as in (44). Finiteness of J follows from Lemma F.1.
Now consider the convergence result JT

p→ J for each block at a time. For the top-left block,
from Supplementary Appendix F.1 we have ∇π̃π̃′ lπ∗t =

∇2f∗t
f∗t
− ∇f

∗
t

f∗t

∇′f∗t
f∗t

so that ergodic theorem and
Lemmas F.1 and F.3 (latter ensuring the first term on the right-hand side of the previous equation has
zero expectation) imply that JT,π̃π̃ = −T−1∇2

π̃π̃′L
π∗
T

p→ Jπ̃π̃.
For the off-diagonal block, consider the expression of ∇3

π̃i$j$k
lπ∗t in Supplementary Appendix F.1.

Lemma F.3 ensures that of the ten summands in this expression, only the second, fourth, and sixth
ones have non-zero expectation. Therefore the ergodic theorem and Lemma F.1 imply that

J ′T,π̃$$ = −T−1 1

α1α2
[c11∇3

π̃$1$1
Lπ∗T : · · · : cq2−1,q2∇3

π̃$q2−1$q2
Lπ∗T ]

p→ J ′π̃$$.

Lastly, for the bottom-right block, consider the expression of ∇4
$i$j$k$l

lπ∗t in Supplementary
Appendix F.1. Lemma F.3 reveals that the terms in this expression that have non-zero expectation
can be expressed as

−α2
1α

2
2[X∗t,i,jX

∗
t,k,l +X∗t,i,kX

∗
t,j,l +X∗t,i,lX

∗
t,j,k].

Therefore the ergodic theorem and Lemma F.1 imply that

JT,$$$$ = −T−1 8

4!

1

α2
1α

2
2

[
cijckl∇4

$i$j$k$l
Lπ∗T

]
(i,j,k,l)∈I×I

p→ J$$$$.

This completes the proof of claim (a).
To prove claim (b), first note that from the definitions of J and I (see (51)) it can be seen

that only the bottom-right blocks of J and I differ. Therefore, as T 1/2θ(α, π̃,$) = (T 1/2(π̃ −
π̃∗), T 1/2(α1α2v($))), claim (b) holds if T (α1α2)2v($)′(J$$$$ − I$$$$)v($) = 0 where

J$$$$ =
1

3

[
cijckl

(
E[X∗t,i,jX

∗
t,k,l] + E[X∗t,i,kX

∗
t,j,l] + E[X∗t,i,lX

∗
t,j,k]

)]
(i,j,k,l)∈I×I ,

I$$$$ =
[
cijcklE[X∗t,i,jX

∗
t,k,l]

]
(i,j,k,l)∈I×I .

Note that the scalars Aijkl = E[X∗t,i,jX
∗
t,k,l] satisfy Aijkl = Ajikl and Aijkl = Aijlk for all i, j, k, l so
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that using property (49) we obtain

v($)′J$$$$v($) =
1

3
v($)′

[
cijckl

(
E[X∗t,i,jX

∗
t,k,l] + E[X∗t,i,kX

∗
t,j,l] + E[X∗t,i,lX

∗
t,j,k]

)]
(i,j,k,l)∈I×I v($)

=
1

3

1

4

q2∑
i=1

q2∑
j=1

q2∑
k=1

q2∑
l=1

(
E[X∗t,i,jX

∗
t,k,l] + E[X∗t,i,kX

∗
t,j,l] + E[X∗t,i,lX

∗
t,j,k]

)
$i$j$k$l

=
1

4

q2∑
i=1

q2∑
j=1

q2∑
k=1

q2∑
l=1

E[X∗t,i,jX
∗
t,k,l]$i$j$k$l

= v($)′I$$$$v($).

This completes the proof of claim (b).
Therefore, the verification of Assumption 5(iv) is done.

F.5 Additional Lemmas

The following four lemmas contain results needed in the proofs. Note that the first and the third lemma
are not specific to the examples in this paper, whereas the second and fourth lemmas concern only
the GMAR example. In the first lemma, np+1(φ̃) = np+1(yt,yt−1; φ̃) denotes the (p + 1)-dimensional
density function of an AR(p) process based on parameter value φ̃ evaluated at (yt,yt−1); cf. equations
(6)–(8) for the p-dimensional counterpart np(φ̃) = np(yt−1; φ̃).

Lemma F.1. For any i, j, k, l ∈ {1, . . . , p+2} and any positive r, the following moments are all finite:

(i) E
[
supφ̃∈Φ̃|∇ift(φ̃)/ft(φ̃)|r

]
, E
[
supφ̃∈Φ̃|∇

2
ijft(φ̃)/ft(φ̃)|r

]
, . . . , E

[
supφ̃∈Φ̃|∇

4
ijklft(φ̃)/ft(φ̃)|r

]
,

(ii) E
[
supφ̃∈Φ̃|∇inp(φ̃)/np(φ̃)|r

]
, E
[
supφ̃∈Φ̃|∇

2
ijnp(φ̃)/np(φ̃)|r

]
, . . . , E

[
supφ̃∈Φ̃|∇

4
ijklnp(φ̃)/np(φ̃)|r

]
,

(iii) E
[
supφ̃∈Φ̃|∇inp+1(φ̃)|r

]
, E
[
supφ̃∈Φ̃|∇

2
ijnp+1(φ̃)|r

]
, . . . , E

[
supφ̃∈Φ̃|∇

4
ijklnp+1(φ̃)|r

]
.

Lemma F.2. In the GMAR example the following hold, where each of (the scalars) z1, z2, z3, z4

is a ‘placeholder’ for any of π̃i, π̃j , π̃k, π̃l (i, j, k, l ∈ {1, . . . , q1 + q2}) or $i, $j , $k, $l (i, j, k, l ∈
{1, . . . , q2}):

(i) E
[
supα∈A sup(π̃,$)∈B×Πα |∇z1 l

π
t (α, π̃,$)|

]
<∞,

(ii) E
[
supα∈A sup(π̃,$)∈B×Πα |∇

2
z1z2 l

π
t (α, π̃,$)|

]
<∞,

(iii) E
[
supα∈A sup(π̃,$)∈B×Πα |∇

3
z1z2z3 l

π
t (α, π̃,$)|

]
<∞,

(iv) E
[
supα∈A sup(π̃,$)∈B×Πα |∇

4
z1z2z3z4 l

π
t (α, π̃,$)|

]
<∞.

Lemma F.3. For any i, j, k, l ∈ {1, . . . , p+ 2},

E
[ ∇if∗t

f∗t
| yt−1

]
= E

[ ∇2
ijf
∗
t

f∗t
| yt−1

]
= E

[ ∇3
ijkf

∗
t

f∗t
| yt−1

]
= E

[ ∇4
ijklf

∗
t

f∗t
| yt−1

]
= 0.
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Lemma F.4. In the GMAR example the following hold for all α ∈ A, (π̃, $) ∈ B × Πα, T , and
i, j, k, l ∈ {1, . . . , q1 + q2} (subindex in π̃) or i, j, k, l ∈ {1, . . . , q2} (subindex in $):

(i) T |π̃i − π̃∗i | |π̃j − π̃∗j ||π̃k − π̃∗k| ≤ (1 + ‖T 1/2θ(α, π̃,$)‖)2 ‖π̃ − π̃∗‖ ,

(ii) T |π̃i − π̃∗i ||π̃j − π̃∗j ||$k| ≤ (1 + ‖T 1/2θ(α, π̃,$)‖)2 ‖$‖ ,

(iii) T 1/2|$i||$j ||$k| ≤ (1 + ‖T 1/2θ(α, π̃,$)‖)2(α1α2)−3/2 ‖θ(α, π̃,$)‖1/2 ,

(iv) T (π̃i − π̃∗i )(π̃j − π̃∗j )(π̃k − π̃∗k)(π̃l − π̃∗l ) ≤ (1 + ‖T 1/2θ(α, π̃,$)‖)2 ‖π̃ − π̃∗‖2 ,

(v) T (π̃i − π̃∗i )(π̃j − π̃∗j )(π̃k − π̃∗k)$l ≤ (1 + ‖T 1/2θ(α, π̃,$)‖)2 ‖π̃ − π̃∗‖ ‖$‖ ,

(vi) T (π̃i − π̃∗i )(π̃j − π̃∗j )$k$l ≤ (1 + ‖T 1/2θ(α, π̃,$)‖)2 ‖$‖2 ,

(vii) T (π̃i − π̃∗i )$j$k$l ≤ (1 + ‖T 1/2θ(α, π̃,$)‖)2(α1α2)−3/2 ‖θ(α, π̃,$)‖1/2 ,

(viii) T$i$j$k$l ≤ (1 + ‖T 1/2θ(α, π̃,$)‖)2(α1α2)−2.

F.6 Proofs of Lemmas F.1–F.4

Proof of Lemma F.1. Writing gt(φ̃) = [yt − (φ̃0 + φ̃1yt−1 + · · ·+ φ̃pyt−p)]/σ̃1 and recalling the defi-
nition of ft(φ̃) we can write ft(φ̃) = σ̃−1

1 N(gt(φ̃)) where N(·) denotes the density function of a standard
normal random variable. Recall also that derivatives of N(·) can be expressed using (one version
of) Hermite polynomials Hn(x) as dn

dxnN(x) = (−1)nHn(x)N(x). Using the chain rule for differenti-
ation repeatedly, it can therefore be seen that each of the functions ∇ift(φ̃)/ft(φ̃), ∇2

ijft(φ̃)/ft(φ̃),
∇3
ijkft(φ̃)/ft(φ̃), and ∇4

ijklft(φ̃)/ft(φ̃) can be expressed as a sum of terms each of which is a product
involving Hermite polynomials Hn(gt(φ̃)) and powers of derivatives of gt(φ̃) (and functions of φ̃). Thus,
each of these functions is a polynomial in terms of yt, yt−1, . . . , yt−p. As the yt’s are generated by a
stationary linear Gaussian AR(p) model, they possess moments of all orders, implying (together with
the definition of Φ̃, implying in particular that σ̃1 is bounded away from zero on Φ̃) the finiteness of
the moments listed in part (i) of the lemma.

As for part (ii), note that np(φ̃) can be expressed as np(φ̃) = g1(φ̃)N(g2,t(φ̃)) for some function g1(φ̃)

not depending on the yt’s and g2,t(φ̃) the square root of a second-order polynomial in yt−1, . . . , yt−p.
Therefore the finiteness of the moments listed in the part (ii) follows using similar arguments as above
(noting that the definition of Φ̃ implies that the determinant of the covariance matrix appearing in
np(φ̃) is bounded away from zero on Φ̃).

Finally, for part (iii), similar arguments, together with the observation that np+1(φ̃) is bounded on
Φ̃, yield the desired result. �

Proof of Lemma F.2. To prove (i), first consider the derivatives with respect to $. From the for-
mulas in Supplementary Appendix F.7 we obtain

∇$lπt (α, π̃,$) = α1,tα2,t

D(1)′
φ̃,$
∇np(φ̃)

np(φ̃)
−
D

(1)′
ϕ̃,$∇np(ϕ̃)

np(ϕ̃)

 ft(φ̃)

fπ2,t(α, π̃,$)
+
D

(1)′
φ̃,$
∇ft(φ̃)

fπ2,t(α, π̃,$)
α1,t

− α1,tα2,t

D(1)′
φ̃,$
∇np(φ̃)

np(φ̃)
−
D

(1)′
ϕ̃,$∇np(ϕ̃)

np(ϕ̃)

 ft(ϕ̃)

fπ2,t(α, π̃,$)
+
D

(1)′
ϕ̃,$∇ft(ϕ̃)

fπ2,t(α, π̃,$)
(1− α1,t)

where φ̃ and ϕ̃ are understood as functions of (α, π̃,$) (i.e., φ̃ = (β, π+α2$) and ϕ̃ = (β, π−α1$)).
Note that whenever α ∈ A and (π̃, $) ∈ B × Πα, φ̃ ∈ Φ̃ and ϕ̃ ∈ Φ̃. Also note that over α ∈ A and
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(π̃, $) ∈ B ×Πα, the quantities

|α1,t|, |α2,t|, ‖D(1)

φ̃,$
‖, ‖D(1)

ϕ̃,$‖, |ft(φ̃)/fπ2,t(α, π̃,$)|, |ft(ϕ̃)/fπ2,t(α, π̃,$)|

are all bounded by finite constants. Therefore E
[
supα∈A sup(π̃,$)∈N(π̃∗,0)‖∇$lπt (α, π̃,$)‖

]
< ∞ as

long as E
[
supφ̃∈Φ̃‖∇ft(φ̃)/ft(φ̃)‖

]
< ∞ and E

[
supφ̃∈Φ̃‖∇np(φ̃)/np(φ̃)‖

]
< ∞, which is ensured by

Lemma F.1. The argument for ∇π̃lπt (α, π̃,$) is entirely similar and is omitted.
To prove (ii)–(iv), entirely similar arguments can be used. Tedious calculations (details omitted)

show that the finiteness of the required moments is ensured by the finiteness of the moments in Lemma
F.1(i) and (ii). �

Proof of Lemma F.3. For the first two derivatives, the stated result follows directly from the ex-
pressions of ∇f∗t /f∗t and ∇2f∗t /f

∗
t in (52). The results for the third and fourth derivatives can be

obtained with straightforward calculation. �

Proof of Lemma F.4. First recall that
∥∥T 1/2θ(α, π̃,$)

∥∥2
= T ‖π̃ − π̃∗‖2 + Tα2

1α
2
2 ‖v($)‖2. (i) By

an elementary inequality, T |π̃i − π̃∗i | |π̃j − π̃∗j ||π̃k − π̃∗k| ≤ T ‖π̃ − π̃∗‖3 and therefore the result follows
by adding nonnegative terms on the majorant side of this inequality. Parts (ii) and (iv)–(vi) are shown
similarly. (vii) As θ(α, π̃,$) = (π̃− π̃∗, α1α2v($)), each of the terms |π̃i− π̃∗i |, α1α2$

2
j , α1α2$

2
k, and

α1α2$
2
l are dominated by ‖θ(α, π̃,$)‖. Therefore

T |π̃i−π̃∗i ||$j ||$k||$l| ≤ T (α1α2)−3/2 ‖θ(α, π̃,$)‖5/2 ≤ (α1α2)−3/2(1+
∥∥∥T 1/2θ(α, π̃,$)

∥∥∥)2 ‖θ(α, π̃,$)‖1/2

where the second inequality holds because nonnegative terms were added to the majorant side. (viii)
Similarly as in the previous part,

T |$i||$j ||$k||$l| ≤ (α1α2)−2
∥∥∥T 1/2θ(α, π̃,$)

∥∥∥2
≤ (α1α2)−2(1 +

∥∥∥T 1/2θ(α, π̃,$)
∥∥∥)2.

Finally, for (iii) we, similarly as above but scaling with T 1/2 instead of T , obtain

T 1/2|$i||$j ||$k| ≤ T 1/2(α1α2)−3/2 ‖θ(α, π̃,$)‖3/2 ≤ (α1α2)−3/2(1+
∥∥∥T 1/2θ(α, π̃,$α)

∥∥∥)2 ‖θ(α, π̃,$)‖1/2 ,

which completes the proof. �

F.7 Partial derivatives of the reparameterized log-likelihood function (continued)

Note that lπt (α, β, π,$) = log[fπ2,t(α, β, π,$)] with

fπ2,t(α, β, π,$) = απ1,t(α, β, π,$)ft(β, π + α2$) + (1− απ1,t(α, β, π,$))ft(β, π − α1$),

απ1,t(α, β, π,$) = αG1,t(α, (β, π + α2$), (β, π − α1$)).

For the sake of brevity, but with slight abuse of notation, we will write these as

fπ2,t(α, β, π,$) = απ1,t(α, β, π,$)ft(φ̃) + (1− απ1,t(α, β, π,$))ft(ϕ̃),

απ1,t(α, β, π,$) =
αnp(φ̃)

αnp(φ̃) + (1− α)np(ϕ̃)
,
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where φ̃ and ϕ̃ are understood as functions of (α, β, π,$), that is, φ̃ = (β, π + α2$) and ϕ̃ = (β, π −
α1$).

The following notation will be helpful:

D
(1)

φ̃,π̃
=
∂(β, π + α2$)

∂π̃′
= I1+q2

D
(1)

φ̃,$
=
∂(β, π + α2$)

∂$′
=

[
0

α2Iq2

]
((1 + q2)× q2)

D
(1)
ϕ̃,π̃ =

∂(β, π − α1$)

∂π̃′
= I1+q2

D
(1)
ϕ̃,$ =

∂(β, π − α1$)

∂$′
=

[
0

−α1Iq2

]
((1 + q2)× q2)

First-order partial derivatives. With straightforward differentation we obtain

∇π̃lπt (α, π̃,$) =
∇π̃fπ2,t(α, π̃,$)

fπ2,t(α, π̃,$)

∇$lπt (α, π̃,$) =
∇$fπ2,t(α, π̃,$)

fπ2,t(α, π̃,$)

with

∇π̃fπ2,t(α, π̃,$) = ∇π̃α1,tft(φ̃) +∇ft(φ̃)α1,t −∇π̃α1,tft(ϕ̃) +∇ft(ϕ̃)(1− α1,t)

∇$fπ2,t(α, π̃,$) = ∇$α1,tft(φ̃) +D
(1)′
φ̃,$
∇ft(φ̃)α1,t −∇$α1,tft(ϕ̃) +D

(1)′
ϕ̃,$∇ft(ϕ̃)(1− α1,t)

and

∇π̃α1,t =
α1∇np(φ̃)

α1np(φ̃) + α2np(ϕ̃)
− α1,t

α1∇np(φ̃) + α2∇np(ϕ̃)

α1np(φ̃) + α2np(ϕ̃)

∇$α1,t =
α1D

(1)′
φ̃,$
∇np(φ̃)

α1np(φ̃) + α2np(ϕ̃)
− α1,t

α1D
(1)′
φ̃,$
∇np(φ̃) + α2D

(1)′
ϕ̃,$∇np(ϕ̃)

α1np(φ̃) + α2np(ϕ̃)

where simplification leads to

∇π̃α1,t = α1,t
∇np(φ̃)

np(φ̃)
− α1,t

(
α1,t
∇np(φ̃)

np(φ̃)
+ α2,t

∇np(ϕ̃)

np(ϕ̃)

)

= α1,tα2,t

(
∇np(φ̃)

np(φ̃)
− ∇np(ϕ̃)

np(ϕ̃)

)

∇$α1,t = α1,t

D
(1)′
φ̃,$
∇np(φ̃)

np(φ̃)
− α1,t

α1,t

D
(1)′
φ̃,$
∇np(φ̃)

np(φ̃)
+ α2,t

D
(1)′
ϕ̃,$∇np(ϕ̃)

np(ϕ̃)


= α1,tα2,t

D(1)′
φ̃,$
∇np(φ̃)

np(φ̃)
−
D

(1)′
ϕ̃,$∇np(ϕ̃)

np(ϕ̃)

 .

Evaluated at (α, π̃,$) = (α, π̃∗, 0) we get

∇π̃α∗1,t = 0, ∇$α∗1,t = α1α2

∇(2,...,p+2)np(π̃
∗)

np(π̃∗)
,
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fπ2,t(α, π̃
∗, 0) = ft(π̃

∗), ∇π̃fπ2,t(α, π̃∗, 0) = ∇ft(π̃∗), ∇$fπ2,t(α, π̃∗, 0) = 0,

so that
∇π̃lπt (α, π̃∗, 0) =

∇ft(π̃∗)
ft(π̃∗)

, ∇$lπt (α, π̃∗, 0) = 0.

Second-order partial derivatives With straightforward differentation we obtain

∇2
π̃π̃′ l

π
t (α, π̃,$) =

∇2
π̃π̃′f

π
2,t(α, π̃,$)

fπ2,t(α, π̃,$)
−
∇π̃fπ2,t(α, π̃,$)

fπ2,t(α, π̃,$)

∇π̃′fπ2,t(α, π̃,$)

fπ2,t(α, π̃,$)

∇2
π̃$′ l

π
t (α, π̃,$) =

∇2
π̃$′f

π
2,t(α, π̃,$)

fπ2,t(α, π̃,$)
−
∇π̃fπ2,t(α, π̃,$)

fπ2,t(α, π̃,$)

∇$′fπ2,t(α, π̃,$)

fπ2,t(α, π̃,$)

∇2
$$′ l

π
t (α, π̃,$) =

∇2
$$′f

π
2,t(α, π̃,$)

fπ2,t(α, π̃,$)
−
∇$fπ2,t(α, π̃,$)

fπ2,t(α, π̃,$)

∇$′fπ2,t(α, π̃,$)

fπ2,t(α, π̃,$)

with

∇2
π̃π̃′f

π
2,t(α, π̃,$) = ∇2

π̃π̃′α1,tft(φ̃) +∇π̃α1,t∇′ft(φ̃)

+∇ft(φ̃)∇π̃′α1,t + α1,t∇2ft(φ̃)

−∇2
π̃π̃′α1,tft(ϕ̃)−∇π̃α1,t∇′ft(ϕ̃)

−∇ft(ϕ̃)∇π̃′α1,t + (1− α1,t)∇2ft(ϕ̃)

∇2
π̃$′f

π
2,t(α, π̃,$) = ∇2

π̃$′α1,tft(φ̃) +∇π̃α1,t∇′ft(φ̃)D
(1)

φ̃,$

+∇ft(φ̃)∇$′α1,t + α1,t∇2ft(φ̃)D
(1)

φ̃,$

−∇2
π̃$′α1,tft(ϕ̃)−∇π̃α1,t∇′ft(ϕ̃)D

(1)
ϕ̃,$

−∇ft(ϕ̃)∇$′α1,t + (1− α1,t)∇2ft(ϕ̃)D
(1)
ϕ̃,$

∇2
$$′f

π
2,t(α, π̃,$) = ∇2

$$′α1,tft(φ̃) +∇$α1,t∇′ft(φ̃)D
(1)

φ̃,$

+ α1,tD
(1)′
φ̃,$
∇2ft(φ̃)D

(1)

φ̃,$
+D

(1)′
φ̃,$
∇ft(φ̃)∇$′α1,t

−∇2
$$′α1,tft(ϕ̃)−∇$α1,t∇′ft(ϕ̃)D

(1)
ϕ̃,$

+ (1− α1,t)D
(1)′
ϕ̃,$∇

2ft(ϕ̃)D
(1)
ϕ̃,$ −D

(1)′
ϕ̃,$∇ft(ϕ̃)∇$′α1,t

For brevity, we omit the expressions of ∇2
π̃π̃′α1,t, ∇2

π̃$′α1,t, and ∇2
$$′α1,t. Evaluated at (α, π̃,$) =

(α, π̃∗, 0) we get

∇2
π̃π̃′f

π
2,t(α, π̃

∗, 0) = ∇2ft(π̃
∗)

∇2
π̃$′f

π
2,t(α, π̃

∗, 0) = 0

∇2
$$′f

π
2,t(α, π̃

∗, 0) = ∇$α∗1,t∇′(2,...,p+2)ft(π̃
∗) +∇(2,...,p+2)ft(π̃

∗)∇$′α∗1,t + α1α2∇2
(2,...,p+2)(2,...,p+2)ft(π̃

∗)

= ∇$α∗1,t∇′(2,...,p+2)ft(π̃
∗) +∇(2,...,p+2)ft(π̃

∗)∇$′α∗1,t + α1α2∇2
(2,...,p+2)(2,...,p+2)ft(π̃

∗)
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so that

∇2
π̃π̃′ l

π
t (α, π̃∗, 0) =

∇2ft(π̃
∗)

ft(π̃∗)
− ∇ft(π̃

∗)

ft(π̃∗)

∇′ft(π̃∗)
ft(π̃∗)

∇2
π̃$′ l

π
t (α, π̃∗, 0) = 0

∇2
$$′ l

π
t (α, π̃∗, 0) =

∇$α∗1,t∇′(2,...,p+2)ft(π̃
∗) +∇(2,...,p+2)ft(π̃

∗)∇$′α∗1,t + α1α2∇2
(2,...,p+2)(2,...,p+2)ft(π̃

∗)

ft(π̃∗)

= α1α2

[
∇(2,...,p+2)np(π̃

∗)

np(π̃∗)

∇′(2,...,p+2)ft(π̃
∗)

ft(π̃∗)
+
∇(2,...,p+2)ft(π̃

∗)

ft(π̃∗)

∇′(2,...,p+2)np(π̃
∗)

np(π̃∗)

+
∇2

(2,...,p+2)(2,...,p+2)ft(π̃
∗)

ft(π̃∗)

]
.
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