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ADbstract

Our main purpose is to examine cross-sectional effects of regressors
on the asymptotic properties of panel unit root tests. For this purpose
we compute limiting local powers of various tests for three kinds of
error terms: (a) AR (b) MA (c) composite errors. It is found that the
existence of common regressors fades away asymptotically. We also
prove that the tests that are not asymptotically efficient in the time
series case become efficient in the panel case.



Outline of my talk with related references:
1. Panel AR unit root tests
Moon, Perron and Phillips (2007), Moon and Perron (2008)
2. Panel MA unit root tests
Tanaka (2017)
3. Panel stationarity tests using error components models
Hadri (2000), Shin and Snell (2006).

4. Concluding remarks



Panel models to be considered here

WVIGEENAS v = Bo+Bit+ny (i=1,...,N;t=1,...,T)
WIGEERBE v = Boi+ B1t+ mit
WIGEENER vi: = 6o+ B1it+ it
WIGEENDY v;: = Boi + B1it + mit

where the error term {n;} is defined by

AR ngt pNit—1+¢ei, Ho:p=1
MA: niy = ey —agi—1, Ho:ra=1
ECM: n; it + ity pit = pip—1 + &, Ho:Var(&) =0

BB The above models are the same when N = 1, tha is, the time
series case, but these are different when N > 1.



e Panel statistics: Panel statistics belong to a class of double indexed
processes {Syr}. To deal with asymptotics we can use

N, T—o0
o Joint limit. SNT = S
T'—00 N—00
- S S\ = sy = s

We would like to observe the intermediate situation - rather than
the extreme end Bl to examine the cross-sectional effects caused by

Note that the joint limit usually requires stronger conditions than the
sequential limit [Phillips and Moon (1999)].



1. Panel AR models

WIGEENAS vi: = Bo+ Bit+ ma
WIGEENBY v, = Boi+ B1t+ nit
WIGHENEH v, = B0+ B1it+ nit
WIGEENDN v, = Bo; + B1it + nit

where the error term {n;:} is defined by
Mt = pnit—1+ it 1€t} ~ 1.1.d.(0, o2).
The panel AR unit root test considered here is
Ho :p=1 vs Hqy:p<l1l.
We assume that, under Hq, the value of p is given by
C CN C

_NK/T:]-_?, CNZW’ (C>0,0<K)<1>

p=1



1.1 OLSE-based tests

The OLSE-based tests for Model M use the OLSE ﬁ(M) of p given by

(M) (M)
SN ST, A a

M) — Z]_Vl t;Q ”'i(]b)’tz , “z.(tM): OLS residual from Model M
D i1 2ut=o {771',75_1}

FFRESFEMIY As T — oo with N fixed under p = 1 — ¢y /T, the asymp-
totic distribution of (M) in Model M (M=A, B, C, D) follows

T(pM) — 1) = ==L o QY = ==t 5y

N N—1 ,(M)
2ui=1 Vit 2.i=1 Y + Vy



D — [y avicr A _ [t yv2iy g
v = [Cvimanm, v = [T vRr)d
B — [ viry - [T v ds) dvicr
U, —/O<Yz<) /()m)d)cm()

V;;(B) _ /01 <YZ(T) — /01 Y;(s) d8>2 dr
Ui(c) = /1 <Y;(T) — 37 /01 sY;(s) ds) <dYZ~(T) — 3/01 sY;(s) ds dr)

1 1 2
\/;(O) = / Y;(r) — 37“/0 sY-(s)ds) dr

u® =

Yi(r) — (4 — 67~)/ Y(s)ds—(lQr—6)/ sYi(s)ds | dY;(r)

2

Vi(D) = /O Yi(r) — (4 — 67“)/ Y;(s)ds — (127“—6)/ sY;(s) ds) dr,

|
- o,
e R YR

where {Y;(r)} is the O-U process defined by

aY;(r) = —cen Yi(r) dr + dW;(r), {W;(r)} :standard Brownian motion

e



on _ St Ut + Uy

N (M)
=1 il = Uy = N—1 (M) (D)’
=1 V5 Tt Vy

M
A Vz'(T )

T(p"M —1) =

(a) When N = 1, that is, in the time series case, the distribution of

ngM) reduces to Q&D) = Ul(D)/Vl(D) for M=A, B, C, D. Note also

that U£A)/V1(A) corresponds to the popular near-unit root distri-
bution associated with the time series model y = py;_1 + ¢ with

p=1—c¢/T.

(b) As N becomes large, it holds that

o0 2 S UV HUY s Ut 10,0 £, U
D S viseh (AR N CO I Vi R R

where the distribution of this last quantity is obtained from Model
M without common regressor, which means that the effect of com-

mon regressor fades away as N becomes large.



Appendix (pp.9-17) : proof for simpler cases

Model 1: Yit = Nt (’L:].,,N,t:].,,T)
Model 2 y;; = a4+ n;,
Model 3: y;r = o+ i,

where

- 2
it = PNit—1+€it, Mo=0, {eix}~ i.i.d.(0,0%).

~ 1 NT
min > (it —a)? = a=ﬁZZy¢t
1=1t=1 1=1t=1
N T 5 1 T
Oél,mlc]OéN Z:l Z (yit — ) — ;= ? Z: yie (1=1, , N)
1=1t=1 t—=1
N T T
~(2 —~ 1 . 3 R 1
i =y—a=me— Y Y e A = v - &= 2 Y ma



~(2 ~ ~(3
nq;(t)=yzt—oz=mt——NT >0 it nft)=yzt—az—mt—— Z Nit
1=1t=1
1 _(2) 1 Y LNE)
72 o v - = / Y;(s) ds, - Y(r)—/ Yi(s) ds
To T] L z; v \/_ i) v
Model 1:
N T
P — ;[T = Y(T) ’
ity Yo M1 VTo ] Z

1 N T 1
T —1) = 5 2 Z 777;,15—1(777;75_777;,15—1)/ 2.7

=1

1
N

%/ v2ryar S Vil

=

N T )
Z Z Mit—1
1=1t=2

10



Model 2:

~(2 ~
(2 = AP YD 772'(,t)—1 777;(t2) ( 1L (2
n >

Yty Yo {777,(21}

A 1 XL _ _
T2 —1) = WZ Zn§,%11<n§3>—n§§11> /

1
Vot = Y g 2




Uiz

1=

N

L2012 (20N2 = (<) @ \?
Z; T2 {"’%T} {777;1 } t; (777;75 777;,75—1)
N 1 N 1 N 2
SuP=-% (Yi(l) — =3 [T v(s) ds)
=1 22':1 Nkzzl/o
— [ — Yi.(s)ds| —1],
N = Jo
1 NI 2
1252 > > {777,(7521}

N N 1 1 N 2
(2)_ AT ) — — S S T.
i;‘/i _7;;1/0 (Yz() Nkz::1/0 Yk()d) !
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(2) N 5 N 1
_ 5Z(Y (1)_1)__21/-(1) S /O Y, (s) ds .
’I,: k::].

7 (2)

N
2
N N ; 1 2
; ;/ Yo (r) dT—N (k;::l/() Y. (s) ds) .

Define the N x N orthogonal matrix H with the N-th row being i?v/\/N =
(1,...,1)/VN, that is,

. [0
. 1 /! . L :
H = (ZiN/\/N) , HH —IN, H’LN— 0 ,
\VN
and put Z(r) = HY (r), where Z(r) = (Z1(r), ..., Zn(r)) and Y (r) =

(Yi(r), ..., Yn(r)) .
13



which yields

— 1 3
S5 U 4 U

1

— 1 3)°

T2 - 1) =
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Model 3:

SN S, alal o 1
~(3) __ “ai=144=2 "lit—1"liy ( ~(3) () _ .
pr = —=1). = Y;(r) Y;(s) d8> :
(3 2 i[Tr] v v
s, (a2} \WTe .

) 1 X _(3) ,~(3) (3 1 K - A(3) 12
T(P(3) —1) = T2 > 777;(,1511(777;(75 : _777;(,7511)/ T2 52 > 2. {777;(7511}
i=1t=2 1=11=2
= SR/ S
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N T 2
3) _ 1 (312 [-(3N2 _(3)  ~(3)
Z; Uir” = Z; T2 {777;T} _{772'1 } _t; (nz't _777;,t—1) ]

N N 2
3)_ 1 oy (1
— ; Uy = > L (1@(1) /O Yi(s) ds)
1 2
— </O Y. (s) ds) — 1] :
N N T
3 1 - 2
z_:V?;(T) = > ; t; {?77;,75—1}
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N N 2 2

(3) 1 PR N N
Z;Uz' = 57;; <Yz(1) /o Yk(s)ds> </o Y7( )d) 1}

N o1 1
= z;/O <Yi("“) _/o Y.(s) dS) dY;(r) ,

N N 1 1 2

(3) = \T) — s) das r
2V —;/O(Yz() /Om)d)d,

which vields

— 3 3
>N, u® Nt 4

5(3) _ _
T D= >N (3 Z]'V—_ll 7 (3) _|_V]S[3)°
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sN=1 (M) | (D)

e Computation of the distribution of Q(M) N_1 (M) (D)

N—-1 N—-1
P(QEVM)<2) = Pl v v - % Ui(M)—U](VD)ZO)

1=1 1=1
N—1
— P (v UMY v () > o)
1=1
1 1 oo 1 N—-1
_ 1,1 1 (M); :p (D), _in .
= 5 - 7'(‘/0 91m Hm (—16, z@z)} m~—7(—16, z@z)} do ,

where

m M) (g, y)—E[eXp{azU( )—I— V(M)}]

The expressions for m(M)(z.y) are available from Tanaka (2017, Chap.
10) for M=A, B, C, and D. Numerical computation like Simpson’s
formula can be used by taking care of the computation of square roots
of complex-valued quantities.

18



e Powers of the OLSE-based tests

P(Q%,M) < Zf)/) (Powers for finite N)

FFREorem 2 (Powers for N = oco) The limiting local powers of the

tests based on ngM) (M=A, B, C,D)as N —oounder p=1—c¢/(N*T)

at the 100v% level are given as follows:

P (\/fcg%‘) < zy) & (2 +0.707¢), (k=1/2)

— P(zy 4+ 0.470¢), (k=1/2)

— & (zfy + 0.0527 (32> , (k=1/4).

p( W(ngc)+4)<z7) — ®(2y+0.0721c%), (k=1/4)

19



00 04 08 12

00 02 04 0.6 0.8

Model B

N = 100

N=1

| — | | |

—8 —6 -4 -2
Model D
N = 100
N=1

| | | -

—15 —10 -5

Null densities of the OLSE-based statistics

20



0.8

0.4

0.0

0.8

0.4

0.0

Model B

Model D

20

Local powers of the OLSE-based tests

20

21



1.2 GLSE-based tests

The GLSE-based tests use the GLSE 5(M) of p given by

N T ~ ~
N T ~
2i=1 224=2 Mi -1

FFREBFEMI3Y As T — oo with N fixed under p = 1 — ¢y /T, the asymp-
totic distribution of (M) for Model M (M=A, B, C, D) follows

p = , 1 . GLS residual from M

_ M D
P01y = 0 B O 4w
A S

where

1 1

1
wO=wP =2 xO=xP = [" i) -rvi(1)2dr.

22



e Powers of the GLSE-based tests

P(R](VM) < zy) (Powers for finite N)

—(Powers for N = oo) The limiting powers of the tests
based on RNM) (M=A, B, C, D) as N - oo under p=1—¢/(N"T) at

the 100v% level are given as follows:

P <\/§R§VM) <z7) & ®(24+0.707¢), (M=A, B),
P(” (R(M)+3)<z7> — ®(24 4 0.0745¢2), (M=C, D),

where kK = 1/2 for Models A and B, and x = 1/4 for Models C and D.
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1.3 Asymptotic efficiency of the GLSE-based tests

et us consider the testing problem

0
Hog : p=1 wversus Hy : p:].—?NZpg,
where 6 = 0/N" with 6§ being a known positive constant. We assume

that the true value of p under Hy is given by p. = 1 — ¢y /T with
cy = ¢/N*. Assuming {e;;} ~ NID(0,c2), the Neyman-Pearson lemma
tells us that the test rejects Hp for small values of

o, s (7 ><1>—p9ﬁ§i‘“1<1>) - (1900 - 712, )]

%Z ; (7 (0) — 740, (0))

S(M) 0) =

is MPI, where ﬁi(tM)(O) and ﬁi(tM)(l) are the GLS residuals obtained
from Model M under Hg and H1, respectively.
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FFREGFEMISY The limiting power envelopes of the MPI tests for Model
M (M=A, B, C, D) asT — oo and N — oo at level v coincide with the
corresponding GLSE-based tests. More sepcifically, we have

(M)
P( N (SN (6) —1‘9N) < zy) — ® (24 4+ 0.707¢) , (M=A, B),
Vol oy >

(M)
sM@+oy 11 5

— ®(zy 4 0.0745¢%), (M=C, D),
where k = 1/2 for Models A and B, and k = 1/4 for Models C and D.

Note: The GLSE-based tests for N = 1 (time series case) are not
asymptotically efficient [Tanaka (1996)].
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2. Panel MA models

IWIGEEINAY v Bo+ Bit+mit, Mt =¢€it —agi—1
WISEEINBSE vi: = Boi+ B1t+mi,  {ea} ~ NID(O, 0°)
WIGHENEH v, = B0+ B1it+ nit

‘Model D: Boi + B1it + it

The testing problem is

Ho:a=1 versus Hy:a<l (a= 1 —c/(N1/4T))

We assume here that {e;;} ~ NID(0, ¢2) for i = 1,..., N and t =
0,1,...,7T, but the asymptotic results depend on the assumption on
€40 -

28



2.1 LBIU tests and limiting local powers

The test which rejects Hp for large values of

is LBIU, where Q = Var(n,)/c? under Hg and

n; - T x 1 error vector of i-th cross section

n; : T x 1 residual vector computed from the MLE under Hg

52 : MLE of o2 computed under Hp

29



FFREGFEMYGY It holds that, as T — oo under o = 1 —¢p/T for each N,

N—-1
R = R = ; v 4+ uP) (m=A, B, C, D),

where

1 r1
v = /O /O KOD(r,5) + &K (r, 9)] dWi(r) dWis) .

Here W (r) = (W1(7), ..., Wx(r)) is the N-dimensional standard Brow-
nian motion and

K(A)(r,s) = min(r,s) —rs, K(B)(r,s) = min(r,s) —rs — 3rs(1 —r)(1 — s)
K(C)(r,s) = min(r,s)—rs—er(l—7“2)(1—32),
K(D)(r,s) = min(r,s) —rs —2rs(1 —r)(1 —s)(4 — 5r — 55+ 107rs),

whereas K((%)(r, s) is the iterated kernel of K(M)(r s) defined by

1 1
K((%)(T‘,S)Z/O/O K(M)(r,u)K(M)(u,s)du.
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e Powers of the LBIU tests
P(R](VM) > Zl—v) (Powers for finite N)

FFREoremMI7Y (Powers for N = oo) The limiting powers of the LBIU
tests as N — oo under cy = c/Nl/4 at the 100v% level are given as
follows:

45 A N
P (,/N(RJ(V ) _ e z17) — ®(2y+0.0745¢),

6300, (gy N
P ( (R - E> > z17) — (2, + 0.0209 ?),

P (ﬂ(R%?) - %) > 21_7> — ®(zy 4 0.0238¢?),

22050 3N
P ( (R - %) > zly) — (2, + 0.01122).
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2.2 Asymptotic efficiency of the LBIU tests

FFREGFEMY8Y For Model A, the limiting power envelope of the MPI

tests as T' — oo and N — oo at level v coincides with the corresponding
L BIU test.

Note: The proof of the asymptotic efficiency for Models B, C, and D
remains to be done. The LBIU tests for N = 1 (time series case) are
not asymptotically efficient [Tanaka (1996)].
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3. Panel stationarity tests for error components models

WIGEEREN vi: = Bo+ B1t+ mit
WIGEENES vi: = Boi + B1t+ mu
WIGEENGE v.: = 6o+ B1it+ mit
WIGEENER v = Boi+ B1it + mit,

{&t} ~ NID(O, 02), {ei} L {&:}, and ;0 = 0.

Hp @ p=

Or)ql\)“""‘rql\)

=0 wversus Hj :p>0 <p=02/(\/NT2))

There is a close relationship with MA models, which will be described
later.
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3.1 LBI tests and limiting local powers

The test which rejects Hp for large values of

0= Loy y (z ﬁftm)z
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FEREGFEMION 1t holds that, as T — oo under p = ¢%,/T? for each N,

N—-1
s o g(M) = Zl v 4y U S (M=E, F, G, H),

M Ll M
v =[] [K(M)(r,s)—I—CJQVK((Q))(T,s) AW (r) dWi(s) |

K(E)('r,s) = 1 — max(r,s),
K(F)(r, s)

K(G) (r,s)

min(r,s) — rs,

1 — max(r,s) — 2(1 —7r2)(1 — s°),

K(H)(r,s) = min(r,s) —rs —3rs(1 —r)(1 — s).
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e Powers of the LBI tests

P(S](VM) > z1_7> (Powers for finite N)

_(Powers for N = oo) The limiting powers of the LBI
tests as N — oo under ¢, = ¢?/N1/2 at the 100v% level are given as

follows:

— @ (2, +0.2887¢?),

— ®(zy + 0.0378¢?),

—  ®(zy + 0.0209 ¢2).

|

-~ Zl—v) — @ (2,4 0.0745¢7),
|
|
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3.2 Asymptotic efficiency of the LBI tests

FFRESFEmM Y For Models E and F, the limiting power envelopes of
the MPI tests as T" — oo and N — oo at level v coincide with the

corresponding LBI tests.

Note: The proof of the asymptotic efficiency for Models G and H
remains to be done. The LBI tests for N = 1 (time series case) are
not asymptotically efficient [Tanaka (1996)].
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4. Concluding remarks

1. The existence of common regressor does not affect the asymptotic
property of the tests, although heterogeneous regressor does.

2. The GLSE-based tests for panel AR models are asymptotically
efficient, unlike the time series case. The same is true of the
LLBIU tests for panel MA models and the LBI tests for panel error
components models.

3. The performance of the panel unit root tests improves as N be-
comes large given 1T — oo.

4. For MA models and error components models, the assumption on
the initial value of the error term in the time series direction affects
the asymptotic distribution of test statistics, unlike AR models.
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