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Abstract

We propose new measures of US aggregate output and output gap computed by means
of a Non-Stationary Dynamic Factor model estimated on a large dataset of macroeco-
nomic indicators, combined with a non-parametric Trend-Cycle decomposition of the
factors. We find that: (i) since 2010 output growth was on average 0.4% higher than
measured by GDP, the difference being been concentrated in the first quarter of the
year; (ii) while for several consecutive years before the financial crisis the economy
operated above its potential, as of 2017:Q4 there is still slack in the economy. Both
our measures are robust to data revisions.

JEL classification: C32, C38, C55, EO.
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namic Factor Model; Trend-Cycle Decomposition.

*Disclaimer: the views expressed in this paper are those of the authors and do not necessarily reflect
the views and policies of the Board of Governors or the Federal Reserve System.



1 Introduction

There are two fundamental, and intimately related, issues in monetary policy, and macroe-
conomics in general: measuring appropriately aggregate output; and, decomposing it into
potential output and output gap. Indeed, while growth of aggregate output affects our
assessment of current macroeconomic conditions as well as our decisions about the future,
decomposing aggregate output into potential output and output gap is a critical task for
both monetary and fiscal policy, as the former is a key input for long-term projections, and
the latter can be an important tool to measure slack in the economy.

There are two main difficulties related to these tasks. First, measuring aggregate output
accurately is difficult. The Bureau of Economic Analysis publishes two measures: Gross
Domestic Product (GDP), which tracks expenditures on goods and services, and Gross
Domestic Income (GDI), which tracks income received by those who produce output. The
two measures are the same in theory, but not in practice, suggesting that each is measured
with error. Second, even if an accurate measure of aggregate output were available, both
potential output and the output gap are unobservable, hence a statistical or economic
model must be used to conduct such decomposition.

In this paper, we tackle both issues “without pretending to have too much a prior:
economic theory” (Sargent and Sims, 1977), and thus letting the data speak as freely as
possible. To this end, we first disentangle common and idiosyncratic dynamics by esti-
mating a Non-Stationary Dynamic Factor Model on a large datasets of US macroeconomic
indicators, thus getting an estimate of aggregate output. Then, we decompose aggregate
output into potential output and output gap by disentangling common trends from com-
mon cycles by means of a non-parametric Trend-Cycle decomposition of the latent common
factors. Our methodology builds on three features. First, macroeconomic time series are
characterized by two main stylized facts: co-movements and non-stationarity (Lippi and
Reichlin, 1994a). Second, by aggregating a large amount of information, that is by ana-
lyzing large datasets, it is possible to separate macroeconomic fluctuations from sectoral
dynamics and measurement error (Forni et al., 2000; Bai and Ng, 2002; Stock and Wat-
son, 2002). A Non-Stationary Dynamic Factor Model is capable to address these features
in a parsimonious and realistic way. Third, the dynamics of trends and cycles might be
more rich than just the standard random walk vs. causal ARMA distinction (Lippi and
Reichlin, 1994a) and, in this respect, a non-parametric Trend-Cycle decomposition has the
advantage that it does not require us to specify a law of motion for the trend and the
cycles.

The first part of our analysis is about measuring aggregate output, to which we refer
as Gross Domestic Output (GDO). We assume that long-run GDP and GDI are driven
exclusively, and by the same amount, by factors common to the whole economy, while the
discrepancy between GDP and GDI is only temporary and driven by idiosyncratic factors
and measurement errors. Our estimate of GDO shows that since 2010, output growth
was on average 0.4 percentage point higher than the estimate by the Bureau of Economic
Analysis. Our measure’s higher growth has been concentrated in the first quarter of the
year, suggesting that weakness in the GDP’s first-quarter (Q1) growth over the past several



years, to which many authors refer to as residual seasonality (e.g. Rudebusch et al., 2015),
is not a matter of shifting growth across quarters, rather it is a matter of missing Q1
growth that is not made up later in the year.

The second part of our analysis is about measuring the output gap. We compare
our estimate with the one produced by the Congressional Budget Office (CBO), which
estimates potential output as that level of output consistent with current technologies and
normal utilization of capital and labor, and the output gap as the residual part of output.
Although these two estimates of output gap are obtained in completely different ways, in
practice they look very similar and are comparable for most of the sample considered, but
from the late nineties to the end of the sample in 2017:Q4, when they differ, sometimes
significantly. In particular: according to our estimate between 2002:Q1 and 2007:Q4 the
output gap was on average 3.7 percentage points higher than estimated by the CBO, thus
suggesting that throughout this period the economy operated above its potential, and hence
that that level of output was unsustainable. Moreover, compared to the CBO model, our
model suggests that growth after the financial crisis is due primarily to permanent factors.
As a consequence, our output gap estimate indicates that as of 2017:Q4 there is still slack
in the economy. By contrast, the two measures interpret roughly in the same way the years
of the financial crisis as primarily due to the cyclical component.

The third part of our analysis investigates the real-time properties of our proposed mea-
sures. Indeed, there has been a lot of debate on the reliability of end-of-sample estimates
of the output gap in real-time (e.g. Orphanides and van Norden, 2002), but the same prob-
lem matters also for estimates of GDO. To investigate this issue we build real-time data
vintages back till September 2013, and we compute the end-of-sample revisions of both
our GDO and output gap estimates. The results of this exercise are clear: our estimates
revise less than, or comparably with, other commonly used measures, thus confirming the
intuition that data revisions are by nature idiosyncratic, and therefore, by pooling a large
amount of data, it is possible to get a robust estimate of the signal while parsing out the
noise.

Although aggregate output is one of the most important concepts in macroeconomic
theory, there has been surprisingly nearly no academic research on how to measure it
appropriately. Two exceptions are represented by the Bureau of Economic Analysis and
the Philadelphia Fed who, in recent years, proposed to combine GDP and GDI so to
mitigate measurement error, and thus came up with a better estimate of aggregate output
(see Council of Economic Advisers, 2015, and Aruoba et al., 2016, respectively). Compared
to this approach based only on GDP and GDI growth data, we go one step further—and
to the best of our knowledge we are the first doing so—in that our estimate of aggregate
output is not only consistent with national account statistics, but also consistent with
the rest of the economy—i.e., it is consistent with the labor market, financial conditions,
inflation, industrial production, etc.

By contrast, since the seminal paper of Beveridge and Nelson (1981) there has been
a wide interest in decomposing aggregate output into a trend and a cycle. In the last 30
years, many papers have suggested different ways to obtain a Trend-Cycle decomposition
of aggregate output (e.g. Stock and Watson, 1988; Lippi and Reichlin, 1994a; Gonzalo and
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Granger, 1995; Garratt et al., 2006; Creal et al., 2010), and some of them proposed to use
non-stationary low-dimensional factor models to estimate the output gap (e.g. Fleischman
and Roberts, 2011; Jarocinski and Lenza, 2018), and secular trends (e.g. Antolin-Diaz et al.,
2017). Compared to those works, which typically consider estimates of the output gap using
only highly aggregated variables such as GDP, the unemployment rate, and PCE price
inflation, we include several other indicators, thus capturing information coming from a
wider spectrum of the economy. Finally, Aastveit and Trovik (2014) and Morley and Wong
(2017) are the sole two papers that have used a high-dimensional dataset for estimating
the output gap, and to do so they estimate a stationary factor model and a large Bayesian
VAR, respectively. Compared to those works, we explicitly address non-stationarity of the
data, thus we take into account also long-run co-movements when building our measures.

The rest of this paper is structured as follows. In Section 2 we present the Non-
Stationary Dynamic Factor model and in Section 3 we describe the model setup. Then,
in Section 4 we present our estimate of aggregate output. In Section 5 we move to the
output gap. More precisely, in Section 5.1 we present the non-parametric Trend-Cycle
decomposition that we use, and in Section 5.2 we present our estimate of the output gap
and we compare it with the one produced by the CBO. In Section 6 we study the real-time
properties of our suggested measures, and we also present a comparison of our output gap
estimate with the most common univariate methods used in the literature. To conclude, in
Section 7 we discuss our findings and the advantages and limitations of our methodology,
and we propose directions for further research.

2 Non-Stationary Dynamic Factor Model

The goal of this paper is to estimate aggregate output and to decompose it into potential
output and output gap. To do so, we first disentangle common and idiosyncratic dynamics
by using a Non-Stationary Approximate Dynamic Factor Model (NS-DFM) estimated on a
large dataset of US macroeconomic indicators. Then, we disentangle common trends from
common cycles by applying a non-parametric Trend-Cycle decomposition to the estimated
latent common factors. This section provides a presentation of the NS-DFM originally
developed in Barigozzi et al. (2016b), which is a generalization to the case of unit-roots of
the dynamic factor model proposed by Stock and Watson (2005) and Forni et al. (2009)
for stationary data. Closely related models have been studied by Bai (2004) and Bai and
Ng (2004). The Trend-Cycle decomposition is discussed in Section 5.1.

Dynamic factor models are based on the idea that fluctuations in the economy are
due to a few macroeconomic or common shocks (u;), affecting the whole economy, and
to sectorial and local shocks, influencing just a part of the economy (Forni et al., 2000).
Therefore, each variable in a macroeconomic dataset (x;) is decomposed into the sum of a
macroeconomic or common component (x; ), which is driven by the macroeconomic shocks,
and an idiosyncratic component (&;), which is driven by both sectorial /local shocks and
by measurement error, where the common and the idiosyncratic component are assumed
to be independent at all leads and lags.



Formally, let us consider a panel of n time series {x; = (xy;---xy) :t =1,...,T},
such that E[z;] = 0, for any ¢ and ¢ and x; ~ I(1), that is at least one of its components
has a unit root. Then,

Ty = Xit + Sit (1)

Xit = Z b fi—k, (2)
k=0

fi= ZAk:ft—k + uy, u, X (0,Q), (3)
k=1

where f; = (fi-- - fi) are the common latent factors capturing co-movements across series
and across time, b, = (bi1y - - - bigr;) are the ¢ factor loadings at lag k, s > 1 and ¢ > 1 are
finite integers, and Q is a ¢ X ¢ positive definite covariance matrix.

Non-stationarity in the data is modeled by means of two main assumptions:

1. The dynamics of the factors f; is governed by (¢ — d) unit roots with d > 0. This
assumption is consistent with the idea that, while there are multiple—i.e., ¢—forces
that are capable of generating macroeconomic fluctuations, only a few of them—i.e.,
(¢ — d)—are capable of permanently affecting the economy. Technically, we assume
that the coefficients of (3) are such that det(I, — >¥_, Azz¥) = 0 has (¢ — d) roots
in z = 1, while all other d roots lie outside the unit circle. This is equivalent to
saying that: (i) f; is driven by (¢ — d) common trends, or (ii) f; is a cointegrated
vector with cointegration rank d. As a consequence, the common component has a
non-stationary part driven by common trends, and a stationary (cyclical) part.

2. Some (but not all) idiosyncratic components have a unit root. Indeed, assuming
that all idiosyncratic components are stationary, would imply that any (¢ — d + 1)-
dimensional vector would be cointegrated, an assumption which is very restrictive
and in general not supported by the data—see also the theory and empirical results
presented in Barigozzi et al. (2016a.b).

To conclude the presentation of the model, note that if we take first differences of
(2)-(3), then, by substituting (3) into (1)-(2), we obtain a special case of the generalized
dynamic factor model for Ax,, as originally proposed by Forni et al. (2000). Our model is
then identifiable by means of assumptions on the asymptotic behavior, as n — oo, of the
eigenvalues of the spectral density matrix of Ax;. In particular, we require the idiosyncratic
vector A; to be weakly serially and cross-correlated, while the factors Af; are assumed
to have a dynamically pervasive effect on Ax;. These constraints are imposed by requiring
that: (i) all eigenvalues of the spectral density of A&, stay bounded at all frequencies
as n increases; and, (ii) the ¢ largest eigenvalues of the spectral density of the common
component vector Ay; diverge with n at all frequencies but at zero-frequency where—due
to the presence of common trends—only (¢ — d) eigenvalues diverge—see Forni et al. (2000),
Forni et al. (2009), and Barigozzi et al. (2016b) for further details. These results justify
from a methodological point of view our choice of using large datasets.



2.1 Estimation

The focus of the first part of this paper is on estimating the Gross Domestic Output (GDO),
which in our framework is given by the common components of GDP and GDI under the
constraint that these two are equal, thus GDO; := xapp: = Xcprs. Therefore, in order to
estimate GDO, we need to estimate both the common factors and their loadings under the
above constraint. To this end, we estimate the NS-DFM by Quasi-Maximum Likelihood,
as described in this section.

Estimation of (1)-(3) is carried out by recurring to its so-called “static” representation—
see also Stock and Watson (2005), Bai and Ng (2007), and Forni et al. (2009) in the station-
ary setting. The same approach can be adopted in a non-stationary setting. Specifically,
let ¥, = K(f/--- f_,), for some r x r invertible matrix K, then we can re-write the
NS-DFM, in vector notation, as

Xy = AFt + €t, <4)
p .
F, = Z A F,_; + Huy, u, R N(0,Q), (5)
k=1

where A is an n X r matrix of factor loadings, with rows given by X, = (bl,--- b, )K™' H
is 7 x ¢, and F; is an r-dimensional vector of latent factors with r = ¢(s + 1). Finally, for
identification of the common component, we require % — I, as n — oo, and F; to have
positive definite covariance.

In this paper, we follow the standard practice in factor models literature and we estimate
(4)—(5) without identifying K explicitly. The rationale for this approach is that, being the
idiosyncratic component, &, the same in (1) and in (4), then the common components
are also the same, that is both representations (4)-(5) and (1)-(3) are equivalent for what
concerns the space spanned by the common factors. In particular, both representations
impose the same constraints on the co-movement of the data, which are expressed via
constraints on the behavior of the eigenvalues of the spectral densities of Ax; and of A&,
(see previous section). In other words, we can consider (4)—(5) as a reduced form of the
NS-DFM.

We estimate the parameters of (4)-(5) by Quasi-Maximum Likelihood, implemented
through the Expectation Maximization (EM) algorithm, where in the E-step the factors
F, are estimated with the Kalman Smoother. This approach in the stationary setting was
originally proposed by Shumway and Stoffer (1982) and Watson and Engle (1983), and
further developed and studied by Doz et al. (2012) and Bai and Li (2016), when considering
large datasets.! The case of non-stationary data has been considered in fewer works—see
e.g. Quah and Sargent (1993) and Seong et al. (2013). The theoretical properties of the
estimators we use here are studied in Barigozzi and Luciani (2017), where consistency of
the estimated loadings and factors is proved as n, T — oo.

! Recent applications of this approach include Reis and Watson (2010), Baribura and Modugno (2014),
Juvenal and Petrella (2015), Luciani (2015), and Coroneo et al. (2016).



We opt for Quasi-Maximum Likelihood estimation rather than, for example, Principal
Component Analysis as in Bai and Ng (2004) and Barigozzi et al. (2016b), since in this way
we are able to impose the restriction GDO; := xapp+ = Xapit, as well as other constraints.
In particular, in estimating (4)-(5) we impose the following restrictions.

1. The loadings of GDP and GDI are imposed to be equal: Agpp = Agpr. In this way,
we enforce equality of the common components.

2. The law of motion of the factors is specified as an unrestricted VAR of order 2,
that is we do not impose cointegration in the common factors—see the discussions in
Sims et al. (1990) for the case of observed data and Barigozzi et al. (2016b) for the
factor model case. This choice has no consequences for the estimation of GDO, as we
are just interested in taking into account the dynamics of the factors for estimating
the common component. By contrast, when turning to the output gap, we show in
Appendix A that the implications of cointegration of f; for F; could be exploited to
refine the estimate.

3. The non-stationary idiosyncratic components are treated as additional latent states
following univariate random walks, while the stationary idiosyncratic components are
treated as white noise:

o | . 2 L G~ I(1),
it = piit—1 + €, €it N(0,07), and p; = { 0 if & ~ I1(0).

4. The covariance matrix of the vector of idiosyncratic innovations e; = (e1; - - €,) is
constrained to be diagonal with entries (o7 - - 02).
Notice that, by assuming (i) no autocorrelation of stationary idiosyncratic components
and (ii) no cross-correlation among all idiosyncratic component, we are in fact estimating
a mis-specified model. Both assumptions could in principle be relaxed by: (i) adding addi-
tional latent states for each stationary idiosyncratic component that is autocorrelated—see
e.g. Banbura and Modugno (2014); and (ii) estimating a full invertible idiosyncratic covari-
ance matrix, possibly by means of regularization techniques—see e.g. Bai and Liao (2016),
although in a slightly different setting. That said, increasing the dimensions of the latent
states vector and/or of the parameters space might increase too much the complexity of
estimation. For this reason we here rely on the arguments put forward by Doz et al. (2011,
2012), who show how the effects of mis-specification of the idiosyncratic dependence struc-
ture are, at least asymptotically as n — oo, negligible, thus justifying the high-dimensional
setting from a methodological point of view.

3 Model setup

Our analysis is carried out on a large macroeconomic dataset comprising n = 103 quar-
terly series from 1960:Q1 to 2017:Q4 describing the US economy. Specifically, our dataset
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Table 1: PERCENTAGE OF EXPLAINED VARIANCE

1 2 3 4 5 6 7 8 9 10
g 334 460 534 59.0 636 674 706 733 757 779
r 231 340 424 480 52.0 555 584 60.7 629 650

This table reports the percentage of total variance explained by the g largest eigenvalues of the spectral density matrix
of Ax; and by the r largest eigenvalues of the covariance matrix of Ax.

includes national account statistics, industrial production indexes, various price indexes
including CPIs, PPIs, and PCE price indexes, as well as core CPI/PCE (i.e. CPI/PCE
excluding food and energy), various labor market indicators including indicators from both
the household survey and the establishment survey, as well as labor cost and compensa-
tion indexes, monetary aggregates, credit and loans indicators, housing market indicators,
interest rates, the oil price, and the S&P500 index.

Broadly speaking, we take log-transforms of all variables in levels which are not already
expressed in percentage points, then all the variables that are I(1) are not transformed,
while all the variables that are I(2) are differenced once. Moreover, a linear trend is
estimated where necessary before estimating the model. This final transformation deserves
an explanation. In Section 2 we presented the model by making the simplifying assumption
that E[z;] = 0, i.e., no deterministic component. This assumption is clearly unrealistic,
as several macroeconomic time series exhibit a linear deterministic trend, in which case
the model for an observed time series y;; would read y;; = a; + bt + AN.F; + &, where
Ty = N;F1+&;. In practice, we remove a; and b; by least square regression before estimating
the factor model, and in order to choose whether or not to de-trend a variable we test for
significance of the sample mean of Ay;;. In other words, we allow b; = 0 for some 4, thus
ruling out the possibility of a common deterministic trend. The complete list of variables
and transformations is reported in Appendix C.

Before estimating the model we need to tackle two main preliminary issues. First we
need to determine the numbers of common factors ¢ and r. Second, we need to choose
which idiosyncratic components to model as random walk, and which as white noises.

In order to estimate ¢, we use the test by Onatski (2009) and the information criterion
by Hallin and Liska (2007), both exploiting the behavior of the eigenvalues of the spectral
density matrix of Ax; averaged across all frequencies. Both methods indicate ¢ = 3.
Having determined ¢, and by virtue of the restriction r = ¢(s + 1), we can choose r such
that the share of variance explained by the factors F; coincides with the share of variance
explained by the ¢ factors fi—see also D’Agostino and Giannone (2012). By looking at
Table 1 we can clearly see that r ~ 2¢, and therefore in our benchmark specification we set
g = 3 and r = 6. An alternative way to select r is to resort to one of the many available
methods based on the behavior of the eigenvalues of the covariance matrix of Ax; such as,
for example, the information criterion of Bai and Ng (2002), which for our dataset gives
results in line with our choice.

In order to choose which idiosyncratic components to model as random walk, for each
variable we test the null-hypothesis of unit root by means of the test proposed by Bai and



Ng (2004). Then, if we fail to reject the null, we set p; = 1, while if we reject, we set p; = 0
(see Appendix C for details). This approach is applied to all variables in the dataset except
for GDP, GDI, the unemployment rate, the Federal funds rate, and CPI, core CPI, PCE,
and core PCE inflation, for which we impose a priori p; = 0. That is, while for most of the
variables in the dataset we let the data determine what is driving their long run dynamics,
we impose the constraint that the long-run dynamics of GDP, GDI, unemployment rate,
Federal funds rate, and CPI, core CPI, PCE, and core PCE inflation is driven exclusively
by aggregate macroeconomic forces, with the idiosyncratic component accounting only for
short-run dynamics.

4 Gross Domestic Output

A fundamental issue in economics is the measurement of aggregate output, GDO. Histor-
ically, GDO has been measured mainly by GDP, but GDP, which tracks all expenditures
on final goods and services produced, is just an estimate of GDO. An equally acceptable
estimate of the concept of GDO is represented by GDI, which tracks all income received by
those who produced the output. GDP is almost always preferred to GDI, the main reason
being that it is generally released one month before GDI. However, it has been shown that
GDI reflects the business cycle fluctuations in true output growth better than GDP, and
that GDI is better than GDP in recognizing the start of a recession (Nalewaik, 2010, 2012).

In recent years, there has been interest in combining GDP and GDI to come up with
a better estimate of GDO: the rationale for doing so is that the difference between GDP
and GDI is exclusively the result of measurement error—using the NIPA table definition
“statistical discrepancy™—as these two statistics are in fact measuring the same thing. Since
November 2013, the Philadelphia Fed releases an estimate of GDO, called “GDPplus”
proposed by Aruoba et al. (2016), which is defined as the common factor driving the
dynamics of GDP and GDI growth. Similarly, since July 2015, the Bureau of Economic
Analysis (BEA) has released “the average of GDP and GDI”, which the Council of Economic
Adpvisers refers to as GDO (Council of Economic Advisers, 2015).

In this paper, we introduce a new measure of GDO obtained from the NS-DFM es-
timated on the large dataset of US macroeconomic indicators described in the previous
section. In our framework, GDO is defined as that part of GDP and GDI that is driven by
the aggregate macroeconomic forces, i.e., the common component. In particular, to esti-
mate GDO we impose two restrictions: first, as already discussed in Section 2.1, GDP and
GDI respond to macroeconomic factors in the same way, so that the common component of
GDP is equal to the common component of GDI, GDO, := xgpp; = XGDI,t-2 And, second,
the long run dynamics of GDP and GDI are entirely driven by the common factors, so
that both sectorial and local factors affecting the economy, and measurement error, have
just a temporary effect, i.e., the idiosyncratic components of GDP and GDI are stationary,

2 This restriction is indeed corroborated by the data, as even if we do not impose it, the estimated
Xcepp,: and xapr,: are nearly identical. In numbers, the standard deviation of (Azgpp,: — Azgpr,) is
1.93, while the standard deviation of (Axepp.: — Axaprt) is reduced to 0.25.



Figure 1: GrROSS DOMESTIC OUTPUT
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This figure reports different estimates of GDO. Black line: “the average of GDP and GDI” released by the BEA; blue line:
“GDPplus” released by the Philadelphia Fed; red line: our estimate.

{app ~ 1(0) and Eapr, ~ 1(0).

Compared to the approach of the BEA and the Philadelphia Fed based on GDP and
GDI growth data only, there are two advantages in our approach. First, by analyzing a
large amount of information, our estimate of GDO incorporates information coming from
a wider spectrum of the economy, thus accounting for most sources of common variation,
such as, for example, monetary policy, oil price, and technology shocks. In this way, our
measure is not only consistent with national account statistics, but also consistent with
the rest of the economy—i.e., it is consistent with the labor market, financial conditions,
inflation, industrial production, etc. Second, by using data in levels, we are able to impose
that GDP and GDI evolve around a common stochastic trend, and thus we can impose
that the discrepancy between these two statistics is only temporary. In other words we
are assuming that both GDP and GDI are correct estimators of GDO up to transitory
dynamics.

Figure 1 shows our proposed estimate of GDO (red line), together with “GDPplus” (blue
line), and the “average of GDP and GDI” (black line), where the plots on the left column
show quarterly annualized percentage changes, while the plots on the right column show
4-quarter percentage changes. Overall, the three measures are very similar, which is not
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surprising, as they are attempting to estimate the same quantity, with our estimate of GDO
that appears to be smoother than the other two—this is the case since by construction we
capture all low frequency movements of GDP and GDI. However, despite the similarities,
two important differences emerges.

First, our measure of GDO does not show any kind of residual seasonality in the last
seventeen years, where the term “residual seasonality” refers to the presence of “lingering
seasonal effects even after seasonal adjustment processes have been applied to the data”
(Moulton and Cowan, 2016). Indeed, Figure 2 shows average quarterly annualized GDO
growth by quarter for our measure (lower-right plot), for “GDPplus” (lower-left plot), and
for “the average of GDP and GDI” (upper-right plot). Mainly motivated by the fact that
since 2010 GDP growth in Q1 has been on average more than 1 percentage point lower
than in the other quarters (upper-left plot of Figure 2), in recent years there has been lots
of discussion on whether US GDP exhibits residual seasonality or not. The profession is
not in agreement on this issue, as some authors (e.g. Gilbert et al., 2015; Lengermann et
al., 2017) conclude that US GDP does not exhibit residual seasonality, while others (e.g.
Rudebusch et al., 2015; Lunsford, 2017) find evidence of residual seasonality—see Moulton
and Cowan (2016) for a technical discussion on causes and remedies for residual seasonality
in US GDP. As can be clearly seen from the lower-right plot of Figure 2, our estimate of
GDO exhibits no residual seasonality whatsoever in the last seventeen years.

Second, our estimate of GDO in the recent years gives a different picture of the economy
than the one given by “GDPplus” and “the average of GDP and GDI” (see the lower plots in
Figure 1). According to our estimate, since 2010 quarterly annualized GDO growth was on
average about 0.4 percentage point higher than estimated by the BEA and the Philadelphia
Fed. Compared to the BEA estimates most of this difference comes from a higher estimate
of GDO growth in the first quarter, whereas compared to the Philadelphia Fed estimate
this difference spreads on all quarters (see Figure 2). Two main conclusions can be drawn
from these results: first, based on the commonality in the data, the US economy grew at
a faster pace than measured by national account statistics. This is true in particular for
2015 a year characterized by remarkable improvements in the labor market, improvements
that are likely to be captured by our measure, while they are not necessarily captured by
national account statistics.®> Second, the low level of GDP in Q1 since 2010 is not a matter
of shifting growth across quarters, rather it is a matter of missing Q1 growth that is not
made up later in the year.

3 In 2015 on average (quarterly annualized) GDP growth was 2.0%, the BEA average GDP-GDI growth
was 1.8%, and GDPplus growth was 1.7%. At the same time, 2015 was characterized by remarkable
improvements in the labor market, as payroll employment increased on average by about 228,000 units
per months, the unemployment rate fell from 5.7% in 2016Q4 to 5.0% in 2017:Q4, and the number of
long-term unemployed civilians decreased by about 729,000 units. We affirm that our measure of GDO,
which in 2015 grew on average 2.8% at an annual rate, captures these improvements in the labor market,
because if we exclude all the labor market variables contained in our dataset and we re-estimate the model,
the average estimated (quarterly annualized) growth drops to 2.0%.
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Figure 2: RESIDUAL SEASONALITY
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This figure reports average growth at an annual rate by quarter for GDP, “the average of GDP and GDI” released by the
BEA , the Philadelphia Fed estimate of GDO (GDPplus), and our estimate of GDO (BL).

5 Output gap

Having estimated the space spanned by the common factors, and GDO, our goal is to esti-
mate the output gap, which in our framework is the cyclical component of GDO. Therefore,
our goal is to decompose the common factors into common trends and common cycles.
Since the seminal work of Beveridge and Nelson (1981), the issue of decomposing GDP
into a trend and a cycle has been a central question in both time series econometrics
and policy analysis. This is not surprising, as long-run trends are mainly influenced by
supply-side factors, while short-run cycles are mainly associated with demand-side factors,
and therefore different estimates of the trend and of the cycle can lead to different policy
recommendations. Given the relevance of the issue, in the last 30 years, many papers have
suggested different ways to obtain a Trend-Cycle decomposition of GDP. Roughly speaking,
those works can be grouped under two main approaches: one based on univariate methods
(e.g. Watson, 1986; Lippi and Reichlin, 1994b; Morley et al., 2003; Dungey et al., 2015), and
another using multivariate techniques (e.g. Stock and Watson, 1988; Lippi and Reichlin,
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1994a; Gonzalo and Granger, 1995; Garratt et al., 2006; Creal et al., 2010).

In this paper we propose a Trend-Cycle decomposition based on principal component
analysis of the long run covariance matrix of the factors. Being non-parametric this de-
composition has the advantage that it does not require us to specify a law of motion for
the trend and the cycles, as instead, for example, in Harvey (1985) and Hasenzagl et al.
(2018). Moreover, being our analysis based on a large dataset, we cannot use such struc-
tural approaches directly in the EM estimation, but we instead apply our decomposition
on the common factors, thus guaranteeing that we actually recover trends and cycles that
are common to the whole dataset.

5.1 Trend-Cycle decomposition via eigen-analysis

We now describe the estimation of common trends and common cycles. By comparing (5)
with (3), it is possible to show that, since F, is driven by the same ¢ shocks that drive
fi, then Fy; has (¢ — d) unit roots—see Appendix B.2. Therefore, F, is driven by (¢ — d)
common trends and it admits the factor representation:

Ft - ¢Tt + Ft7

where T'; is stationary, ® is r x (¢ — d) with full column rank and T is the vector of (¢ —d)
common trends, i.e. with all components I(1)—see e.g. the Theorem in Escribano and
Pena (1994) for a derivation. Different choices of ® lead to different definitions of common
trends.

Here we assume T, and I'; to be uncorrelated and we estimate the elements of T, as
the first (¢ — d) principal components of the estimated factors F;—see also Proposition 1
in Bai (2004) and Theorem 1 in Pena and Poncela (2006). Specifically, let

1
= ) FF
t=1

and denote by (</I\> ) 1) the r x r matrix with columns given by the normalized eigenvectors

of S ordered according to the decreasing value of the corresponding eigenvalues, and such
thatélsrx(q d), @L isrx(r—q+d), <I>'1>—I(q ) ' QJL—I(T g+d) andtIHI)L—O
Then, the estimator of common trends is given by the projection:

T, = ®'F,. (6)
While, by projecting f‘t onto the columns of ® 1 we obtain our estimator of common cycles:
G = ‘I)’ F,. (7)

It can be shown that ét belongs to the cointegration space of F; and it is therefore
stationary—see Theorem 1 in Zhang et al. (2018). Therefore, in our definition the common
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cycles represent deviations from long-run equilibria—see also e.g. Johansen (1991) and
Kasa (1992) for similar definitions.?

From definitions (6) and (7), the estimated Trend-Cycle decomposition of the common
component becomes:

Tt = N@T; + X@, G, (8)

and the output gap is defined as the cycle component of GDO: X’GDPEI; LCA}t = X’GDIEJ Lét.

We conclude with some important remarks. First, notice that our definition (6) of
common trends is more general than the usual definition entailed by the multivariate
Beveridge-Nelson decomposition by Stock and Watson (1988). Indeed, T, is in general
not constrained to be a pure vector random walk, and therefore it can accommodate for
more complex dynamics, which is a desirable property advocated for by many authors —
see e.g. Lippi and Reichlin (1994a). Second, under definition (7) the components of G,
are common cycles in the sense of Vahid and Engle (1993). Third, it can be proved that,
unless we impose further restrictions, the vector F; has a rank of cointegration ¢, which
is in general not identified but is such that d < ¢ < (r — ¢ + d)—see Proposition 3 and
Appendix B in Barigozzi et al. (2016a) for details.® . Therefore, should ¢ be lower than
(r — ¢+ d) then some component of G, would be redundant and the question of how to
identify the non-redundant cycles would become important. This aspect is discussed in
Appendix A.

5.2 Results

In order to apply the non-parametric Trend-Cycle decomposition just discussed, we first
have to determine the number of common trends (¢ — d). To do so, we use the crite-
rion by Barigozzi et al. (2016b), which exploits the behavior at the zero-frequency of the
eigenvalues of the spectral density matrix of Ax;. This criterion indicates the presence
of (¢ —d) = 1 common trend, which is in line with many theoretical models assuming a
common productivity trend as the sole driver of long-run dynamics (e.g. Del Negro et al.,
2007). As a consequence, we indirectly estimate d = 2.

Figure 3 shows our measure of the output gap (red line), together with the one produced
by the Congressional Budget Office (CBO) (blue line), where the upper-left plot shows the
level of the output gap, while the upper-right plot shows the 4-quarter percentage change
of the output gap. Overall, we can see that our estimate of the output gap is remarkably
similar to that of the CBO. This is a result per se, as our estimate of the output gap is very
different from that of the CBO from both a technical and an interpretation point of view.
Indeed, while the CBO constructs the output gap so that its level has a specific economic
meaning, our measure of the output gap is simply the deviation of output from its long-
run stochastic trend—i.e., those fluctuations of aggregate output that will disappear in the

4 Other decompositions, based on different definitions of cycles than the one used here, are, for example,
in Gonzalo and Granger (1995) and Gonzalo and Ng (2001).
5 Note that if r = ¢, then the standard results that ¢ = d holds and the cointegration rank is identified.
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Figure 3: OUTPUT GAP
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The blue line is the level of the output gap estimated by the
CBO, while the red line is our estimate.

long-run. In particular, our estimate of the output gap seems more suitable to answer the
question “which part of current growth is due to temporary factors?”, while the measure of
the CBO is certainly more suitable as a gauge of inflation pressure.%

Despite the evident similarity between the two output gap estimates shown in Figure
3, since the late nineties the two measure diverge, sometimes significantly. In order to
investigate the reasons of these discrepancies we split the discussion in two parts: we first
discuss the period from the late nineties to the financial crisis included, and then we discuss
the period after until 2017:Q4.

From the late nineties to the financial crisis

The two output gap measure started to diverge somewhat significantly at the end of 1997,
and in 2000:QQ2 our measure was 1.3 percentage points higher than estimated by the CBO.
Starting in 2000:QQ3 both measure declines, though the CBO measure declined much more—
between 2000:QQ3 and the trough of the dot com recession in 2001:Q4, the CBO measure
declined by 4.4 percentage points, while our measure by 1.8 percentage points. Then,
while according to the CBO the level of the output gap was negative between 2002:Q1 and
2005:QQ4, according to our measure in that same period the output gap was positive—on
average 4.1 percentage points higher than estimated by the CBO. Therefore, according
to our estimate the level of the output gap right before the financial crisis in 2007:Q4

6 The CBO estimates potential output and the output gap by using the so-called “production function
approach” (Kiley, 2013) according to which potential output is that level of output consistent with current
technologies and normal utilization of capital and labor, and the output gap is the deviation of output
from potential output. Specifically, the CBO model is based upon a textbook Solow growth model,
with a neoclassical production function. Labor and productivity trends are estimated by using a variant
of the Okun’s law, so that actual output is above its potential (the output gap is positive), when the
unemployment rate is below the natural rate of unemployment, which is in turn defined as the non-
accelerating inflation rate of unemployment (NAIRU), i.e., that level of unemployment consistent with a
stable inflation—for further details see Congressional Budget Office (2001). Notice that also for the CBO
the output gap is assumed to revert to zero in the long-run as it imposes in its forecast that in 10 years
the output gap will be zero—see e.g. Congressional Budget Office (2004).
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was 2.3%, while according to the CBO was 0.3%, and hence we estimate that the level of
slack in the economy at the trough of the crisis in 2009:Q2 was -2.5%, approximately 3.8
percentage points higher than estimated by the CBO.

What does explain this divergence of the two estimates in the 2000s? We believe that
this divergence is related to the way in which the two considered measures are defined.
Indeed, this period was characterized by stable and low inflation—on average core PCE
price inflation between 2001:Q1 and 2007:Q4 was approximately 1.9%. Accordingly, the
CBO estimates that slack is positive (i.e., the output gap negative). By contrast, our
measure, which is not specifically tight to inflation, but it is more broadly influenced by
the co-movement in the data, estimates that a part of aggregate output was transitory.
This makes sense given that the years before the financial crisis were characterized by
several factors that proved indeed transitory, such as the housing boom, a historically high
share of sub-prime loan origination (Haughwout and Okah, 2009), and a large amount of
equity withdrawal from housing (Fuster et al., 2017). And, since our model includes a
large number of variables, including housing indicators as well as financial variables, these
transitory factors are captured by our model—see also Borio et al. (2017) and Morley and
Wong (2017) for similar results.”

From the financial crisis to the end of the sample

Our estimate of the output gap in 2017:Q4 is -1.3%, whilst the CBO estimate in the same
quarter is 0.5%. The question then is: how is justifiable an output gap of -1.3% given that
in 2017:Q4 the unemployment rate was 4.1% and GDP growth was 2.9%?

To answer this question, Figure 4 shows the decomposition of the 4-quarter percentage
change of GDP (black line) into the part attributable to the output gap (left plot), and
the part attributable to potential output (right plot). By looking at Figure 4, it is clear
how our model attributes most of the recent output growth to the trend component, as
since 2010 the role of the cyclical component is marginal. This contrasts with the CBO
estimate of potential growth, according to which potential growth in the US has decreased
since the late nineties. Our finding is consistent with the results in Coibion et al. (2017).

To summarize, compared to the CBO model, our model interprets the recent growth
as more solid, i.e. based on permanent factors. But there is more on that. Figure 5
reports the estimate of the unemployment gap, i.e. the cyclical common component of the
unemployment rate, estimated with our model (the red line), together with the estimate
of the unemployment gap published by the CBO (the blue line). By comparing Figure 3
and Figure 5, we can clearly see how the output gap and the unemployment gap estimated
with our model are sending contrasting signals at the end of the sample: the output gap

7 Specifically, Borio et al. (2017) argue that the conceptual association between output gap and inflation
is too narrow because it neglects the role of financial factors. Therefore, they build a measure of output gap
based on a multivariate filter that includes also financial variables and find that the output gap before the
financial crisis was in the neighborhood of 2.0%. Similarly, when using their benchmark 23-variable BVAR,
Morley and Wong (2017) find that the output gap before the financial crisis was in the neighborhood of
2.0%, while their estimate increase in the 3-4% range when using a 138-variable model.
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Figure 4: DECOMPOSITION OF GDP GROWTH
4—QUARTER PERCENTAGE CHANGE
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The left plot shows the 4-quarter percentage change of the output gap, while the right plot shows the 4-quarter percentage
change of potential output. In each plot, the red line is our estimate, while the blue line is the CBO estimate. In both plots
the black line is the 4-quarter percentage change of GDP. Note that the sum of the red lines in the two plots is our estimate
of GDO, while the sum of the blue lines is GDP.
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The blue line is the unemployment gap estimated by the CBO,
while the red line is our estimate.

is indicating that there is still slack in the economy, whilst the unemployment gap is
suggesting that the US economy is operating above potential.®

How is it possible that the output gap and the unemployment gap send different signals?
To answer this question, we must first point out that, while in our model it can happen
that the output gap and the unemployment gap send different signals, in the CBO model
this is nearly impossible. Indeed, in our model, the output gap and the unemployment gap
are driven by a five-dimensional cycle process G; defined in (7), whereas in the model used
by the CBO there is one single cycle, and moreover the output gap and the unemployment
gap are essentially related on-to-one via the Okun’s law.® Now, while on average our

8 It should be noticed that in our results this is not always the case. For example, before the financial
crisis the output gap and the unemployment gap estimated with our model were both indicating that the
economy was quite hot.

9 This feature of a one-to-one relationship between the output gap and the unemployment gap is also

17



Figure 6: OUTPUT GAP AND UNEMPLOYMENT GAP
DO WE REALLY NEED MORE THAN ONE CYCLE?
Output Gap Unemployment Gap
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The red line in the left/right plot is the level of the output/unemployment gap estimated with our benchmark model
specification, i.e., r = 6, ¢ = 3, and d = 2, while the blue line is the output/unemployment gap obtained when the model is
estimated by imposing a univariate cycle, i.e., r =2, ¢ =2, and d = 1.

estimated output gap and unemployment gap are related approximately in the same way
as those estimated by the CBO—the estimated Okun’s low coefficient on our gap estimates
is -0.5, while the one obtained on CBO estimates is -0.6—this relation holds less tightly for
our estimates—the R? for our Okun’s law is 0.6, while that for the CBO Okun’s law is 0.8.
Therefore, to answer the question, it is possible that the output gap and the unemployment
gap send different signals (1) because they are not tightly related by construction, and
(2) because the five cycles in ét are not restricted to impact the output gap and the
unemployment gap in the same way.

The above discussion prompts a new question: is it really necessary to have more than
one cycle? What if there is just one trend and one cycle, i.e., r = ¢ = 2 and d = 1, which
is the configuration imposed by most of the literature? To answer this question, in Figure
6 we compare estimates of the output gap and of the unemployment gap when r = ¢ = 2
and d = 1, implying the presence of just one cycle, with our benchmark specification, i.e.,
r =6, ¢ =3 and d = 2, implying the presence of a five dimensional cycle process. The
answer is clear: while for the estimation of the output gap this does not really matter, in
order to have a sensible estimate of the unemployment gap we need more than one cycle
and this is true especially towards the end of the sample. Hence, we conclude that data
speaks against the standard practice in the literature of imposing a cycle of dimension one,
and in favor of more than one cycle. In Figure D3 in Appendix D, we also show that such
conclusion is robust to several other configurations of ¢, d, and r.

To conclude this section, in Table 2, we show the percentage of variance of the common
cyclical components of some variables of interest, explained by each component Gj; of the
five-dimensional cycle process @t. Inspection of these results confirms both that cycles are
loaded differently by different variables and that more than one cycle is necessary for fully

typical of all the unobserved component models in which there is a single cycle, as for example in Fleischman
and Roberts (2011) and Jarociniski and Lenza (2018).
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Table 2: VARIANCE DECOMPOSITION
PERCENTAGE OF TOTAL VARIANCE OF THE COMMON CYCLICAL COMPONENT

Gt Gat Gt Gu Gt
GDP 85.8 8.6 5.4 0.0 0.2
Unemployment rate 84.0 11.3 0.7 0.3 3.6
PCE price inflation 0.3 8.3 69.5 21.3 0.5
Core PCE price inflation 0.6 6.5 90.9 1.6 0.4
Fed funds rate 0.0 2.8 95.4 0.0 1.7
WTI price inflation 3.7 3.6 1.3 75.4 15.9
S&P500 47.9 11.0 36.2 0.9 4.0

explaining the variance of the cyclical components of GDP and of the unemployment rate.
However, it has to be stressed that, since in general G; is not identified unless we impose
some additional constraint, we are not attempting here to identify each of its components.

6 Real-time estimation of aggregate output and the out-
put gap

Since the seminal work of Orphanides and van Norden (2002), who show that end-of-sample
revisions of GDP are of the same order of magnitude as the output gap, there has been a
lot of debate on the reliability of such estimates in real-time. In this section we address this
issue, and we analyze the real-time properties of both our proposed measures of aggregate
output and output gap.

The analysis in this section is based on real-time data vintages of our 103 variables
dataset starting in September 13 2013, that is after the 2013 NIPA comprehensive data
revisions, and ending on March 30 2018, i.e., the vintage of data that we use to produce
the result in the rest of the paper. We estimate aggregate output and the output gap on 7
vintages per year, where each vintage corresponds approximately to a release of GDI, for
a total of 33 data vintages. Details on the construction of the real-time data vintages, and
on the sources used are in Appendix C.1.

Figure 7 shows real-time estimates of the four different measures of GDO that we have
already presented in Section 4. In each plot of Figure 7 the blue line is the estimate
obtained with the first vintage of data (September 13 2013), the red line is the estimate
obtained with the last vintage of data (March 30 2018), which corresponds to the results
shown in the rest of the paper, and the yellow lines are the estimates obtained with all the
remaining 31 vintages. Finally, in each plot the 19 black dots represent the estimate of
GDO for quarter () and year Y obtained with the vintage of data ending at quarter () and
year Y corresponding to the first release of GDI for quarter () and year Y. For example,
the second black dot from the left is the estimate of GDO for 2013:QQ3 obtained using the
data as of December 13 2013, which contain the first release of GDI for 2013:Q3.

Table 3 reports the standard set of descriptive statistics that is used to evaluate data
revisions in the output gap literature (see e.g., Orphanides and van Norden, 2002; Edge and
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Figure 7: GROSS DOMESTIC OUTPUT
REAL-TIME ESTIMATION
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In each plot the blue line is the estimate of GDO obtained with the vintage of data from September 13 2013, the red line is
the estimate obtained with the vintage of data from March 30 2018, and the yellow lines are the estimate obtained with all
the remaining 31 vintages. Finally, in each plot the 19 black dots represent the estimate of GDO for quarter @ and year Y
obtained with the vintage of data ending at quarter Q and year Y corresponding to the first release of GDI for quarter @
and year Y.

Table 3: STATISTICS ON GROSS DOMESTIC OUTPUT REVISIONS

GDP GDI BEA GDPplus BL
Mean 0.13 0.05 0.09 -0.08 -0.17
Mean Absolute Value 0.73 1.15 0.84 0.93 0.53
Standard Deviation 1.18 1.61 1.06 1.24 0.81
Root Mean Squared Error 1.16 1.57 1.03 1.21 0.81

Rudd, 2016), but for GDO revisions. Here with the term “revision” we mean the difference
between the real-time estimate, i.e., the black dot in Figure 7, and the “final” estimate,
i.e., the value indicated by the red line in Figure 7.

By looking at Figure 7 and Table 3 three main conclusions can be drawn: first, our
estimate of GDO revises less than those provided by the BEA or the Philadelphia Fed in
that the mean absolute value of the revision, the standard deviation of the revision and
the Root Mean Squared Error (RMSE) of the revision are smaller than those of the other
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Figure 8: OUTPUT GAP
REAL-TIME ESTIMATION
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In each plot the blue line is the estimate of the output gap obtained with the vintage of data from September 13 2013, the
red line is the estimate obtained with the vintage of data from March 30 2018, and the yellow lines are the estimate obtained
with all the remaining 31 vintages. Finally, the 19 black dots represent the estimate of the output gap for quarter @ and year
Y obtained with the vintage of data ending at quarter @ and year Y corresponding to the first release of GDI for quarter
Q@ and year Y. Note that, for CBO the blue line represents the estimate available as of April 11 2014.

Table 4: STATISTICS ON OUTPUT GAP REVISIONS

CBO BN HP BL
Mean 1.26 0.04 -0.32 0.02
Mean Absolute Value 1.26 0.11 0.42 0.13
Standard Deviation 0.9 0.17 0.54 0.18
Root Mean Squared Error 1.53 0.17 0.62 0.17

measures. This result confirms the intuition that data revisions are by nature idiosyncratic,
and that by pooling a large amount of data it is possible to partially parse them out.
Second, all the main conclusions drawn from the analysis in Section 4 are robust to data
revision.

Moving to the output gap, Figure 8 shows real-time estimates of the output gap, while
Table 4 shows the standard descriptive statistics for the revisions. We compare the real-
time performance of our estimate of the output gap with the one of the CBO, as well
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Figure 9: OUTPUT GAP
REAL-TIME ESTIMATION
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In each plot the blue line is the estimate of the output gap obtained with the vintage of data from September 13 2013, the
red line is the estimate obtained with the vintage of data from March 30 2018, and the gray lines are the estimate obtained
with all the remaining 31 vintages. Note that, for CBO the blue line represents the estimate available as of April 11 2014.

as with two classic univariate estimates. The first univariate estimate is obtained with
the Hodrick-Prescott (HP) filter with a smoothing parameter set at 1600, the value used
in the literature for quarterly data. The second univariate estimate is obtained with a
Beveridge-Nelson (BN) decomposition estimated as in Kamber et al. (2018), who develop
a “BN filter” with low signal-to-noise ratio that is imposed by estimating a univariate AR
model with Bayesian methods.

By looking at Figure 8 and Table 4 four main conclusions can be drawn: first, our
estimate of the Output Gap revises substantially less compared to both the CBO estimate
and HP filter estimate, while it revises about the same as the estimate obtained with the
BN decomposition. Second, all the main conclusions drawn from the analysis in Section 5
are robust to data revision (see also Figure 9). Third, by comparing the estimate obtained
on the first vintage of data (the blue line) with the one obtained on the last vintage (red
line), it is interesting to notice that our model and the CBO model revised in the same
direction, i.e., both models interpreted incoming data as signaling that there was less slack
in the economy. Last, and not related specifically with the real-time evaluation, as we
can see from Figure 9 the peaks and the troughs of the output gap estimated by our
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Figure 10: POTENTIAL OUTPUT
REAL-TIME ESTIMATION
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In each plot the blue line is the estimate of potential output obtained with the vintage of data from September 13 2013, the
red line is the estimate obtained with the vintage of data from March 30 2018, and the yellow lines are the estimate obtained
with all the remaining 31 vintages. The 19 black dots represent the estimate of the output gap for quarter @ and year Y
obtained with the vintage of data ending at quarter @) and year Y corresponding to the first release of GDI for quarter @
and year Y. Finally, the dark gray line is real GDP. Note that for CBO the blue line represents the estimate available as of
April 11 2014. The unit of measure is log-deviation from 2005:Q1 GDP. This means that in 2010:Q1 the level of real GDP
was 4% higher than in 2005:Q1, while our estimate of potential output obtained with the vintage of data from September 13
2013 was 6% higher.

measure are broadly consistent with those estimated with univariate benchmarks, however
the amplitude of the fluctuations of our estimated output gap is much larger.

To conclude, by looking at Figure 8 we can see that the output gap estimate obtained
with the HP filter revises a lot, often revising positive numbers to negative ones. This kind
of revisions are those that led Orphanides and van Norden (2002) to conclude that output
gap estimates are unreliable in real-time. By contrast, our real-time exercise shows that
the output gap estimates obtained with our model are pretty robust.

Finally, Figure 10 shows real-time estimates of potential output. Notice that, while for
the CBO decomposes GDP into the sum of potential output and the output gap, in our
model this is not the case due to the presence of the idiosyncratic component, and hence
potential output is the common trending component of GDO. From Figure 10 it can be
clearly seen that both our model and the CBO model revised estimates of the level of the
potential output downwards. However while we estimate that the impact of the crisis has
resulted in a level shift in potential output, the CBO estimates not only a level shift, but
also a decrease in potential growth (see also the right plot in Figure 4). Our result are
in line with those of Coibion et al. (2017), who also estimated that potential output fell
during the financial crisis, but then since 2010 has started to grow at approximately the
same pace as before the crisis.!”

10 Coibion et al. (2017) argue that CBO estimates of potential GDP “are failing to adequately distinguish
between permanent and transitory shocks”. They estimate potential output by using the method proposed
by Blanchard and Quah (1989) according to which potential output responds only to permanent shocks
and not to transitory ones.
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7 Conclusions

In this paper we measure US aggregate output, and we decompose it into potential output
and output gap. To do so, we first disentangle common and idiosyncratic dynamics by
using a Non-Stationary Approximate Dynamic Factor Model (NS-DFM) estimated on a
large dataset of US macroeconomic indicators. Then, we disentangle common trends from
common cycles by applying a non-parametric Trend-Cycle decomposition based on the
eigen-analysis of the long run covariance matrix of the estimated latent common factors.

The first part of our analysis is about measuring aggregate output: our estimate shows
that since 2010, output growth was on average 0.4 percentage point higher than Bureau
of Economic Analysis estimates. Our measure’s higher growth has been concentrated in
the first quarter of the year, suggesting that weakness in the GDP’s first-quarter growth
over the past several years is not a matter of shifting growth across quarters, rather it is a
matter of missing Q1 growth that is not made up later in the year.

The second part of our analysis is about measuring the output gap: our estimate sug-
gests that for several consecutive years before the financial crisis the economy operated
above its potential, and hence that level of output was unsustainable. Moreover, our esti-
mate suggests that growth after the financial crisis is due primarily to permanent factors.
As a consequence, our output gap estimate indicates that as of 2017:QQ4 there is still slack
in the economy.

The last part of our analysis investigates the real-time properties of our suggested
measures and we show that our estimates revise less than, or comparably with, other
commonly used measures. This confirms the intuition that data revisions are by nature
idiosyncratic, and therefore, by pooling a large amount of data, it is possible to get a robust
estimate of the signal while parsing out the noise.

Our analysis has been so far deliberately entirely data driven, and we have been careful
in imposing the least possible amount of restrictions to let the data speak freely. This
approach has undeniably some important merits, as estimation of aggregate output seems
to fit naturally in our framework, and the Trend-Cycle decomposition that we obtain for
our estimate of aggregate output is economically sensible and capable to capture important
aspects of aggregate output dynamics. However, we believe that identifying the common
cycles, as well as imposing economically meaningful constraints, is an essential step forward.
Our view is that one way to proceed is to consider Bayesian estimation of the model, so that
our economic and statistical knowledge of the data can be included by means of suitable
priors. All this is the subject of our current research.
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Appendix A Alternative estimation of the output gap

In the Trend-Cycle decomposition of Section 5.1, the vector of common cycles Gy is of
dimension (r — g + d), and, as we have seen, it belongs to the cointegration space of F; by
construction. However, as mentioned in Section 5.1, the constraint F; = K(f;--- fi—s) has a
specific implication for the cointegration rank of F;, which could be exploited in estimating
the output gap. Indeed, it can be easily verified that F; must have cointegration rank d
as fi, regardless of the choice of K—see Appendix B.3. Therefore, in principle G; could
be reduced to a process of dimension d without loosing information. This is not an easy
task, since in order to isolate d cycles we would need to maximize their contribution to the
dynamics of G, at all frequencies, as opposed to the contribution of common trends which
is by construction maximized at the zero frequency.

In this section, we consider two alternative ways of reducing the dimension of the
common cycles G;. For simplicity of exposition, we use the dimensions considered in
the empirical analysis, thus » = 6, ¢ = 3, and (¢ — d) = 1, so that G, has dimension
(r—q+d) =5, and the estimated cycles vector must have dimension d = 2. In other words,
there are (r — ¢) = 3 redundant processes in Gy.

A first simple way to reduce the dimension of G, consists in keeping as common cycles
only the first two components of G;. The rationale for this choice is based on the fact that
since we extract the trend and the cycles by principal component analysis on the long-run
covariance of Fy, then the resulting principal components are ordered according to their
contribution (in first differences) to the lowest frequencies. Low frequencies are in turn the
predominant ones in real variables as GDP and the unemployment rate, and indeed, as
already shown by the results of Table 2, the first two cycles explain almost all variation
of the common cyclical component of those variables. In particular, the matrix (& @)
of ordered normalized eigenvectors of the long run covariance matrix S can be further
partltloned accordlng to the Correspondlng elgenvalues of S in decreasmg order, such that
(@®,)=(® <I>*<I>*) where ® is 6 x 1, ®* is 6 x 2, and <I>j is 6 x 3 with ®* <I>i = 0. We label
this method as BL-PCA and we define the two-dimensional process of common cycles as
the projection

G?L—PCA _ ‘i\)*/f‘t,

which it implies the Trend-Cycle decomposition of the common component:
Nit = AM®T; + X @*CP " + X &% &1 F,. (A1)

Note that the last term has covariance of rank (r — ¢) = 3 and it would not be present if
we had r = q.

A second way to reduce the dimension of G; consists in looking for the two-dimensional
projection of G; with maximum spectral density. Consider the VAR(2):

ét = Alatfl + A2ért72 + vy, (A2)

where vy i N(05,%,) and det(I5 — Az — Az2%) # 0 for |z| < 1, since (A}t is stationary.
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Once we estimate (A2) we can compute the residuals v; and an estimate of their covariance
matrix 3. Denote as H the 5x 2 matrix having as columns the first two leading normalized
eigenvectors of 8,. We label this method as BL-PCA and the two-dimensional process of
common cycles can then be found by projecting G, onto the space spanned by the columns
of H:

G?L—VAR _ ﬂ/ét

The estimated Trend-Cycle decomposition of the common component is then given by
Rit = MOT, + M@, HCPV ™+ Nd, H, H | Gy, (A3)

where H | is 5 x 3 and such that ﬂl’ﬁ = 0. Again, if we had r = ¢ the last term on the
right-hand-side of (A3) would disappear.

To give an intuition of what are the implications of the two methods, we show in Figure
A1 the spectral densities of the estimated common trend AT, (blue line which is the same
in both plots), together with the spectral densities of the two cycle components of ACF-Pc4
(red lines, left plot) and ACP™VAR (red lines, right plot), and those of the first differences of
the three residual processes (black lines). Moreover, in Table A1, we also report for some
selected variables the percentage of variance of the cyclical common components explained
by the two-dimensional cycle processes estimated with the two different methods.

Both identification strategies have pros and cons, and a priori it is very difficult to
determine which one is better. In particular, the main advantage of BL-PCA is simplicity
and the fact that it requires no further estimation. On the other hand, by construction this
method cuts out high frequencies (typical for example of nominal and financial variables,
see the third to fifth column of Table 2), an exclusion for which there is no theoretical
ground. This is clear from the left plot of Figure A1, where we see that ACP“*“* does not
contribute to frequencies corresponding to periods shorter than two years. By contrast,
the main cons of BL-VAR identification is that it requires an additional estimation step,
thus implying a potential loss of efficiency of the estimator. On the other hand, its main
advantages are that all frequencies are captured, and that the three residual processes
account (by construction) for a very small proportion of total variance. This can be seen
by looking at the right plot in Figure Al and at the last column of Table Al. Last, by
looking at Table A2, which shows the correlation between each cycle G]t and each identified
cycle C’BL PCA or C’BL an we clearly see that CBL VAR jg nearly identical to Gy, = CftL PeA " while

CBL var is a hnear combination of all five G]t cycles.

To conclude, Figure A2 reports the estimates of the output gap and the unemployment
gap obtained using the BL-PCA or BL-VAR method as defined by the second term on
the right hand side of (A1) or (A3), respectively. Starting with the output gap, the three
estimates are very similar until the financial crisis. Indeed, when the two cycles are identi-
fied using BL-VAR the output gap reach a trough about 2.2 percentage points lower than
estimated with both our benchmark model, and with BL-PCA identification. This make
sense as when we identify the cycles with BL-VAR we capture higher frequencies typical
of the oil price (see Table A1), which in 2018 plunged from about $130 in July to $40 in
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Table Al: VARIANCE DECOMPOSITION
PERCENTAGE OF TOTAL VARIANCE OF THE COMMON CYCLICAL COMPONENT

CtBL—PCA CtBL—VAR
GDP 94.4 91.9
Unemployment rate 95.4 11.0
PCE price inflation 8.7 35.3
Core PCE price inflation 7.1 15.1
Fed funds rate 2.8 8.4
WTT price inflation 7.3 51.0
S&P500 58.9 14.6

Figure A1l: SPECTRAL DENSITIES OF COMMON CYCLES
BL-PCA BL-VAR
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The plots report the spectral densities of the common trend A’,I\‘t (blue line), the common cycles AG?L‘PCA (red lies in the

left plot) and AG?L'VAR (red lines in the right plot), and the residual cycles given by the third term on the right hand side
of (Al) or (A3) (black lines). On the horizontal axis of the plots in the left column we report periods 7 measured in years
such that the corresponding frequencies are given by 6 = 27 /(47).

December of the same year. Moving on, by looking at the right plot in Figure A2 we can
clearly see that the cycles identified with BL-VAR fail to provide a sensible estimate of
the unemployment gap. In particular, it looks like these cycles are missing some low-mid
frequencies that are very much relevant for the unemployment gap, whereas it is capturing
high-frequencies that have nothing to do with it. This interpretation is supported by both
the spectral density in the right plot of Figure A1, from which we can see that there is a
bulk of fluctuations with period longer than five years that are not captured by BL-VAR,
and by Table A2, from which we can see that the fifth cycle @?}'VAR, which is excluded,
is very much related with Ga, which in turns explains about 11% of the variance of the
unemployment gap.

To summarize, in Section 5.2 we have shown that the five different cycles that drive
our common cyclical components, are loaded in a different way by the different variables
in the dataset. As we discussed in this section, in principle, this five different cycles can be
reduced to two cycles, in that theoretically there are three redundant cycles. However, in
practice this task poses a tradeoff. From a purely econometric point of view the right way
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Table A2: CORRELATION BETWEEN CYCLES

G  Gu Gy Gu Gy
CBLVAR | 054 032 011 076  0.15
CB-VAR | 099 008  0.09 000  0.09
CBL-VAR | 010  -0.30  -0.92  0.01 023
CBL-VAR | 085  -0.37 024  -0.15 025
CBL-VAR | 032 094  -0.04 -0.10  0.06
CB-PCA | 100 000  0.00 000  0.00
CEereA | 000  1.00  0.00  0.00  0.00

Figure A2: OUTPUT GAP AND UNEMPLOYMENT GAP
ALTERNATIVE ESTIMATIONS

Output Gap

Unemployment Gap

BL-VAR
——BL

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

The left/right plot shows the level of the output/unemployment gap estimated by the CBO (blue line), together with the
estimates obtained with the BL-PCA (orange line) and BL-VAR (yellow line) identification methods, and our estimates of
Section 5.2 (red line).

to proceed would be to maximize the variance explained at all frequencies as in the BL-
VAR approach. However, by doing so we capture frequencies that seem to be not relevant
for real macroeconomic variables, while leaving out important slow moving components.
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Appendix B Properties of F;

Hereafter, for simplicity we consider the case s = 1, thus r = 2¢q. Moreover, we assume
p=21in (5) as in our empirical application, such that as shown below we have ¢ = 3 in (3).

B.1 Reduced and structural form

The reduced form (4)-(5) can be written as
x; = AF; + &, (B4)
F, [ A Ay Fi4 H
(e )= (o) (e )+ (o, ) &

with A = (A1---A,) the n x r loadings matrix. Similarly consider the structural form
(2)-(3), where, for convenience, in the VAR(3) we write twice the same equation:

x; = Bofi + Bifi-1 + &, (B6)
St A Ay 0, A3 Sfi—1 I,
ftfl Iq Oq Oq Oq ft72 Oq

= + uy, B7

ftfl Iq Oq Oq Oq ft72 Oq ! ( )
ft—2 Oq Iq Oq Oq ft—3 Oq

where B(] = (b()l s bon)/, B1 = (bn s bln) are both n x q.
For the two representations to be equivalent there must exist an invertible r x r matrix
K such that

Fo=K(fi fi.1),  (fifi) =K 'Fy, (B3)
A= (ByB)K, (BoB1) = AK. (B9)

By comparing (B4)-(B5) with (B6)-(B7) and using (B8)-(B9), we have the parameters of the
reduced form as functions of those of the structural form

A1:K<A1 AQ)K—l, A2:K<Oq A3>K—1, HzK(Iq). (B10)
Iq Oq Oq Oq Oq

B.2 Number of common trends

The VAR(3) polynomial in (B7) has a Smith-McMillan form (see e.g. Watson, 1994), which
without loss fo generality can be written as:

A(L) =v<L)( (1= oy Ot ) (B11)
dx (g—d) d
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where V(L) is a ¢ x ¢ polynomial matrix of order 2 and such that det(V(z)) # 0 for |z| < 1.
Then, as assumed, there are (¢ — d) unit roots driving the dynamics of f; and we have
rk(A(1)) = d, which is the cointegration rank of f;.

Now consider the Wold representation for Af;, which is obtained by inverting (B7):

Afi = C(Lyw; = (1 - D)LA(L)] ", (B12)

and by using (B11),

e = (- oA = (7P O Yy,
(q—d)xd (g—d)
from which we see that rk(C(1)) = (¢ — d), that is (¢ — d) shocks have a permanent effect
on f;. Hence, the number of shocks with non-vanishing long run effects is equal to the
number of unit roots and common trends.

Since F; ~ I(1), because of (B8), then it must have unit roots. From the results in
Barigozzi et al. (2016a) we have that the unit roots can be at most ¢, hence in general
we have (¢ — 7) unit roots for some 7 such that 0 < 7 < ¢q. Then, the singular VAR(2)
in (B5) has an MA representation which using again the Smith-McMillan form of matrix
polynomials reads as

(1-L)I, 0 0
AFt = C(L)Hut = 0 I(q—‘r) 0 U(L)Hut, (Bl?))
0 0 (1-L)Iy,

where U(L) is an r x r infinite polynomial matrix with det(U(z)) # 0 for |z|] < 1 and with
no poles in z = 1. As before, the number of shocks with non-vanishing long run effects is
equal to the number of unit roots and common trends. We now show that in our model
T =d.

Now, using (B8) and (B10) , we have

K 'AF;, = K 'C(L)KK 'Hu, (B14)
(1-L)I, 0 0 .
=K' 0 Liyr) 0 U(L)K < o ) u;.
0 0 (1-L)I,_, I

Let us partition the first ¢ rows of K=! as follows
[Kil]lzq,: = [K:l ’CQ ’C?’L

where IC; is ¢ x 7, Ko is ¢ X (¢ — 7), and K3 is ¢ x (r — q). Define IE]-(L) = I;U(L)K, for
j =1,2,3 which have also square summable coefficients and therefore no unit root. Then,
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from (B13) and since U(L) has no unit root we have
I
Afy =K Y. AF, = [(1 - L)K; K2 (1 - L)K3]U(L)K < ! ) w

— [(1 = DKL) Ka(L) (1 — 1)Ky (L) ( 0 ) w
= [(1 = DK (L) Ka(L)]w = D(L)u. (B15)

Clearly rk(D(1)) = (¢ — 7). However, since the innovations u; in (B15) are the same as in
(B12), then we must have D(L) = C(L), and since rk(C(1)) = (¢ — d), then we must have
7 = d. Therefore, F; has (¢ — d) unit roots as f;.

B.3 Cointegration rank

Although one might be tempted to say that as a consequence of (B13) the cointegration
rank of F; is d, this is general not the case. Indeed, following Barigozzi et al. (2016a) we
have that the cointegration rank c is such that d < ¢ < (r—¢+d). We now show that under
the restriction in (B8) we indeed have ¢ = d.

The vector f; is cointegrated thus it admits a VECM representation which for simplicity
we consider with 2 lags, since this will imply a VECM(1) and therefore a VAR(2) for the
factors F; as implemented in our empirical analysis. Thus,

Afi=—-ab fis + T1Afi_1 + ToAfio + uy, (B16)

where a and b are ¢ x d.
First assume that the restriction F; = (f/f/_;)’ holds. Since we model F, as a VAR(2)
we know that we must have the VECM(1) representation

AFt = —a,@'Ft + MAthl + Hut, (Bl?)

where a and B are r x ¢ with ¢ < r and H is r x ¢. The aim of this section is to find c,
which is the cointegration rank for F, when (B16) holds. In order to do this we look for the
expressions of M, a, 3, and H as functions of the parameters a, b, I';, and T'; in (B16).
Let us write a = (&} o)) and B = (8] B,)’ where ai, az, 81, B2 are all ¢ x ¢. We also
denote as M;; for 4,5 = 1,2 the four ¢ x ¢ blocks of M and as H; and Hy the two ¢ x ¢
blocks of H. Following Proietti (1997), we define the (2r + ¢)-dimensional vector

Afy
AFy Afi
G = ( AF; ) =| Afia
B'Fi_o Afio

B fi—2+ B5fi—3
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Then, the state-space form of (B17) is given by
AFt = Zth Gt = TGt—l + Z’Hut, <B18)

with the r x (2r 4+ ¢) matrix Z = (I, 0, 0,x.). Then,

H,
I H
) T H1 2
ZH=| o, )= | %
Ocxr 2 0,
0c><q

and the (2r + ¢) x (2r + ¢) matrix T is given by

My M | —aiff] —oufy | —au
M -af -« My My | —c2f8] —aof) | —oo
T = I, 0, 0,xc = I, 0, 0, 0, Ogxc
Ocr 3 I. 0, I, 0, 0, Ogxc
0c><q 0c><q ﬁi Bé L.

Now using these definitions into (B18) we have five ¢-dimensional equations. The first one
is

Afy=MuAfi1+MpAf_o —o1B fi—e — 185 fi—3 + Hiuy,
which is equivalent to (B16) when
M1 =T, Mp=TI2 aoa=a 1 =0y, B2=b, Hi=I, c=d (B19)
The second equation is
Afio1 = My Afi1 + Mo Af o — asBiAfi—o — aaBsA fi_3 — cof3) fi3 — azB5 fi—s + Houy,
from which we see that we must also have
My =1,  Myp=0, ay=04, Hy=0,. (B20)

Under (B19) and (B20) the third, fourth and fifth equation in (B18) are just identities.
By imposing the restrictions in (B19)-(B20), we have the mapping between the VECM(1)
for F; in (B17) and the VECM(2) for f; in (B16)

. ]_-‘1 FQ . a . 0><d . I
we(28) e (h) e (B) (k) e

If we now consider the general reduced form case in which ¥, = K(f/ f/_;) for a r xr
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invertible matrix K, then (B21) becomes

M_K<Fl FQ)K_l, a_K<a > g_K—1’<
I, 0, Ogxd

The cointegration rank ¢ of F; is given by rk(a3') = d.
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Appendix C Data Description and Data Treatment

This Appendix present the dataset used in the analysis. All variables where downloaded
from Haver on March 30" 2018. This vintage of data incorporates the third estimate
of Gross Domestic Product in 2017:Q4, as well as the first estimate of Gross Domestic
Income in 2017:Q4. None of the variables where adjusted for outliers but variables 57, 83,
87, and 94. All variables are from the USECON database but variable 103 that is from the
DAILY database. All monthly and daily series are transformed into quarterly observation
by simple averages.

LisT OF ABBREVIATIONS

Source:

BLS=U.S. Department of Labor: Bureau of Labor Statistics
BEA=U.S. Department of Commerce: Bureau of Economic Analysis
ISM = Institute for Supply Management

CB=U.S. Department of Commerce: Census Bureau

FRB=Board of Governors of the Federal Reserve System
EIA=Energy Information Administration

WSJ=Wall Street Journal

CBO=Congressional Budget Office

FRBPHIL=Federal Reserve Bank of Philadelphia

F = Frequency T = Transformation  SA ¢ = Idiosyncratic
Q = Quarterly 0 = None 0 = mno = 1(0)

M = Monthly 1 = log 1 = yes = 1I(1)

D = Daily 2 = Alog

D = Deterministic Component U = Units

0=a; =+ Zthl Ayit, by =0 1000-P = Thousands of Persons
1 = OLS Detrending 1000-U = Thousands of Units

BoC = Billions of Chained
$-B = Dollars per Barrel
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N Series ID Definition Unit F S SA T D¢
1 GDPH Real Gross Domestic Product BoC2009% Q BEA 1 1 1 0
2 GDYH Real Gross Domestic Income BoC2009% @Q BEA 1 1 1 0
3 FSH Real Final Sales of Domestic Product BoC2009% @Q BEA 1 1 1 1
4 TH Real Gross Private Domestic Investment BoC2009% @Q BEA 1 1 1 1
5 GSH Real State & Local* BoC2009% Q BEA 1 1 1 1
6 FRH Real Private Residential Fixed Investment BoC2009% Q BEA 1 1 1 0
7 FNH Real Private Nonresidential Fixed Investment BoC2009% @Q BEA 1 1 1 1
8 MH Real Imports of Goods & Services BoC2009%$ @Q BEA 1 1 1 0
9 GH Real Government* BoC2009% @Q BEA 1 1 1 1
10 XH Real Exports of Goods & Services BoC2009% Q BEA 1 1 1 0
14 CH Real Personal Consumption Expenditures (PCE) BoC 20098 Q BEA 1 1 1 0
11 CNH Real PCE: Nondurable Goods BoC2009% Q BEA 1 1 1 0
12 CSH Real PCE: Services BoC2009$ @Q BEA 1 1 1 0
13 CDH Real PCE: Durable Goods BoC2009% @Q BEA 1 1 1 0
15 GFDIH Real National Defense Gross Investment BoC2009% Q BEA 1 1 1 0
16 GFNIH Real Federal Nondefense Gross Investment BoC2009% Q BEA 1 1 1 0
17 YPDH Real Disposable Personal Income BoC 20098 Q BEA 1 1 1 0
18 JI Gross Private Domestic Investment* 2009=100 Q BEA 1 2 0 0
19 JGDP Gross Domestic Product* 2009=100 Q BEA 1 2 01
20 LXNFU Unit Labor Cost! 2009=100 Q BLS 1 1 1 1
21 LXNFR Real Compensation Per Hour! 2009=100 Q BLS 1 1 11
22 LXNFC Compensation Per Hourf 2009=100 Q BLS 1 1 1 1
23 LXNFH Hours of All Persons® 2009=100 Q BLS 1 1 1 0
24 LXNFA Output Per Hour of All Persons’ 2009=100 Q BLS 1 1 1 0
25 LXMU Unit Labor Cost? 2009=100 Q BLS 1 1 1 1
26 LXMR Real Compensation Per Hour? 2009=100 Q BLS 1 1 1 1
27 LXMC Compensation Per Hour? 2009=100 Q BLS 1 1 1 1
28 LXMH Hours of All Personst 2009=100 Q BLS 1 1 0 1
29 LXMA Output Per Hour of All Persons? 2009=100 Q BLS 1 1 11
30 IP Industrial Production (IP) Index 2012=100 M FRB 1 1 1 1
31 IP521 IP: Business Equipment 2012=100 M FRB 1 1 1 1
32 IP511 IP: Durable Consumer Goods 2012=100 M FRB 1 1 1 0
33 IP531 IP: Durable Materials 2012=100 M FRB 1 1 1 1
34 IP512 IP: Nondurable Consumer Goods 2012=100 M FRB 1 1 1 0
35 IP532 IP: nondurable Materials 2012=100 M FRB 1 1 1 0

* Consumption Expenditures & Gross Investment

* Chain-type Price Index

T Nonfarm Business Sector

¥ Manufacturing Sector
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N Series ID Definition Unit F S SA T D¢
36 PCU CPI-U: All Items 82-84=100 M BLS 1 2 0 O
37 PCUSE CPI-U: Energy 82-84=100 M BLS 1 2 0 0
38 PCUSLFE CPI-U: All Items Less Food and Energy 82-84=100 M BLS 1 2 0 O
39 PCUFO CPI-U: Food 82-84=100 M BLS 1 2 0 O
40 JCBM PCE: Chain Price Index 2009=100 M BEA 1 2 0 0
41 JCEBM PCE: Energy Goods & Services—price index 2009=100 M BEA 1 2 0 0
42 JCNFOM PCE: Food & Beverages—price index* 2009=100 M BEA 1 2 0 0
43 JCXFEBM PCE less Food & Energy—price index 2009=100 M BEA 1 2 0 0
44 JCSBM PCE: Services—price index 2009=100 M BEA 1 2 0 0
45 JCDBM PCE: Durable Goods—price index 2009=100 M BEA 1 2 0 0
46 JCNBM PCE: Nondurable Goods—price index 2009=100 M BEA 1 2 0 0
47 PC1 PPI: Intermediate Demand Processed Goods 1982=100 M BLS 1 2 0 0
48 P05 PPI: Fuels and Related Products and Power 1982=100 M BLS 0 2 0 0
49 SP3000 PPI: Final Demand Personal Consumption Gds** 1982=1000 M BLS 1 2 0 0
50 SP3000 PPI: Finished Goods 1982=100 M BLS 1 2 0 0
51 PIN PPI: Industrial Commodities 1982=100 M BLS 0 2 0 0
52 PA PPI: All Commodities 1982=100 M BLS 0 2 0 0
53 FMC Money Stock: Currency Bil. of $ M FRB 1 2 0 0
54 FM1 Money Stock: M1 Bil. of $ M FRB 1 2 0 1
55 FM2 Money Stock: M2 Bil. of $ M FRB 1 2 0 0
56 FABWC C & I Loans in Bank Credit? Bil. of $ M FRB 1 1 1 1
57 FABWQ Consumer Loans in Bank Credit! Bil. of $ M FRB 1 1 1 1
58 FAB Bank Credit! Bil. of $ M FRB 1 1 1 1
59 FABW Loans & Leases in Bank Creditf Bil. of $ M FRB 1 1 1 1
60 FABYO Other Securities in Bank Credit! Bil. of $ M FRB 1 1 1 1
61 FABWR  Real Estate Loans in Bank Credit! Bil. of $ M FRB 1 1 1 0
62 FOT Consumer Credit Outstanding Bil. of $ M FRB 1 1 1 1
63 HSTMW  Housing Starts: Midwest 1000-U M CB 1 100
64 HSTNE Housing Starts: Northeast 1000-U M CB 1 100
65 HSTS Housing Starts: South 1000-U M CB 1 100
66 HSTGW  Housing Starts: West 1000-U M CB 1 100
67 HPT Building Permit* 1000-U M CB 1 100
68 FBPR Bank Prime Loan Rate Percent M FRB 0 0 0 0
69 FFED Federal Funds [effective] Rate Percent M FRB 0 0 0 O
70 FCM1 1-Year Treasury Bill Yield? Percent M FRB 0 0 0 0
71 FCM10 10-Year Treasury Note Yield! Percent M FRB 0 0 0 0

* Purchased for Off-Premises Consumption
T All Commercial Banks
* New Private Housing Units Authorized by

¥ at Constant Maturity
** |Finished Consumer Gds|
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N Series ID Definition Unit F S SA T D¢
72 LP Civilian Participation Rate: 16 yr + Percent M BLS 0 0 1 0
73 LQ Civilian Employment /Population Ratio: 16 yr + Percent M BLS 0 01 0
74 LE Civilian Employment: Sixteen Years & Over 1000-P M BLS 0 1 1 0
75 LR Civilian Unemployment Rate: 16 yr + Percent M BLS 0 0 0 0
76 LUO Civilians Unemployed for Less Than 5 Weeks 1000-P M BLS 0 1 1 0
77 LUb Civilians Unemployed for 5-14 Weeks 1000-P M BLS 0 1 11
78 LU15 Civilians Unemployed for 15-26 Weeks 1000-P M BLS 0 1 1 1
79 LUT27 Civilians Unemployed for 27 Weeks and Over 1000-P M BLS 0 1 1 1
80 LUAD Average [Mean| Duration of Unemployment Weeks M BLS 0 1 11
81 LANAGRA All Employees: Total Nonfarm 1000-P M BLS 0 1 11
82 LAPRIVA All Employees: Total Private Industries 1000-P M BLS 0 1 1 0
83 LANTRMA All Employees: Mining and Logging 1000-P M BLS 0 1 01
84 LACONSA All Employees: Construction 1000-P M BLS 0 1 11
85 LAMANUA All Employees: Manufacturing 1000-P M BLS 0 1 0 1
86 LATTULA All Employees: Trade, Transportation & Utilities 1000-P M BLS 0 1 11
87 LAINFOA All Employees: Information Services 1000-P M BLS 0 1 1 1
88 LAFIREA All Employees: Financial Activities 1000-P M BLS 0 1 11
89 LAPBSVA All Employees: Professional & Business Services ~ 1000-P M BLS 0 1 11
90 LAEDUHA All Employees: Education & Health Services 1000-P M BLS 0 1 11
91 LALEIHA All Employees: Leisure & Hospitality 1000-P M BLS 0 1 1 1
92 LASRVOA All Employees: Other Services 1000-P M BLS 0 1 11
93 LAGOVTA All Employees: Government 1000-P M BLS 0 1 1 1
94 LAFGOVA All Employees: Federal Government 1000-P M BLS 0 1 0 1
95 LASGOVA All Employees: State Government 1000-P M BLS 0 1 10
96 LALGOVA All Employees: Local Government 1000-P M BLS 0 1 1 0
97 PETEXA  West Texas Intermediate Spot Price FOB* $-B M EIA 0 2 0 0
98 NAPMNI ISM Mfg: New Orders Index Index M ISM 1 0 0 1
99 NAPMOI ISM Mfg: Production Index Index M ISM 1 0 01
100NAPMEI  ISM Mfg: Employment Index Index M ISM 1 0 01
101NAPMVDI ISM Mfg: Supplier Deliveries Index Index M ISM 1 00 0
102NAPMIT  ISM Mfg: Inventories Index Index M ISM 1 000
103SP500 Standard & Poor’s 500 Stock Price Index 41-43=10 D WSJ 0 1 10
* Cushing, Oklahoma

Series ID Definition Unit F Source

GDPPOTHQ Real Potential Gross Domestic Product BoC 20098 Q CBO

NAIRUQ Natural Rate of Unemployment percent Q CBO

GDPPLUS US GDPplus percent Q FRBPHIL
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C.1 Real-time data vintages

The real-time data vintages used in Section 6 are constructed as follows: vintages from
February 24 2017 onwards where saved by us every Friday, while vintages prior to February
24 2017 are constructed using a real-time database maintained by the Division of Research
and Statistics of the Board of Governors of the Federal Reserve System. All the vari-
ables were retrieved from that database but variable 66 “Housing Starts: West”, which was
retrieved from the ALFRED database of the Federal Reserve Bank of St. Louis. Further-
more, some missing observations for GDI and the oil price were filled by using real-time
vintages downloaded from ALFRED.

For the first four vintages we were able to retrieve only 101 variables out of 103, as we
were not able to find vintages for two PPIs (variables 47 and 49).

GDO and the output gap were estimated on 7 data vintages per year corresponding to
the dates after the release of GDI. The first estimate of GDI Q1 is released at the end of
May, together with the second estimate of GDP Q1, while the second estimate is published
in June, together with the third estimate of GDP Q1. Similarly, GDI Q2 is released in
August and in September, while GDI Q3 is released in November and December. By
contrast, GDI for Q4 is released only once in March together with the third estimate of
GDP Q4.

The dates in which GDI is released varies from year to year, therefore we have adopted
the following strategy to select the dates at which to construct the vintages: for each GDI
release we select the vintage as of the first Friday after the 6" of the following month.
For example, for GDI Q1 which is published at the end of March, we select the vintage
corresponding to the first Friday after the 6** of April.
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Appendix D Additional results

Figure D3: ROBUSTNESS WITH RESPECT TO NUMBER OF SHOCKS/FACTORS
Gross Domestic Output Output Gap Unemployment Gap

T T T T T 450 [T T

125 ,J\

// Y IR RN i BV S
o \ A

250 N TV N 7\ u\
52 075 ‘\

400 -

N | 160 |
000
NW

A

Y

405 080
22601 7h75\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ T s B

\

2020 300
10.10 0.00
0.00 -3.00

In this Figure, plots on the left column show estimates of GDO, plots on the middle column show estimates of the output
gap, while estimates on the right column show estimates of the unemployment gap. In each plot the red line is the estimate
obtained with our benchmark model specification, i.e., r = 6, ¢ = 3, and d = 2. By contrast, the blue, the yellow, and the
orange lines are estimates obtained with different specifications of r, ¢, and d.
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Figure D4: GRoss DOMESTIC OUTPUT
REAL-TIME ESTIMATION
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In each plot the blue line is the estimate of GDO obtained with the vintage of data from September 13 2013, the red line is
the estimate obtained with the vintage of data from March 30 2018, and the grey lines are the estimate obtained with all the
remaining 31 vintages. Note that for GDP and GDI the different lines represent not our estimate, but the data available as
of. Similarly, for GDPplus the different lines represent the estimates from the Philly Fed using data available as of.
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