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Chapter 1
Introduction

1.1 Purpose

Civil Engineering is a discipline greatly relying on Mathematics. Although you will
be having taught Maths modules throughout your course, we must assume that ev-
eryone arrives with a certain level of understanding. This booklet has been designed
with the purpose of allowing Year 1 students to self-assess their Math skills.

1.2 How to read this booklet

This booklet contains basic A-Level Math material that we expect you to be pro-
ficient in at Day 1. We therefore advise you to go through the material presented
herein and either

1. Verify that you are able to go through the self-assessment questions. Try the
questions and compare your answers with the solutions provided at the end.
Please be advised that this is for your own benefit and self-assessment. There is
no reason to cheat as you will be only cheating yourself.

2. If you find that you are not able to answer some of the questions, use the back-
ground material provided in each chapter to refresh your memory. Use this
booklet as a guide to the sort of material you need to cover and to be used in
conjunction with a text book. If you encounter difficulties, please do not panic,
but try to revise points that you feel you are weak on. Seek advise from your
Tutor and your Maths lecturer.

1
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1.3 Acknowledgements

I would like to thank Dr. Barbara Turnbull, Dep. of Civil Engineering and Dr. Tom
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Chapter 2
Solving Equations

Solving an equation involving the variable x means finding all possible values of
x that satisfy the equation. Equations can take different forms and the techniques
used in solving them vary with the nature of the equation (polynomial, exponential,
logarithmic,...). In this chapter we will only deal with polynomial equations and
equations involving absolute values. Once exponential, logarithmic and trigonomet-
ric functions are reviewed, we will be able to deal with equations involving these
functions.

2.1 Polynomial Equations

Generally speaking, these are probably the easiest to deal with. Linear, quadratic
and cubic equations are just particular cases of polynomial equations. In general, a
polynomial equation is one that can written under the form

anxn +an−1xn−1 + · · ·+a1x+a0 = 0 (2.1)

where each ai, i = 1,2, . . . ,n is a real number and is termed a coefficient of the poly-
nomial equation whereas n is a positive integer. For n= 1,2 and 3 in (2.1), we obtain
linear, quadratic and cubic equations respectively. The main idea behind solving a
polynomial equation (of degree 2 or more) of the form P(x) = 0 is to factor the
polynomial P(x) completely and then solve for x in each factor.

2.2 Linear Equations

These are equations of the form p(x) = 0 where p(x) is a polynomial of degree 1.
In other words, they are equations of the form

αx+β = 0 (2.2)

3



4 2 Solving Equations

where α,β ∈ R and a α 6= 0.
The solution of such an equation is, of course,

x =−β

α
(2.3)

(thus it is essential for α to not equal zero.)

Example 2.1. Derive the solution of the equation
√

2x−
√

8−
√

8 = 0 (2.4)

Solution 2.1. Regardless of the fact that the coefficients of the equation are square
roots, this is still a linear equation with respect to x. Thus, the solution of the equa-
tion is readily derived as

√
2x−

√
8−
√

8 = 0⇒ (2.5)
√

2x−
√

8 =
√

8⇒ (2.6)
√

2x = 2
√

8⇒ (2.7)

x = 2

√
8√
2
= 2

√
4
√

2√
2

= 4 (2.8)

Remark Although not stated, when you try to solve an equation, you are actually
assuming that there is a solution. If after some steps in attempting to find a solution,
you end up with a nonsense like 1 = 2, this indicates that your initial assumption
that a solution exists was wrong and in fact, there is no solution. For example, if you
try to solve the linear equation 1+ x = 3x2x+ 2 the usual way, then you will end
up with the equation 1 = 2. Of course, the statement ”1 = 2” is clearly false, which
means that there is no value of x that could ever make this true. Therefore, equation
1+ x = 3x2x+2 has no solution.

2.3 Quadratic Equations

A quadratic equation of the variable x is an equation in the form

αx2 +βx+ γ = 0 (2.9)

where α , β and γ ∈ R and α 6= 0. To solve this equation is to identify the roots of
the corresponding polynomial. Identifying the roots of the polynomial is equivalent
to identifying the positions along the x axis where the function f (x) = αx2+βx+γ

crosses.



2.3 Quadratic Equations 5

A second order polynomial curve, can either

[i] Cross the x axis at two points, in which case the corresponding quadratic equa-
tion has exactly two solutions

[ii] Be tangent to the x axis at a single point, in which case the corresponding
quadratic equation has a single solution

[iii] Does not cross the x axis at all, in which case the corresponding quadratic equa-
tion has no solution at all

Although solutions to the quadratic equation have been known in various forms
since 2000BC, this has been put in the formalism we know today by René Descartes
in 1637. Descartes’ solution is based on the definition of the discriminant ∆

∆ = β
2−4αγ (2.10)

Three cases are then identified

• if ∆ > 0 then the quadratic equation has two real and unequal roots

ρ1 =
−β +

√
∆

2α
ρ1 =

−β −
√

∆

2α
(2.11)

• if ∆ = 0 then the quadratic equation has a double real root (two equal real roots)

ρ1 = ρ2 =−
β

2α
(2.12)

• if ∆ < 0 then the quadratic equation has no real roots

Example 2.2. Solve the equation

2x2−3x+1 = 0 (2.13)

Solution 2.2. The discriminant of the equation is

∆ = (−3)2−4 ·2 ·1 = 1 > 0 (2.14)

Thus, the quadratic equation has two real roots which are

ρ1 =
−(−3)+

√
(1)

2 ·2
= 1 (2.15)
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and

ρ2 =
−(−3)−

√
(1)

2 ·2
=

1
2

(2.16)

2.4 Self-assessment

Question 1: Derive the solution for the following equations

[i] 3
2 x+ 7

6 = 2
5 x− 5

4

[ii] 2x−1
3 −

1−x
4 = 2x+1

8

[iii] x ln5+ ln2 = 0

[iv] 15x = 3

[v] 4(x+7) = 6(x−3)

[vi] x
4 +6 = x

3 −4

[vii] 3x−1
4 = 3

4

Question 2: Derive the real solution (if any) for the following equations

[i] 2x2−3x+5 = 0

[ii] x2−2x+1 = 0
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[iii] 5x2−15x+3 = 0

[iv] 13x2−21 = 0

[v] 4x2 +6x+2 = 0

[vi] x2−5x−50 = 0

[vii] x2− x = 0





Chapter 3
Solving Systems of Linear Equations

3.1 The method of elimination

In the elimination method, one tries to reformulate the equations so that when these
are added (or subtracted) term by term, one of the two unknown variables is elim-
inated. This will result in a single equation with a single unknown which can be
solved as a linear equation (see also 1)

Example 3.1. Using the elimination method, solve the following system of linear
equations

x+ y = 6 (3.1)
3x+8y = 3 (3.2)

Solution 3.1. Consider for example in this case, that we multiply the first equation
by -3, then the system assumes the following form

(−3)x+(−3)y =−18
3x+8y =−5

Adding the two equations together and collecting terms will result in

3x+(−3)x+8y+(−3)y =−18+3⇒ 5y =−15

This is a linear equation with respect to y that results in

y =−3

Substituting y = −3 in either one of the two initial equations will provide us with
the value of x, for example

x+ y = 6⇒ x = 6− y = 6− (−3)⇒ x = 9

9



10 3 Solving Systems of Linear Equations

3.2 Solution by substitution

In this case, one tries to solve one of the two equations in terms of one unknown and
then substitute to the second. Again, this will result in a single equation with just
one unknown that can be easily solved. It is worth noting however, that the more the
equations involved in the system the more cumbersome this method becomes.

Example 3.2. Using the method of substitution, solve the following system of linear
equations

x+ y = 6
3x+8y = 3

(3.3)

Solution 3.2. The first equation can be solved with respect to y resulting in

y = 6− x (3.4)

Substituting this equation to the second of (3.3) results in

3x+8 · (6− x) = 3⇒ 3x+48−8x = 3⇒−5x =−45⇒ x = 9 (3.5)

Finally, substituting this solution back into equation (3.4) will result in

y = 6−9 =−3 (3.6)

3.3 Self-assessment
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Question 3: Solve the following pairs of equations for x and y.

(a)
20x+ y = 81
2x− y = 7

(b)
2x−7y = 8
4x−6y = 0

(c)
2y−6x = 6

20y+12x = 0

(d)
3y+2x = 9

5x− y =−3





Chapter 4
Basic Trigonometry

4.1 Measuring Angles

Consider the two lines, O1 and O2 that meet at point 0 (Fig. 4.1). An angle is
formally defined as the set of all points in space that lay between these two lines.
The latter are called the rays of the angle whereas point O is termed the angle
vertex. In most cases, we are concerned with defining and measuring angles with
respect to specific points in space, for example points A and B in lines O1 and O2
respectively. In this case, we denote the corresponding angle as ∠AOB and describe
it as the angle between the linear segments OA and OB.

Fig. 4.1: Angle definition

Highly relevant to the notion of an angle is that of rotation. Consider an angle
∠AOB to be living in the cartesian plane xy and that OA coincides with the x axis,
as shown in Fig. 4.2. We say that the angle ∠AOB is identical to the angle by
which the x axis needs to be rotated about O to meet axis x′. If this rotation is
counter-clockwise we will be considering the angle to be positive. If the rotation is
clock-wise we will be considering the corresponding angle to be negative.

13



14 4 Basic Trigonometry

Fig. 4.2: Angle through rotation

4.1.1 Radians

Calculus-based university courses rarely use degrees as measure of an angle, rather
a second unit called Radian (rad). Using radians would allows a more smooth ex-
tension of the domain of trigonometric functions to real numbers. Also, later on you
will see that known formulas involving the rate of change of trigonometric func-
tions are only valid when the angles are expressed in radians rather than degrees.
For now, let us, once and for all, try to understand this notion of radian so we can
move on. Imagine a straight radius of a circle is lifted off and placed on the curve of
the circumference of the circle. The angle at the centre of circle bounded by the two
end points of the curve, called a central angle, has a measure of one radian, written
1 rad for short.

Using the above definition of radian allows us to establish a relationship between
the two units of measurement of angles (radian versus degree). To start, consider a
circle of radius r . Recall that a complete tour of the circle corresponds to a central
angle of 360o. Since the circumference of the circle is equal to 2r , it follows that the
number of times one can ”wrap” the radius around the circumference is 2 (just over
6 times) and the central angle corresponding to a full revolution is then equal to 2π

radians. In other words, 2π radians is equivalent to 360o or, π radians is equivalent
to 180o. This is the basic relation between the two units of measurement of an angle:

• If θ is an angle measured in degrees, then π

180 θ is the value of the angle in
radians.

• If θ is an angle measured in rads, then 180
π

θ is the value of the angle in radians

4.1.2 Some angles to remember - Part I

There are cases in your future Engineering career that you will be meeting the radian
expression of a very specific set of angles, time after time. It’s thus good practice to
actually remember the following conversions
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Table 4.1: Very Useful Angles

Angle in Degrees Angle in Radians

30 π
/

6

45 π
/

4

60 π
/

3

90 π
/

2

180 π

270 3π
/

2

4.2 Trigonometric Functions

4.2.1 The right-angled triangle definitions

If θ is the acute angle shown in the right-angled triangle in Fig. 4.3 the fundamental
trigonometric functions, i.e., sin(θ), cos(θ) and tan(θ) are defined as

sin(θ) =
Opposite

Hypotenuse
=

a
c

(4.1)

cos(θ) =
Adjacent

Hypotenuse
=

b
c

(4.2)

and
tan(θ) =

Opposite
Adjacent

=
a
b

(4.3)

respectively.

4.2.2 The unit circle definition

The right angle triangle definition of the previous section does not offer any in-
sight when the angles involved are larger than π . The more general and intuitive
unit-circle however offers a much better alternative. In fact, if you remember the
definition of the unit-circle you can easily derive the sine and cosine of angles fre-
quently met in engineering. The unit-circle is merely a circle defined in the XY plane
whose centre is at the origin. The radius of the circle is R = 1.

If we consider a P1(x,y) on the unit circle laying on the first quadrant Fig. 4.4,
then the radius of the circle at the point forms an angle θ1 with the horizontal x axis.
Then, based on the definition of the sine function one may write that
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Fig. 4.3: Trig function definitions - The normal Triangle case

Fig. 4.4: Trig function definitions - The Unit Circle case
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cos(θ1) =
x1

R
=

x
1
= x1 (4.4)

Similarly, the cosine function will be

sin(θ1) =
y1

R
=

y
1
= y1 (4.5)

Notice that in the limit case where y1 = 0, i.e. P1 lies on the x-axis one has that
sin(0) = 1 and cos(0) = 0 as expected. Similarly, when P1 lies on the y-axis one has
sin(π/2) = 0 and cos(π/2) = 1.

This hints that we can redefine the sine and cosine functions as being equal to the
x and y coordinates of a point laying on the unit-cirle. This is rather intriguing as in
that case not only do we define the cosine and sine for any angle larger than π/2 but
also we get a very intuitive way of remembering what the signs of these functions
are for different angles.

For example, just by drawing the trigonometric circle, we can see that any angle
π/2 < θ ≤ π has a negative sine and a positive cosine value Fig. 4.5.

Fig. 4.5: Trig function definitions - The Unit Circle case

Furthermore, using the unit-circle we can directly derive some very useful
trigonometric relations. For example, we know that for any two given supplemen-
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tary angles (e.g., θ1 = 30 and θ2 = 150 ) it holds that

cos(θ1) = cos(θ2) (4.6)

and
sin(θ1) =−sin(θ2) (4.7)

Indeed, by referring back to the unit-circle Fig. 4.6 we can directly see that for these
two angles it holds that

x2 =−x1 y2 = y1 (4.8)

Fig. 4.6: Supplementary angles

Example 4.1. Using the unit-circle, write down the values of the following expres-
sions in terms of either sin(θ) or cos(θ) alone

sin(−θ)

cos(−θ)
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Solution 4.1. Consider the radius the point P+ corresponding to the angle θ and the
point P− corresponding to the angle −θ in Fig. 4.7. It holds that

xP− = xP+ yP− =−yP+

Thus, the requested relation is

sin(−θ) =−sin(θ) cos(−θ) = cos(θ)

Fig. 4.7: Equal and opposite angles

4.2.3 Trigonometric Equations

Trigonomentric equations are equations of the form

F (x) = 0 (4.9)
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where F (x) is an expression comprising trigonometric components. In cases, such
equations can be difficult to solve, or a solution, at least in the form of an analyt-
ical expression, might not even exist. However there are several cases where such
equations can be easily solved and the unit-circle can again be an intuitive way of
treating the problem. Such equations are frequently met in engineering, especially
in problems pertaining to stability analysis and dynamics.

Example 4.2. What is the value of the angle x when we know that 0 < x < π for
which the following equation holds

sin(2x) = 0

Solution 4.2. Looking at the trigonometric circle (Fig. 4.8), we notice that there are
two points on that circle where the sine of an angle equals 0. This is either when
the angle involved is equal to 0 or the angle involved equals π . Notice that we can
rotate around the circle as much as we want. So, if we start from zero and rotate by
2π we end up again at zero. If we start at zero and rotate by 3π we end up at π (see
also, Fig. 4.9).

Fig. 4.8: Equal and opposite angles
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Fig. 4.9: Equal and opposite angles

This means that, if we want to define all the angles θ with zero sine, we need to
introduce a recursive expression that can assume the following form

θi = kπ,k = 0,1,2 . . . (4.10)

This means that the solution of the equation provided can be written as

2xi = kπ,k = 0,1,2 · · · ⇒ x =
k
2

π (4.11)

that is, there does not exist only one solution, but several values of the unknown
which x satisfy the equation. However, we are told that 0 < x < π which means that
the only solution that is relevant to the question is

x = π/2 (4.12)

for k = 1.
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4.3 Self-assessment

Question 4: Write down the angle in degrees whose measurements in radians
are

[i] π

[ii] π

3

[iii] 2π

3

Question 5: Write down the angle in multiples of π whose measurements in
degrees are

[i] 90o

[ii] 135o

[iii] 30

Question 6: Using the unit-circle, fill in the sign values for the sine and cosine
functions for the different angles in table 4.2

Question 7: Using the unit-circle, write down the values of the following ex-
pressions as a function of θ

[i] sin(π/2− theta) =
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Table 4.2: Find the signs of the cosine and sine functions

Angle cosine sine

π/3 + +

π/4

2π/3

4π/3

8π/3

[ii] cos(π/2− theta) =

[iii] sin(π/2+ theta) =

[iv] cos(π/2+ theta) =

[v] sin(π + theta) =

[vi] cos(π + theta) =

[vii] sin(2π + theta) =

[viii] cos(2π + theta) =

Question 8: Solve the following equations

[i] sin(x) =−1

[ii] cos(3x) = 1
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Chapter 5
Functions

5.1 Definition

A function is nothing more than a piece of mathematical machinery that takes some
input in the form of a variable acts on it and produces a unique output number. For
example, if t is the amount of time a car travels at constant velocity v, then the
distance travelled is provided by a function of the form

f (t) = v · t

In this case, one denotes t as the function variable, f (t) as the function output, and
v as a function parameter. Function parameters are constants.

5.2 Plotting Functions

Functions are visually represented using plots. In the common two-dimensional
case, we use the horizontal x-axis to account for the values of the function vari-
able (for example the length or the time). We use the vertical y-axis to account for
the values of the function f (x). Considering a set of values xi, i = 1,2, . . . we can
calculate the corresponding set of fi = f (xi) , i = 1,2, . . . function values. These
pairs, i.e., (xi, f (xi)) correspond to specific points on the function plot. Connecting
these points, one creates the function graph.

Example 5.1. Plot the function f (x) = x2 for −8≤ x≤ 8.

Solution 5.1. The plot is shown in Fig. 5.1. In the left, specific points are plotted
corresponding to pairs shown in Table 5.1. The function graph is shown on the
right.

25



26 5 Functions

Table 5.1: Plotted points

x f (x)
-8 64
-7 49
-6 36
-5 25
-4 16
-3 9
-2 4
-1 1
0 0
1 1

...
...

8 64

Fig. 5.1: Plot of x2

5.3 Plot Transformations

Plotting a function is a straightforward procedure when the expression of the func-
tion is known. It is interesting to note that one is able to generate a family of plots
from the expression of a single parent function by means of simple transformation
principles. These are

5.3.1 Horizontal and vertical shifts

A shift is a plane transformation that does not change the shape or size of the graph
of the given function. There are two types of shifts. A vertical shift adds (or sub-
tracts) a constant to the y-coordinate while keeping the x-coordinate unchanged. A
horizontal shift adds (or subtracts) a constant to the x-coordinate while leaving the
y-coordinate unchanged. Very often, we combine vertical and horizontal shifts to
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get a new graph. Adding a constant to the x-coordinate will result in a horizontal
shift and adding a constant to the y-coordinate will result in a vertical shift. The
following table explains the details (see also Figure (5.2).

Given the function y = f (x) and a positive constant c ∈ R

• The graph of y = f (x+ c) is obtained from the graph of y = f (x) by a
horizontal shift of c units to the left.

• The graph of y = f (x− c) is obtained from the graph of y = f (x) by a
horizontal shift of c units to the right.

• The graph of y = f (x)+ c is obtained from the graph of y = f (x) by a
vertical shift of c units upward.

• The graph of y = f (x)− c is obtained from the graph of y = f (x) by a
vertical shift of c units downward.

Fig. 5.2: Function Shift

5.3.2 Horizontal and vertical scaling

Unlike the horizontal and vertical shifts, a scale is a transformation that usually
alters the shape and size of the graph of the function. Given a function y = f (x) and
a constant α ∈ R, a horizontal scaling of the graph of f is the graph of the function
f (αx) (obtained from the original one by replacing every occurrence of the variable
x with αx). A vertical scaling of the graph of f is the graph of the function α f (x).

Replacing x with αx in the function f (x) results in a horizontal stretching or a
horizontal compression (depending on the value of α). Similarly, multiplying the
function itself with the constant α results in a vertical stretching or a vertical com-
pression (depending on the value of α) of the graph of f . We will see what these
terms mean with some specific examples. The following table gives the values of
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the constant α that correspond to a compression or a stretching of the graph. An
example is shown in Figure 5.3.

Given the function y = f (x) and a positive constant α ∈ R

• If 0 < α < 1, then the graph of y = f (αx) is the graph of y = f (x)
stretched horizontally away from the y-axis.

• If α > 1, then the graph of y = f (αx) is the graph of y = f (x) compressed
horizontally towards the y-axis.

• If 0 < α < 1, then the graph of y = α f (x) is the graph of y = f (x) com-
pressed vertically towards the x-axis.

• If α > 1, then the graph of y = α f (x) is the graph of y = f (x) stretched
vertically away from the x-axis.

(a) (b)

Fig. 5.3: Function scaling (a) Horizontal (b) Vertical



5.4 Self-assessment 29

5.4 Self-assessment

Question 9: In Fig. 5.4 below, draw the graph of f (x) = cosx

Fig. 5.4: The cos(x) graph

Question 10: In Fig. 5.5 below, draw the graph of f (x) = 2cosx
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Fig. 5.5: The 2cos(x) graph

Question 11: In Fig. 5.6 below, draw the graph of f (x) = sinx

Fig. 5.6: The sin(x) graph
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Question 12: In Fig. 5.7 below, draw the graph of f (x) = sin(x+45)

Fig. 5.7: The sin(x+45) graph





Chapter 6
Logarithms

6.1 Definition

Formally, the logarithm of a number x is defined as the exponent to which a fixed
value, the base, must be raised to produce x. Based on the definition above, we
denote by logα θ the logarithm of θ with respect to the base α .

α
x = θ ⇔ x = logα θ (6.1)

Example 6.1.

log2 8 = 3 , because 8 = 23

log4 2 =
1
2

, because 2 = 4
1
2

log10 0.001 =−3 , because 0.001 = 10−3

log5 0.25 = 2 , because 0.25 = 0.52

From the above, it follows that if α > 0 with α 6= 1, then for every x ∈ R and
every θ > 0:

logα α
x = x and α

logα θ = θ

Also, since 1 = α0 and α = α1:

logα 1 = 0 and α
logα α = 1

33
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6.2 Properties

If α > 0 with α 6= 1, then for any θ1,θ2,θ > 0 and k ∈ R:

• logα(θ1θ2) = logα(θ1)+ logα(θ2)

• logα(
θ1
θ2
) = logα(θ1)− logα(θ2)

• logα θ k = k logθ
α

For example, to understand why the first property holds it suffices to assume that:

logα θ1 = x1 and logα θ2 = x2 (6.2)

and then to notice that:

α
x1 = θ1 and α

x2 = θ2

hence:

α
x1 ·αx2 = θ1θ2 , i.e. α

x1+x2 = θ1θ2

where the last equation is equivalent to:

logα θ1θ2 = x1 + x2

which according to 6.2 is equivalent to:

logα(θ1θ2) = logα(θ1)+ logα(θ2)

Notice that for every θ > 0 it holds that n
√

θ = θ
1
n , hence

logα

n√
θ = logα θ

1
n =

1
n

logα θ

Lets see now how these properties can ease the computation of logarithms of
positive numbers.

Example 6.2. Find the value of the following expression:

A =
1
2

log2 256+2log2 3− log2 18

Solution 6.1.
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A =
1
2

log2 256+2log2 3− log2 18

= log2

√
256+ log2 32− log2 18

= log2 16+ log2 9− log2 18

= log2
16 ·9

18
= log2 8 = log2 23 = 3

6.3 Changing the Base of a Logarithm

It is often very practical to change the base of a logarithm.
If α , β > 0 with α,β 6= 1, then for every θ > 0:

logβ θ =
logα θ

logα β
(6.3)

Suppose that logβ θ = x, then θ = β x. Hence,

logα θ = logα β
x = x · logα β = logβ θ · logα β

From which it immediately follows that:

logβ θ =
logα θ

logα β

6.4 Bases of particular interest

• Logarithms with base 10:

Also called 10-base logarithms, are very handful for manual calculations. We denote
the 10-base logarithm of θ simply by logθ and not by log10 θ :

logθ = x⇔ 10x = θ

• Logarithms with base e:

e is the Euler’s number named after the mathematician Leonard Euler. It is also often
referred to as Napier’s constant. It is an important mathematical constant and it is
approximately equal to 2.71828.

Logarithms with base e are called natural logarithms. The natural logarithm of a
number θ is written as lnθ and not as loge θ :
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lnθ = x⇔ ex = θ

6.5 Self-assessment

Question 13: Show that:

[i] 3log10 2+ log10 5− log10 4 = 1

[ii] 2log2 6−2log2
√

3 = 2

Question 14: Show that:

[i] For every x > 0: loga x = loga2 x2

[ii] logα β · logβ α = 1

[iii] logα β 2 · logβ α3 = 6

[iv] logα β · logβ γ · logγ α = 1

[v] logα θ + log 1
α

θ = 0

[vi] logα(αβ )+ logβ (αβ ) = logα(αβ ) · logβ (αβ )



Chapter 7
Basic Statistics

7.1 Why are Statistics relevant?

The field of statistics deals with the collection, presentation, analysis, and use of
data to inform and facilitate decision making and design in Engineering. Funda-
mental principles of Statistics form an integral part in all aspects of modern Civil
Engineering design.

Statistical methods are used to help us describe and understand variability. The
mechanical properties of the materials a Civil Engineer utilizes, even the maximum
loads a structure has to withstand within its life-span cannot and are not known with
absolute certainty. The strength of a concrete block can be identified experimentally;
however different experiments, i.e. observations, on a set of concrete blocks taken
from the same mix will never result in the same absolute strength value. Statistics
enable us to describe this variability and assess, both qualitatively and quantitatively
its influence on our structures.

7.2 Basic Definitions

Fundamental statistics are based on a set of descriptors that help scientists qualita-
tive describe datasets. These are the arithmetic mean , the median, the mode and
the standard deviation.

The arithmetic mean or average of a sample is the sum of all sampled values
divided by the number of samples. Thus, if we consider that the values x1,x2, . . . ,xk
correspond to the height of a group of k people, then the average height x̄ corre-
sponds to the value

x̄ =
x1 + x2 + · · ·+ xk

k
The median of a population is the value separating the higher half of the popula-

tion from the lower half. Thus, if we have the following sample of people height in

37
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meters
h = {1.56,2.1,1.85,1.67,1.52}

to identify the median we would need to sort the sample from the lowest to the height
value and pick the one that rests exactly in the middle, i.e. Md = 1.67m. Notice that
if the number of samples was even then no single middle value exists. The median
is then usually defined to be the mean of the two middle values.

The mode of a sample is the sample the element that occurs most often in a
population. For example, the mode of the population

h = {1.56,2.1,1.85,1.67,1.52,1.52,1.52,1.52}

is
Mo = 1.52

he standard deviation is quantifying the variation or dispersion of a population.
A low standard deviation indicates that the data points tend to be close to the mean
value of the population of the set, while a high standard deviation indicates that the
data points are spread out over a wider range of values. The standard deviation σ of
a data set is defined as

σ =

N
∑

k=1
(xk− x̄)2

N
(7.1)
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Basic Geometry
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Solutions to self-assessment questions

Questions of Chapter 2

Question 1

[i] x =− 145
66

[ii] x = 17
16

[iii] x =− ln2
ln5

[iv] x = 1
5

[v] x = 23

[vi] x = 120

[vii] x = 4
3

41
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Question 2

[i] no real solutions exist

[ii] x1 = 1,x2 = 1

[iii] x1 =
3
2+

1
10

√
165, x2 =

3
2 −

1
10

√
165

[iv] x1 =
1
13

√
273, x2 =− 1

13

√
273

[v] x1 =− 1
2 ,x2 =−1

[vi] x1 = 10,x2 =−5

[vii] x1 = 0,x2 = 1

Questions of Chapter 3

Question 3

[i] {x = 4,y = 1}

[ii] {x =−3,y =−2}

[iii] {x =−5/6,y = 1/2}

[iv] {x = 0,y = 3}
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Questions of Chapter 4

Question 4

[i] 180o

[ii] 60o

[iii] 120o

Question 5

[i] π

2

[ii] 3π

4

[iii] π

6

Question 6

Angle cosine sine

π/3 + +

π/4 + +

2π/3 − +

4π/3 − −

8π/3 − +
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Question 7

[i] cos(theta)

[ii] sin(theta)

[iii] cos(theta)

[iv] −sin(theta)

[v] −sin(theta)

[vi] −cos(theta)

[vii] sin(theta)

[viii] cos(theta)

Question 8

[i] x = 3π

2 +2κπ,κ = 0,1, . . .

[ii] x = 2κπ

3 ,κ = 1,2, . . .

Questions of Chapter 5
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Question 9

Question 10



46 Solutions to self-assessment questions

Question 11

Question 12
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