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1 Introduction

There is now little doubt that climate change will have substantial impact on ecosystems and
people’s livelihoods.1 A key contribution of the Economics discipline to the quantification
of these effects has been the estimation of Integrated Assessment Models (IAMs), which
show how carbon emissions link climate change and economic growth and which provide ways
to think about suitable policy to tackle climate change (Nordhaus 2013). The cost-benefit
analysis underlying the ‘optimal’ amount of global warming relies on climate damages and
abatement (mitigation) costs and seeks to find the temperature increase associated with the
minimum sum of these two costs. In his Nobel Prize lecture, Nordhaus (2019) suggests that a
3-3.5◦C rise in temperature by the turn of the next century relative to pre-industrial levels may
be optimal. However, this result is contingent on the parameters underlying it, notably the
expected magnitude of the economic damages caused by a rise in temperature as measured
using weather data (Kolstad & Moore 2020). In recent years, new estimates of the damage
function have been provided by fixed effects panel data studies, relying on weather shocks
in annual data for identification (see Auffhammer 2018, for a recent review): Dell et al.
(2012) conclude that economic prosperity in low-income countries is much more affected by
temperature shocks than that in richer countries (‘poor countries suffer the most’), while
Burke et al. (2015) suggest that the detrimental effect of temperature shocks rises with the
country-specific level of temperature (‘hot countries suffer the most’).2 Once the respective
temperature-GDP per capita estimates of Dell et al. (2012) and Burke et al. (2015) are
fed into revised damage functions of standard IAMs (Moore & Diaz 2015, Glanemann et al.
2020), the optimal limit for temperature increases falls below 2◦C (in line with the Paris
Climate Agreement), indicating that the estimated climate-induced economic damages are
much higher than those conventionally assumed. Hence, panel estimates of the temperature-
growth relationship have crucial implications in terms of the speed and strength of policy
responses to climate change and therefore require further investigations to assess their validity
(Diaz & Moore 2017, Auffhammer 2018).

In this paper we ask whether these important empirical estimates are based on sufficiently
general specifications to capture the complex heterogeneous relationship between local climate

1For a comprehensive survey of the literature on this issue, see the reports of the Intergovernmental Panel
on Climate Change, available at https://www.ipcc.ch/reports/

2Focusing on cross-country analysis, other studies in the latter strand of the literature include Diffenbaugh
& Burke (2019), Henseler & Schumacher (2019) and Kalkuhl & Wenz (2020) while Newell et al. (2021)
suggest, in line with Dell et al. (2012), that income levels play an important role in the distribution of the
negative effects of temperature changes. Adopting the Dell et al. (2012) empirical specification, Meierrieks
(2021) concludes that the adverse effects of higher temperatures for health outcomes are disproportionally felt
in poorer economies, while Miller et al. (2021) find that heat waves have a more damaging economic effect
in poorer countries. Additional studies on agriculture (e.g. Ortiz-Bobea et al. 2021, Huang & Sim 2018) have
typically sided with the narrative in one or the other of these two camps. Investigating both alternatives, Kahn
et al. (2021) find substantial heterogeneity in the effect of weather on growth but reject systematic differences
favouring differentiation by either average temperature or income, while Letta & Tol (2019) find evidence for
detrimental effects of temperature change on total factor productivity in both hot and poor countries.
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and prosperity in the context of global shocks. One way to think about the panel data
approaches by Dell et al. (2012) and Burke et al. (2015) is to view them as relaxing the
strong homogeneity assumption underlying conventional pooled fixed effects estimations (e.g.
Deschênes & Greenstone 2007, for US agriculture), since they allow for parameters to differ
across groups of countries, depending on their income or temperature levels, respectively.
Nevertheless, these ex ante imposed constraints are still highly restrictive.3 First, if the
underlying equilibrium relationship differs across countries then the fixed effects estimator is
a weighted average of country-specific estimates, with weights defined by unit-specific sample
size and variance of the variable of interest (Chernozhukov et al. 2013, Gibbons et al. 2019).
Multiple reasons for such heterogeneity suggest themselves, including differential nature of
temperature or precipitation increases (e.g. simply more rain fall is unlikely to be harmful
whereas temporally more concentrated rainfall could increase flood risk, river silting, land slides,
etc.) or differential speed of adaptation to climate change across countries (see, for instance,
Malikov et al. 2020, for US agriculture). By giving more weight to countries affected by larger
shocks, the fixed effects estimator can yield different results from a more relevant parameter of
interest, such as a simple unweighted average of country-specific estimates (Carter et al. 2018,
Gibbons et al. 2019). Hence, the fixed effect estimator may not yield a representative average
effect. Second, in the presence of parameter heterogeneity, i.e. a differential weather-growth
nexus across countries, the dynamic fixed effects estimator is inconsistent, even for large T

(time series dimension), leading to an underestimation of the coefficient on an explanatory
variable of interest and an overestimation of the coefficient on the lagged dependent variable
(Pesaran & Smith 1995).4 Furthermore, causal identification may require the inclusion of
lagged outcome and treatment variables (temperature and precipitation) to allow for feedback
effects and avoid omitted variable bias (Imai & Kim 2019). Third, in pooled regressions time
fixed effects capture global shocks affecting all countries in the same way, but cannot deal with
global shocks affecting each country differently, which can lead to biased estimators (Pesaran
2006, Bai 2009). Given that climate change is a global phenomenon, it is important to ensure
that the first-order effects on economic performance attributed to local weather shocks do not
in fact capture the local influence of other global shocks, such as the global economic cycle.

In response to these potential shortcomings of static pooled fixed effects models, we
estimate dynamic heterogeneous panel data models accounting for the cross-sectional depen-
dence induced by global shocks — these common correlated effects (CCE) models augment
the country regression with cross-section averages of the dependent and independent variables
(Pesaran 2006, Chudik & Pesaran 2015). The CCE estimators enable us to obtain country-
specific short-run and long-run estimates of the weather-prosperity relationship which are not
subject to bias from spillovers and other unobserved time-varying heterogeneities. Prime

3See also Rosen (2019) for a less generous assessment of pooled empirical models.
4This is an obvious issue in cross-country growth regressions, which usually control for initial conditions

(Durlauf et al. 2005).
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examples of existing work employing these models capturing unobserved heterogeneity in
productivity analysis are in the context of knowledge spillovers (Blazsek & Escribano 2010,
Eberhardt et al. 2013), total factor productivity (Calderón et al. 2015, Eberhardt & Presbitero
2015, Chirinko & Mallick 2017, Chudik et al. 2017, Madsen et al. 2021) and absorptive capacity
(De Visscher et al. 2020, Mazzanti & Musolesi 2020).

Figure 1 illustrates our approach and summarises our key findings with reference to the
debate in the literature: adopting aggregate income per capita data from 1961 to 2019 we
present country-specific predictions from flexible running line regressions of the temperature-
productivity CCE estimates in 154 countries (on the y-axis) against the country mean temper-
ature in panel (a) and the country average income per capita in panel (b);5 filled (hollow)
markers indicate statistically (in)significant difference from zero (at the 10% level). Country
predictions, i.e. the markers, are minimally perturbed to aid illustration. In panel (a) we can see
that for countries at high temperatures the conditional contemporaneous temperature effect is
negative and between -1% and -2%. In panel (b) we see a much smaller negative temperature
effect for low-income countries. The overlapping of findings is not surprising given that the
cross-section correlation between income per capita and temperature (in 2019) is around -0.49
—see also Table 1. Nevertheless, these headline results for aggregate per capita GDP data
spell out that we find stronger evidence for a temperature-productivity effect differentiated by
average temperature (‘hot countries suffer the most’) than for such an effect differentiated
by average income (‘poor countries suffer the most’). For reference, a temperature increase
of 0.6◦C to 1◦C is the upper bound for estimates of average global heating since the 1960s
(Hsiang & Kopp 2018).

In our analysis below we consider a wide range of alternative specifications adopting output,
aggregate factor inputs or total factor productivity, and sectoral equivalents for agriculture6 as
dependent variables as well as alternative lag structures to capture the dynamics. Additional
analysis breaks new ground by shedding light on the heterogeneous effects of precipitation on
agricultural output. In order to make the presentation of this myriad of results as parsimonious
as possible while at the same time contrasting our findings to those from standard two-way fixed
effects models (2FE) and standard heterogeneous Mean Group (MG) estimates (Pesaran &
Smith 1995)7 we introduce three respective groupings, highlighted in the two plots in Figure 1
using vertical dashed lines, for low, medium and high temperature or income countries — these
are not ad hoc cut-offs but the terciles of the respective distributions across 154 countries.8

5Our results are qualitatively identical if we adopt 1993 as the base year. See footnote 15.
6The focus on the agricultural sector is warranted given the significance of agricultural productivity in

structural change and hence economic development (e.g. Barrett et al. 2010, Herrendorf et al. 2014, Huneeus
& Rogerson 2020).

7These are in essence the same as the CCE models but exclude cross-section averages, hence fail to account
for any global shocks with heterogeneous impact across countries.

8For the 2FE approach we capture heterogeneity via interaction effects, while for the heterogeneous MG and
CCE estimates we follow the literature and calculate the outlier-robust means, and their (heteroscedasticity-
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Figure 1: The heterogeneous effects of temperature shocks on income per capita

(a) Temperature-Income Effect and Average Country Temperature
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(b) Temperature-Income Effect and Average Country Income per Capita
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Notes: We present predictions from running line regressions for the estimated short-run effect of temperature on per capita
GDP (y-axis) on average country temperature and income per capita in Panels (a) and (b), respectively. These estimates are
based on the regressions in columns (4) and (8) of Panel (c) in Table 2 (contemporaneous temperature variable). Filled (hollow)
markers indicate statistically (in)significant difference from zero (10% level). Predicted effects (the markers) are minimally
perturbed to ease illustration. Dashed vertical lines delimit low-, medium- and high-average temperature or -average income
country groupings, respectively (these are the full sample terciles, i.e. each segment contains roughly the same number of
countries). These plots are for predicted country effects, the equivalent plots showing the raw country estimates can be found in
Appendix Figure A-1.
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Using these three groupings, our benchmark results for aggregate income per capita confirm
that high-temperature countries are negatively affected by a rise in temperature: a temporary
1◦C rise in temperature reduces income per capita by about 1.3%. All of the above results, as
well as those routinely (though not necessarily exclusively) reported in the existing literature,
are for static models, yet our estimation of dynamic models allows us to calculate long-run
effects, assuming, through exponentially declining lag weights, that countries adapt to climate
change over time. Here, our findings are much starker: the long-run effect of a permanent
1◦C rise in temperature is expected to reduce income per capita in high-temperature countries
by 14% — this estimate is substantially higher than those reported in recent meta-analyses
(e.g. Howard & Sterner 2017, Rennert et al. 2022). Groupings according to average income
per capita, as in Dell et al. (2012), appear much less relevant: estimates are smaller and
less stable across specifications. Additional results suggest that the non-linear relationship
between temperature and aggregate income per capita is not simply driven by the response of
agricultural output to weather shocks.

While the existing literature on climate change and income cited above disagrees about the
patterns underlying the temperature-growth nexus, there is a quasi-unanimous agreement that
the effects for precipitation are insignificant. A notable exception here is Damania et al. (2020),
who demonstrate that in a standard two-way fixed effects model an insignificant precipitation
effect at the country level turns statistically significant and following an inverted-U shape
once more granular data are employed, pointing to the relative significance of the agricultural
sector within the economy as the driving force of this effect.9 While our results for aggregate
GDP per capita are in line with those in the broader literature (no effect), our findings for
the agricultural sector find indeed a significant and positive role for precipitation increases
in countries with medium or high average temperature. A 100mm increase in precipitation
is associated with an average short-run effect of 0.7-0.9% and an average long-run effect of
around 2.7% increase in income per capita. However, to put these figures into perspective:
in medium/high-temperature countries, for a nearly balanced sample, median precipitation
declined from 1,218mm in 1971 to 1,187mm in 2019.10 Hence, over the 1971-2019 period,
the decline in precipitation may have contributed to a long-run fall in agricultural output of
just 0.85% in these countries.

robust) standard errors, using an M-estimator (Rousseeuw & Leroy 1987).
9The economic effects reported in Damania et al. (2020), e.g. +0.7% (-1.6%) change in aggregate income

per capita growth for a sample standard deviation increase in precipitation (temperature) relative to mean per
capita GDP growth of 2.1% (cell level data), make for difficult interpretation vis-à-vis the effect of climate
change: the cross-country standard deviation of temperature for this period is around 8◦C while that for
precipitation is around 800mm (based on our country-level sample restricted to 1990-2014) — global heating-
induced temperature change is believed to be 0.6 to 1◦C while the change in precipitation over time is
non-uniform and amounts to perhaps 20-30mm. Hence, the economic magnitudes reported by these authors
mimic taking a country with the precipitation level of temperate-continental Austria (1,139mm, sample mean)
and moving it to the level of tropical Honduras (1,969mm), or taking a country with the average temperature
of Malta (19◦C, sample mean) and moving it to the level of the United Arab Emirates (27.7◦C).

10The agricultural data start in 1961, but using 1971 provides a much better coverage across countries.
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Our study makes three main contributions to the literature on climate change and economic
prosperity. First, using substantially more flexible empirical models, we provide a systematic
assessment of recent panel research investigating the income effects of climate change. In
a bottom-up manner, we replicate the seminal studies of Dell et al. (2012) and Burke et al.
(2015) by permitting each country to have its own weather-income relationship, allowing
for many more nuances and avoiding the main results being driven by an unknown subset
of observations. Second, we employ our heterogeneous parameter models in the context of
dynamic empirical specifications. This means that we can easily estimate long-run effects of a
permanent change in temperature levels on GDP levels, without additional assumptions about
future economic paths.11 Third, throughout our empirical analysis we systematically compare
and contrast the primary patterns in our heterogeneous findings for countries differentiated by
average temperature or average income. Existing work frequently favours one over the other on
the basis of initial benchmark regressions but fails to revisit the relationship in more elaborate
specifications (e.g. Dell et al. 2012, with respect to studying the effects in hot countries). We
consistently find stronger evidence for heterogeneity along existing temperature patterns than
by income.

Our findings support those studies calling for a much more stringent damage function in
IAMs, especially for countries where part or all of their (populated) territories are subject
to already relatively high, and likely increasing, temperature levels. It is notable that a 1◦C
local rise in temperature would add eleven additional countries to the high-temperature group
(representing 1.6 billion people in 2019), including India and the Democratic Republic of
Congo, with substantial detrimental productivity effects from temperature changes.

The remainder of the paper proceeds as follows. In Section 2 we introduce our econometric
model and data. In Section 3, we present our results and discuss them. Section 4 concludes.

2 Econometric model and data

2.1 Econometric model and implementation

Consider the following dynamic pooled model:

Yit = γ Yit−1 + h(Tit) + h(Ti,t−1) + g(PPit) + g(PPi,t−1) (1)

+β′
1Xit + β′

2Xit−1 + αi + ηt + πi1t+ πi2t
2 + εit,

11There is a debate about whether climate change has a permanent impact on income ‘levels’ or ‘growth
rates’ (e.g. Kalkuhl & Wenz 2020, Newell et al. 2021, among others). Ultimately, our long-run estimates
correspond to permanent impacts on GDP levels. Given that this transition to a new equilibrium is not
instantaneous, the growth rate will be temporarily affected, too.
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where the log of income per capita in country i at time t, Yit, depends on past economic
performance, current and lagged functions h(·) of temperature T and g(·) of precipitation
PP , current and lagged values of control variables X, country and time fixed effects αi and
ηt, as well as country-specific linear and quadratic trends. εit is a white noise error term.
Simplifying that h(Tit) = δi,1Tit and h(Ti,t−1) = δi,2Tit−1, with coefficient δ allowed to vary
across countries and similarly for g(·), this autoregressive distributed lag (ARDL) model can
be re-written in its equivalent error correction form as:

∆Yit = θ Yi,t−1 + δi,1Tit + δi,2Ti,t−1 + κi,1PPit + κi,2PPi,t−1 (2)

+β′
1Xit + β′

2Xit−1 + αi + ηt + πi1t+ πi2t
2 + εit,

where ∆ is the first difference operator and θ = (γ − 1).

The econometric models estimated in the literature can be interpreted as constrained
variants of equation (2) with some limited cross-country heterogeneity allowed in the tempera-
ture and precipitation coefficients. For example, the models estimated by Dell et al. (2012)
impose θ = β1 = β2 = πi2 = 0, and in their preferred specification assume that the marginal
effects of temperature and precipitation vary systematically between developed and developing
(DEV) countries, i.e. the short-run impact of a change in temperature in their model without
lagged temperature is captured by δi,1 = δ1 + δ11 × DEVi, where DEVi is a dummy for
countries with below-median income per capita in the base year — in analogy for models
also including lagged temperature and for equivalent analysis of precipitation.12 The models
estimated by Burke et al. (2015) also impose θ = β1 = β2 = 0, while they further drop the
lags of temperature and precipitation (δi,2 = 0, κi,2 = 0). They capture heterogeneity across
countries in the temperature and precipitation effect on growth by adopting squared terms for
these variables, substituting the step-function of Dell et al. (2012) with a quadratic function,
which implies a short-run impact of a change in temperature of δi,1 = δ1+2×δ11×Ti0, where
δ1 and δ11 are the coefficients on the levels and squared temperature terms and Ti0 is the base
year temperature of country i — in analogy for precipitation.

In this paper, we suggest going further by not ex ante imposing any pooling constraints
on any of the coefficients estimated:

∆Yit = θiYi,t−1 + δi,1Tit + δi,2Ti,t−1 + κi,1PPit + κi,2PPi,t−1 (3)

+αi +
t∑

s=t−k

λi,sfs + πi1t+ πi2t
2 + ϵit,

where fs are current and lagged unobserved common factors with associated country-specific
12These authors also estimate models for a HOT interaction of countries above median average temperature

in 1950 but find this not to yield any statistically significant results and they therefore do not investigate this
alternative source of heterogeneity in their more elaborate dynamic specifications.
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factor loadings λis.13

Factors and factor loadings are unknown, and the panel time series literature has two
alternative ways of tackling identification of model parameters (θ, δ, κ, β) in this setup:
first, following Bai (2009), the factors and loadings can be estimated from model residuals
via principal component analysis, which involves repeated iteration until estimates converge.
However, this approach is not presently extended to an explicitly dynamic setup and we
therefore apply a second implementation following Pesaran (2006) and Chudik & Pesaran
(2015): here, the unobserved common factors are proxied using lagged and contemporaneous
cross-section averages of all observed variables in the model (dependent and independent
variables).14 The heterogeneous parameters are captured by construction given the country-
specific regression models in this common correlated effects (CCE) estimator. Formally,

∆Yit = θiYi,t−1 + δi1Tit + δi2Ti,t−1 + κi,1PPit + κi,2PPi,t−1 (4)

+αi +
t∑

s=t−k−2

(
ζ1is∆Yis + ζ2isTi,s + ζ43isPPi,s + ζ4isXi,s

)
+ πi1t+ πi2t

2 + ϵit,

where bars indicate cross-section averages across all countries in the sample. For comparative
purposes we also estimate a standard Pesaran & Smith (1995) Mean Group estimator, a
heterogeneous parameter estimator which excludes the set of cross-section averages.

These empirical implementations provide us with N estimates for the short-run effect of
temperature and precipitation on growth (δ̂i,1 and κ̂i,1) as well as N estimates for the long-run
effects (δ̂i,1+ δ̂i,2)/− θ̂i and (κ̂i,1+ κ̂i,2)/− θ̂i. In the presence of a lagged dependent variable,
we are effectively estimating a rational distributed lag model, where the effects of a permanent
rise in temperature on income per capita persists beyond t+ 1, but with lower influence over
time (with implicit geometrically declining weights, that would be in line with the progressive
implementation of adaptation policies). For a more parsimonious presentation of the results
we compute robust mean estimates by tercile, for instance for the short-run temperature effect

δ̂i,1 = τ1Lowi + τ2Mediumi + τ3Highi + ϵi (5)

where Lowi, Mediumi, and Highi indicate whether country-average temperature or country-
average per capita GDP belong to the first, second, or third terciles of the respective sample
distribution.15 Similarly for the κ coefficients and the respective implied long-run estimates

13Year dummies are accommodated within this ‘multi-factor error structure’.
14We include three lags of the cross-section averages in addition to their contemporaneous values. Note

that lags of income levels are not included since this would generate collinearity: ∆Yit = Yit − Yit−1 and
average differences equal differences in averages.

15We use the sample average values for the period 1961-2019 for several reasons. First, our panel is
unbalanced: we only reach our full sample of countries in 1993 and therefore do not have a common base
year. Second, for initially ‘poor’ countries having experienced significant economic development (e.g. South

8



for temperature and precipitation.16 Given that these dependent variables can include extreme
observations, we use an estimator robust to outliers, an M-estimator, to obtain robust means
and their (heteroscedasticity and outlier robust) standard errors (Rousseeuw & Leroy 1987).

The CCE specification in (4) includes the cross-section averages for the weather variables
at the appropriate lag lengths — however, it is difficult to suppress the notion that this
may throw out the baby with the bath water: weather and climate are local phenomena
but within a global framework (e.g. influence of Gulf Stream or El Niño). The standard
application of the CCE estimator typically separates macroeconomic policies at the country
level from the consequences of global macroeconomic tendencies, but this setup does not fit
the weather-productivity nexus very well. In order to acknowledge the possibility that the
standard CCE estimator would perfectly account for global climate shocks, we also estimate
a variant of equation (4) where only cross-section averages of the productivity (dependent)
variable are included, i.e. ζ3 = ζ4 = 0∀i, s — we refer to the latter as CCE♯ and the standard
implementation as CCE in the results tables.17

Finally, the presentation of our estimates by income or temperature terciles below highlights
the productivity implications of a 1◦C increase in temperature or a 100mm increase in precipi-
tation — the former represents an upper bound for estimates of global heating over the past six
decades, the latter is almost an order of magnitude larger than the observed average increase,
although country-specific change in precipitation is not uniformly positive or negative (Hsiang
& Kopp 2018, Damania et al. 2020).

2.2 Intuition

Above we introduced the common factor setup and the implementation by Pesaran (2006)
to identify the parameters of interest on the observed temperature and precipitation variables
in the face of unobserved time-varying heterogeneity. In the following we lay out why this is
necessary in the first place and the intuition how the CCE approach works.

When moving from a pooled model to a heterogeneous parameter model estimated at
the country level (e.g. Pesaran & Smith 1995), we introduce a great deal of flexibility into
the equilibrium relationship between dependent and independent variables. At the same time,
however, we assign any variation in the outcome variable of country i to variation in the

Korea), the income averages capture the fact that these countries may have possibly become less sensitive to
climate change if the temperature-growth relationship is mediated by higher income levels. Note that we find
qualitatively similar results for the effects of a temperature shock on aggregate economic development when
we use 1993 values of income per capita as base year.

16There are two ways of estimating the long-run relationship: (i) estimating robust means for the δ, κ and
θ coefficients across all countries i and then computing the long-run (long run average, LRA, see Phillips &
Moon 1999), and (ii), as implied by our notation here, computing the long-run for each country i and then
estimating the robust mean (average long run, ALR, see Pesaran & Smith 1995). We adopt the latter strategy.

17All Mean Group estimators are implemented using Jan Ditzen’s xtdcce2 command in Stata.
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independent variables of country i exclusively — there is no scope for global (economic,
social, cultural or climatic) shocks, or spillovers between countries. This is clearly an extremely
strong assumption, and the common factor setup (Pesaran 2006, Bai 2009) seeks to marry
the heterogeneous equilibrium relationship with the possibility for global shocks and spillovers
affecting countries differentially (e.g. the magnitude of productivity spillovers is in part determined
by recipient country absorptive capacity, see De Visscher et al. 2020). The common factor
framework represents a flexible means to capture such heterogeneity, which explains its popularity
in studies of productivity and its determinants (e.g. Eberhardt et al. 2013, Calderón et al. 2015,
De Visscher et al. 2020, Mazzanti & Musolesi 2020).

For an illustration of the mechanics of the CCE approach we assume a simplified empirical
model with the dependent variable yit, a single observable xit and a single unobserved common
factor ft with country-specific factor loadings λi:

yit = αi + βixit + uit uit = λift + εit (6)

where αi is a country intercept (fixed effect)18 and εit is assumed white noise. The common
factor ft can be linear or nonlinear, stationary or nonstationary. Recall that the purpose of
the common factor is to capture global effects and that we want to account for these in a
flexible manner, with country-specific impacts. In a pooled regression (imposing βi = β) we
could simply replace the ft with a set of T − 1 year dummies, however this would assume that
their effect is common across countries (λi = λ). An equivalent specification of the global
shocks with common impact can be achieved in a heterogeneous model by transforming the
model variables prior to estimation: if we take variables in deviations from the cross-section
mean, ỹit = yit − yt (note: yt, not yi as in the ‘within’ transformation) and similarly for
x, then this accounts for the common shocks ft but again imposes a common coefficient λ

— see Eberhardt & Teal (2011) for more details on pooled and heterogeneous models with
unobserved heterogeneity. The CCE estimator instead achieves accounting for common shocks
with heterogeneous impact across countries.

How does the Pesaran (2006) CCE augmentation identify the coefficient of interest in
this setup, given that the factors are unobserved and the variable transformation suggested
above still cannot capture heterogeneous λi? We start with the model in (6) and compute its
cross-section average (denoted by bars)

ȳt = ᾱ + β̄x̄t + λ̄ft, (7)

where the error term drops out since ε̄t = 0 by assumption. Now solve this equation for the
18In a multi-factor error structure we can argue that one of the factors ft could be a vector of 1s and hence

the country intercept can be omitted as it is accommodated by the factor structure.
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common factor, i.e. ft = (1/λ̄)(ȳt − ᾱ− β̄x̄t), and substitute this back into our model

yit = αi + βixit + λift + εit (8)

= [αi − (ᾱ/λ̄)] + βixit − (λi/λ̄)ȳt − (λi/λ̄)β̄x̄t + εit (9)

= α⋆
i + βixit + λ⋆

1iȳt + λ⋆
2ix̄t + εit, (10)

where in the final step we simply re-parameterise. It can be easily seen that we were able
to account for the unobserved common factor ft with heterogeneous factor loadings λi by a
combination of (i) cross-section averages of observable variables (ȳt, x̄t) and (ii) heterogeneous
parameters λ⋆

1i and λ⋆
2i — we use ⋆ to highlight that these parameters are different from that

on the factor and the intercept in Equation (6). Crucially, the parameter of interest, βi,
is identifiable via this approach. Theoretical work and simulations have shown that this
augmentation using cross-section averages of the dependent and independent variables is
extremely powerful, providing consistent estimates of βi in the presence of non-stationary
factors, structural breaks, and whether the model variables (and unobservables) are cointegrated
or not (Kapetanios et al. 2011, Chudik & Pesaran 2013). The extension to a dynamic empirical
model we follow in this paper is provided in Chudik & Pesaran (2015) and amounts to the
inclusion of int(T 1/3) = 3 additional lags of cross-section averages.

2.3 Preferred Specification

There are inferential costs to estimating unduly restricted models, such as static models instead
of dynamic models, since the inclusion of lags avoids an omitted variable bias and modifies the
interpretation of the results (De Boef & Keele 2008). For example, the presence of a lagged
dependent variable can account for convergence effects, omitted variables, and allows for the
calculation of the long-run effects associated with a distributed lag model. Hence, estimates
of dynamic models ought to be preferred to those derived from static models.

Besides the weather variables, the models do not include any control variables. Including
country-specific time trends in a flexible way (in our case, linear and quadratic trends)19 reduces
the risk of spurious regression and accounts for slow-changing (and relatively predictable)
determinants of income per capita such as demography or educational attainment, political
institutions or economic policies (Burke et al. 2015).

In the presence of heterogeneous slopes, the dynamic fixed effects estimator is biased and
inconsistent. In addition, common time fixed effects cannot account for the heterogeneous
impact of global shocks. Hence, estimates of heterogeneous models (MG) with common
factors (CCE) ought to be preferred to those derived from pooled fixed effects models (2FE).

19In additional results available on request we estimated pooled and heterogeneous models with country-
specific linear or quadratic trends along with a benchmark case without any such deterministic components.
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Output and the weather are not only determined by local factors but also global factors.
Given economic globalisation and the differential exposure of countries to external shocks, it
is imperative to account for the country-specific effects of global income shocks. Deliberately
controlling for heterogeneous sensitivities to global climate shocks is a more difficult undertaking.
On the one hand, local climate shocks are partly driven by global shocks and we may not wish
therefore to eliminate the country-specific effects of the latter (CCE♯). On the other hand,
a global climate shock could have an indirect impact on the economy through international
economic spillovers; for instance, lower agricultural yields in one foreign country may boost
demand for the agricultural exports of another country. At the risk of under-estimating the
effects of climate change, our preferred specification controls for all shocks (CCE).

2.4 Data

We follow the literature in drawing inference on the causal effects of climate change on
economic prosperity by studying the variability of weather variables (annual average temperature
and total precipitation) in their effect on various measures of (sectoral) economic output
(Kolstad & Moore 2020).20 Hence, the identification here and in the literature is based on
temporary, unexpected weather shocks. Short-term estimates based on these data assume
that agents do not change their beliefs about the underlying distribution of weather they face,
whereas long-term estimates factor in such adjustments (e.g. change in investment behaviour,
factor input use, etc), under the premise that opportunities for adaptation represent small
steps rather than cataclysmic game-changers (Deryugina & Hsiang 2017). Our long-run
estimates implicitly capture this partial adjustment behaviour by giving less weight over time
to a permanent weather change.

Weather Data Data on weather come from the Climatic Research Unit at the University
of East Anglia, UK.21 In line with the literature we use the annual average temperature (◦C).
We also include, in the same manner as temperature, annual average precipitation (mm/100).
These measures are area-weighted.22

Aggregate Income Data Data on income per capita come from the Penn World Tables
(PWT).23 We use real GDP at constant 2017 national prices in million US$ (rgdna) as advised
by Pinkovskiy, Maxim and Sala-i-Martin, Xavier (2020) and construct per capita values using
the population data (in million, pop). We also decompose the log of income per capita

20These authors define climate change as “a change in the probability distribution from which the weather
statistic [e.g. annual temperature] is drawn in each time period” (3).

21These can be downloaded from: https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.
05/crucy.2103081329.v4.05/

22Other studies, e.g. Dell et al. (2012), have used population-weighted measures and found little difference
with the use of area-weighted measures. Furthermore, while the use of the latter may under-estimate the
impact of climate change, it is also less likely to be endogenous to outcomes.

23Available at https://www.rug.nl/ggdc/productivity/pwt/?lang=en
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into the log of two components, inputs and TFP, based on the following, simple equation:
Y/POP = TFP × (Y/K)α/(1−α)eϕS, where Y is income, POP is total population, K is the
capital stock, S is the average years of education in the population aged 15 and over, and
we set technology parameters to α = 1/3 and ϕ = 0.09.24 These data are available for 154
countries over the 1961-2019 period.25

Agricultural Sector Data In additional regressions we adopt measures of output, inputs
and total factor productivity in the agricultural sector as respective dependent variables. Data
for the log of agricultural output per worker, a factor input index and an agricultural TFP
index come from the U.S. Department of Agriculture (Fuglie 2012, 2015)26 and cover the
same 1961-2019 country sample as that in our income analysis.

Terciles Most of our results will be presented as robust mean estimates for Low, Medium,
and High Temperature/Income groupings. We provide details of the group membership for
these temperature and income per capita terciles in Table 1. Maps in Figure 2 similarly indicate
which countries belong to which temperature and income group.

24Data on capital stock come from the PWT and data on schooling attainment are taken from the
Wittgenstein Centre (http://dataexplorer.wittgensteincentre.org/wcde-v2/).

25We omit countries with fewer than 25 observations.
26Available at the USDA ERS website: https://www.ers.usda.gov/data-products/

international-agricultural-productivity/
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Table 1: Country Groupings (Table)

Income −→

Temperature
y Low Medium High

Low BTN, CHN, KGZ, LSO,
NPL, TJK

ALB, ARM, AZE, BGR,
BIH, BLR, CHL, GEO,
MDA, MKD, MNG, UKR,
UZB

AUT, BLR, CAN, CHE,
CZE, DEU, DNK, EST,
FIN, FRA, GBR, HRV,
HUN, IRL, ISL, JPN, KAZ,
KOR, LTU, LUX, LVA,
MNE, NLD, NOR, NZL,
POL, ROU, RUS, SVK,
SVN, SWE, TUR, USA

Medium BDI, COD, COG, CPV,
ETH, HND, IND, LAO,
MAR, MDG, MMR, MOZ,
MWI, PAK, RWA, TZA,
UGA, VNM, YEM, ZMB,
ZWE

AGO, BOL, BWA, COL,
DZA, ECU, EGY, FJI,
GTM, IRN, IRQ, JOR,
MUS, NAM, PER, PRY,
SLV, SWZ, SYR, TKM,
TUN, URY, ZAF

ARG, AUS, BMU, CYP,
ESP, GRC, ISR, ITA, LBN,
MEX, MLT, PRT, TKM

High BEN, BFA, BGD, CAF,
CIV, CMR, DJI, GHA, GIN,
GMB, GNB, HTI, IDN,
KEN, KHM, LBR, MLI,
MRT, NER, NGA, PHL,
SEN, SLE, TCD, TGO,
VEN

BLZ, BRA, CRI, DOM,
GUY, IDN, JAM, LKA,
MYS, NIC, SLV, SUR, THA

ARE, BHR, BHS, BRN,
GAB, GNQ, KWT, OMN,
PAN, QAT, SAU, TTO

Notes: The table reports the group membership of the countries (using 3-digit iso codes) in our sample by
income and temperature terciles.
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Figure 2: Country Groupings (Maps)

(a) Countries grouped by Average Temperature (terciles)

(2,3]
(1,2]
[1,1]

Notes: darker implies warmer

A: Groups by temperature

(b) Countries grouped by Average Income per capita (terciles)

(2,3]
(1,2]
[1,1]

Notes: darker implies poorer

B: Groups by income

Notes: We illustrate the distribution of low, medium and high temperature/income groups in our sample in
Panels (A) and (B), respectively. Darker shading implies warmer/poorer country groups. The cross-section
correlation coefficient between the two raw variables (average temperature, average log GDP pc) is -0.48.
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Table 2: Temperature Effects on Aggregate Economic Development

Split by Temperature Group Split by Income Group

(1) (2) (3) (4) (5) (6) (7) (8)
Estimator 2FE MG CCE♯ CCE 2FE MG CCE♯ CCE

Panel (a) Static Models
Low 0.572 0.428 0.762 0.338 High 0.419 -0.003 0.203 0.102

(0.273)** (0.265) (0.224)*** (0.229) (0.186)** (0.269) (0.249) (0.264)
Medium -0.278 0.0199 -0.190 -0.102 Medium -0.200 -0.450 -0.351 -0.643

(0.450) (0.353) (0.305) (0.324) (0.339) (0.398) (0.394) (0.398)
High -1.747 -0.746 -1.010 -0.994 Low -0.622 0.207 -0.101 -0.0689

(0.719)** (0.465) (0.476)** (0.495)** (0.241)** (0.432) (0.372) (0.429)

Panel (b) Models with lagged weather variables
— Coefficient on Contemporaneous Temperature (Tit)
Low 0.585 0.611 0.860 0.551 High 0.169 0.039 0.162 0.093

(0.266)** (0.240)** (0.212)*** (0.242)** (0.295) (0.228) (0.226) (0.254)
Medium -0.298 -0.133 -0.237 -0.119 Medium -0.093 -0.372 -0.274 -0.457

(0.458) (0.337) (0.313) (0.335) (0.555) (0.442) (0.408) (0.388)
High -1.729 -0.951 -1.231 -1.195 Low -0.505 -0.035 -0.232 -0.174

(0.676)** (0.444)** (0.491)** (0.515)** (0.452) (0.398) (0.375) (0.440)
— Coefficient on Lagged Temperature (Ti,t−1)
Low -0.209 -0.0540 0.412 0.475 High -0.664 -0.416 -0.059 0.020

(0.221) (0.276) (0.252) (0.266)* (0.236)*** (0.245)* (0.218) (0.222)
Medium 0.125 0.411 -0.015 -0.066 Medium 0.296 0.313 0.049 0.104

(0.422) (0.399) (0.437) (0.445) (0.359) (0.337) (0.381) (0.412)
High -0.166 0.305 -0.113 -0.247 Low 0.686 0.799 0.377 0.157

(0.405) (0.319) (0.346) (0.457) (0.357)* (0.366)** (0.417) (0.503)

Panel (c) Models with lagged weather and dependent variables (ARDL)
– Coefficient on Contemporaneous Temperature (Tit)
Low 0.547 0.713 0.596 0.241 High 0.394 0.344 0.385 0.821

(0.231)** (0.249)*** (0.183)*** (0.285) (0.290) (0.223) (0.233) (0.311)***
Medium -0.159 -0.409 -0.312 0.221 Medium -0.172 -0.634 -0.543 -0.577

(0.478) (0.339) (0.361) (0.473) (0.499) (0.400) (0.381) (0.436)
High -1.391 -0.994 -1.298 -1.230 Low -0.667 -0.320 -0.658 -0.926

(0.578)** (0.455)** (0.406)*** (0.440)*** (0.419) (0.413) (0.358)* (0.382)**
– Coefficient on Lagged Temperature (Ti,t−1)
Low -0.043 0.102 0.189 0.466 High -0.373 -0.285 -0.0236 0.383

(0.217) (0.264) (0.215) (0.304) (0.198)* (0.213) (0.197) (0.281)
Medium 0.178 0.230 -0.0952 0.316 Medium 0.281 0.161 -0.163 -0.158

(0.368) (0.355) (0.323) (0.501) (0.368) (0.347) (0.333) (0.510)
High -0.203 -0.153 -0.491 -0.770 Low 0.467 0.350 -0.128 -0.187

(0.386) (0.301) (0.364) (0.602) (0.370) (0.378) (0.380) (0.547)

Notes: We present robust mean estimates and associated standard errors of country-specific temperature-
development coefficients by (temperature or income) group: low, medium, high (in rows). We reverse the
order of presentation for the analysis by income group to ease comparison of ‘high temperature’ vs ‘low
income’ results (now in the same row). The columns are for alternative underlying empirical models of the
weather-growth relationship (all models include temperature and precipitation): 2FE – pooled two-way fixed
effects estimator; MG – simple Pesaran & Smith (1995) Mean Group estimator; CCE – standard Pesaran
(2006) Common Correlated Effects estimator; CCE♯ – dto but only including cross-section averages of the
dependent variable. All of these underlying models further include country-specific linear and quadratic trends.
Different panels of the table are for different specification: (a) static, (b) with lagged weather variables (partial
adjustment model), (c) with lagged weather and dependent variables (autoregressive distributed lag model).
The sample (static model) is for 154 countries with 8,020 observations. Outlier-robust standard errors in
parentheses (cluster-robust for 2FE). *** p<0.01, ** p<0.05, * p<0.1
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3 Results

3.1 Aggregate Income per capita

Table 2 presents estimates for the temperature-productivity relationship at the aggregate
economy level. Here and in all following results tables we present robust mean estimates
for the weather-productivity effect. The columns are for different estimators, separated into
two blocks: analysis by temperature group and by income group. We reverse the order
of presentation (high, medium, low) for the analysis by income group to ease the direct
comparison of ‘high temperature’ vs ‘low income’ results. ‘Low’, ‘Medium’ and ‘High’ present
robust mean estimates, with the exception of the pooled two-way fixed effects (2FE) estimator
in (1) and (5).27 Panels (a) to (c) present coefficients from static, partial adjustment and
dynamic (ARDL) models, respectively.28

The static model results in Panel (a) indicate that our 2FE estimates are in line with the
findings of both Burke et al. (2015) (‘hot countries suffer most’)29 and Dell et al. (2012)
(‘poor countries suffer most’),30 but once we move away from assuming a common weather-
productivity nexus only the former result remains robust. In column (4), the average low-
temperature country effect on income per capita is smaller compared with the 2FE results and
not statistically significant while that for high-temperature countries is moderated to -1%.

Our results for the contemporaneous temperature variable in Panel (b) replicate the
patterns from the static models: there is no evidence for a link to income but strong evidence
for a link to average temperature.31 Adding the first lag of the weather variables captures the
effects of a temperature (results presented here) and precipitation shock (results available on
request) after one year. Most coefficients for these lagged effect are small and not statistically
significant across models: this suggests that we do not find persistence of the temperature
shock but the short-run effect is also not reversed, implying a net output loss or gain over the
two-year period. The exception here are the ‘income split’ pooled 2FE and the simple MG
models, for which (insignificant) immediate effects are notably reversed after one year.

Panel (c) then provides results for the fully dynamic model. The estimates are broadly
similar to those presented in Panel (b) for the ‘temperature split’, while we find a negative
impact of a temperature shock on low-income countries in the CCE results in (7) and (8).
Fully dynamic specifications, such as the ARDL from which results in Panel (c) are derived,

27The pooled 2FE model includes precipitation and precipitation2.
28Long-run estimates derived from the dynamic model are presented in Table 3 below.
29The coefficient on High (Low) is statistically significant and implies that a 1◦C rise in temperature

reduces (increases) income per capita by 1.7% (0.6%) in high-temperature (low-temperature) countries.
30The coefficient on Low (High) is statistically significant and suggests that a 1◦C rise in temperature

would reduce (increase) income per capita by about 0.6% (0.42%) in poor (rich) countries.
31Low temperature countries benefit to the tune of 0.6% higher income per capita for a 1◦C rise in

temperature, while for high temperature countries the effect is a reduction by 1.2%.
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allow us to estimate the long-run effects of a permanent temperature change, which we present
in Table 3.32 We can see, in columns (4) and (8), that a permanent 1◦C rise in temperature
is associated with a decline in per capita GDP of 14% in high-temperature countries and a
weaker decline, both in statistical and economic terms, of 6% in low-income countries.

Overall, our fully flexible estimations provide more support for a temperature-productivity
effect differentiated by average temperature (‘hot countries suffer the most’) than for an effect
differentiated by average income (‘poor countries suffer the most’).

Table 3: Cumulative Temperature Effects on Aggregate Economic Development

Split by Temperature Group Split by Income Group

(1) (2) (3) (4) (5) (6) (7) (8)
Estimator 2FE MG CCE♯ CCE 2FE MG CCE♯ CCE

Low 3.843 7.348 6.185 2.034 High 0.159 0.685 3.429 6.689
(2.671) (3.114)** (2.575)** (2.931) (2.691) (3.141) (2.694) (3.475)*

Medium 0.138 -1.178 -4.199 4.366 Medium 0.828 -4.627 -5.573 -8.760
(3.403) (4.594) (4.005) (5.680) (4.757) (5.005) (4.972) (5.688)

High -12.15 -12.06 -7.498 -14.40 Low -1.522 -0.394 -2.542 -5.727
(6.352)* (5.636)** (4.845) (5.054)*** (4.943) (4.798) (3.822) (4.385)

Notes: We present robust mean long-run estimates and associated standard errors of country-specific
temperature-development coefficients by (temperature or income) group: low, medium, high (in rows). The
columns are for alternative underlying empirical models of the weather-growth relationship (all models include
temperature and precipitation): 2FE – pooled two-way fixed effects estimator; MG – simple Pesaran & Smith
(1995) Mean Group estimator; CCE – standard Pesaran (2006) Common Correlated Effects estimator; CCE♯ –
dto but only including cross-section averages of the dependent variable. All of these underlying models further
include country-specific linear and quadratic trends. The sample is for 154 countries. Outlier-obust standard
errors in parentheses (cluster-robust for 2FE). *** p<0.01, ** p<0.05, * p<0.1.

3.2 Aggregate TFP and Factor Inputs

In Table 4 we present the robust mean estimates from ARDL specifications adopting aggregate
Total Factor Productivity (TFP) in Panel (a) or a Factor Input Index in Panel (b) as the
dependent variable. Columns (4) and (8) suggest that 60% of the negative effect of a
temperature shock on high-temperature/low-income countries on aggregate income (presented
in Table 2 above) is captured by a fall in TFP and 40% by a fall in inputs. Long-run estimates
are presented in Table 5. Most of these are imprecisely estimated (except for 2FE) but
they suggest the same TFP/input effect decomposition and a preference for a temperature-
productivity effect differentiated by average temperature.

32These are computed as average long-run estimates (see discussion in section 2.1) and under the assumption
of exponentially declining lag weights.
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Table 4: Temperature Effects on Aggregate TFP and Factor Inputs (ARDL Models)

Split by Temperature Group Split by Income Group

(1) (2) (3) (4) (5) (6) (7) (8)
Estimator 2FE MG CCE♯ CCE 2FE MG CCE♯ CCE

Panel (a) Temperature Effect on Aggregate TFP
– Coefficient on Contemporaneous Temperature (Tit)
Low 0.323** 0.426*** 0.281 0.0589 High 0.237 0.261 0.282 0.550

(0.137) (0.149) (0.106)*** (0.138) (0.171) (0.119)** (0.145)* (0.159)***
Medium -0.111 -0.292 -0.241 -0.0457 Medium -0.125 -0.385 -0.304 -0.196

(0.250) (0.204) (0.206) (0.240) (0.287) (0.254) (0.220) (0.289)
High -0.784 -0.626 -0.758 -0.747 Low -0.368 -0.359 -0.537 -0.822

(0.365)** (0.270)** (0.279)*** (0.390)* (0.247) (0.242) (0.220)** (0.191)***
– Coefficient on Lagged Temperature (Ti,t−1)
Low -0.0343 0.0439 0.0889 0.213 High -0.215 -0.171 0.0206 0.301

(0.131) (0.147) (0.137) (0.178) (0.130) (0.122) (0.117) (0.176)*
Medium 0.0358 -0.0619 -0.0684 0.131 Medium 0.0457 -0.116 -0.130 0.0568

(0.217) (0.198) (0.208) (0.289) (0.234) (0.224) (0.214) (0.337)
High -0.240 -0.213 -0.215 -0.305 Low 0.263 0.107 -0.0582 -0.287

(0.283) (0.215) (0.241) (0.322) (0.211) (0.220) (0.232) (0.285)

Panel (b) Temperature Effect on Aggregate Factor Inputs (Index)
– Coefficient on Contemporaneous Temperature (Tit)
Low 0.217 0.295 0.238 0.067 High 0.107 0.101 0.140 0.364

(0.113)* (0.124)** (0.0840)*** (0.148) (0.128) (0.107) (0.0917) (0.135)***
Medium -0.0778 -0.0704 -0.150 0.104 Medium -0.047 -0.166 -0.180 -0.235

(0.244) (0.170) (0.151) (0.200) (0.260) (0.193) (0.159) (0.216)
High -0.689 -0.232 -0.498 -0.486 Low -0.277 0.104 -0.277 -0.427

(0.309)** (0.242) (0.180)*** (0.230)** (0.221) (0.230) (0.172) (0.216)**
– Coefficient on Lagged Temperature (Ti,t−1)
Low -0.056 0.061 0.093 0.246 High -0.245 -0.088 -0.033 0.269

(0.102) (0.130) (0.108) (0.140)* (0.094)*** (0.101) (0.084) (0.108)**
Medium 0.153 0.347 0.005 -0.019 Medium 0.275 0.347 -0.017 -0.069

(0.183) (0.211) (0.174) (0.223) (0.166) (0.170)** (0.160) (0.235)
High 0.0780 0.211 -0.175 0.022 Low 0.360 0.415 -0.008 -0.025

(0.184) (0.146) (0.157) (0.291) (0.200)* (0.217)* (0.200) (0.275)

Notes: We present robust mean estimates and associated standard errors of country-specific temperature-
‘input’ coefficients by (temperature or income) group: low, medium, high (in rows), where ‘input’ refers to
aggregate TFP or an aggregate input index. The columns are for alternative underlying empirical models
of the weather-growth relationship (all models include temperature and precipitation): 2FE – pooled two-
way fixed effects estimator; MG – simple Pesaran & Smith (1995) Mean Group estimator; CCE – standard
Pesaran (2006) Common Correlated Effects estimator; CCE♯ – dto but only including cross-section averages
of the dependent variable. All of these underlying models further include country-specific linear and quadratic
trends. The sample is for 149 countries with 7,406 (7,798) observations in the TFP (factor input) analysis.
Outlier-robust standard errors in parentheses (cluster-robust for 2FE). *** p<0.01, ** p<0.05, * p<0.1
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Table 5: Cumulative Temperature Effects on Aggregate TFP and Factor Inputs

Split by Temperature Group Split by Income Group

(1) (2) (3) (4) (5) (6) (7) (8)
Estimator 2FE MG CCE♯ CCE 2FE MG CCE♯ CCE

Panel (a) Temperature Effect on Aggregate TFP
Low 3.781 3.252 2.580 -1.198 High -1.364 -0.536 -5.647 -1.309

(2.863) (2.338) (2.012) (2.205) (4.972) (4.976) (4.859) (3.129)
Medium -0.985 -4.921 -4.208 2.697 Medium -1.039 -9.571* -4.398 -2.680

(3.236) (0.646) (0.533) (0.743) (5.038) (5.390) (3.748) (4.645)
High -13.400* -4.699 -5.343 -6.786 Low 0.288 3.460* 3.485 0.282

(7.935) (5.375) (4.875) (5.494) (3.049) (2.065) (2.222) (2.684)

Panel (b) Temperature Effect on Aggregate Factor Inputs (Index)
Low 1.228 2.047 1.695 -1.226 High -1.050 -0.465 0.166 1.299

(1.255) (1.369) (1.055) (1.603) (1.169) (1.529) (1.351) (1.424)
Medium 0.572 1.968 -0.542 1.954 Medium 1.730 2.913 -0.310 -1.250

(1.926) (2.765) (2.038) (2.746) (2.314) (2.580) (2.250) (2.957)
High -4.654 0.521 -3.787 -3.609 Low 0.633 2.826 -1.477 -3.112

(3.199) (2.968) (3.085) (2.899) (2.714) (3.001) (2.604) (2.609)

Notes: We present robust mean long-run estimates and associated standard errors of country-specific
temperature-productivity coefficients by (temperature or income) group: low, medium, high (in rows). The
columns are for alternative underlying empirical models of the weather-growth relationship (all models include
temperature and precipitation): 2FE – pooled two-way fixed effects estimator; MG – simple Pesaran & Smith
(1995) Mean Group estimator; CCE – standard Pesaran (2006) Common Correlated Effects estimator; CCE♯ –
dto but only including cross-section averages of the dependent variable. All of these underlying models further
include country-specific linear and quadratic trends. The sample is for 149 countries. Outlier-robust standard
errors in parentheses (cluster-robust for 2FE). *** p<0.01, ** p<0.05, * p<0.1.

3.3 Agricultural Sector

The agricultural sector is frequently argued to represent the key sector impacted by climate
change (Nordhaus 1993, Ortiz-Bobea et al. 2021) and we therefore investigate the log of
agricultural output per worker, an agricultural input index and an agricultural TFP index
using our dynamic weather-productivity specifications. In Table 6, we observe in panel (a) a
large, negative, and often statistically significant short-run impact of a temperature shock on
agricultural output per worker in medium/high-temperature and low/medium income countries,
which may be fully offset one year later as suggested by the positive and statistically significant
lagged effects. Estimates of panels (b) and (c) suggest the temperature shock mainly operates
through a decline in TFP, in line with Ortiz-Bobea et al. (2021). The long-run estimates
presented in Table 7 are relatively small and not statistically significant and do not really
favour a specific country split. Hence, while the association between agriculture and weather
is natural, it is unlikely that changes in agricultural output per worker associated with a
temperature shock fully drive the changes in output per capita we reported in Table 2.
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Table 6: Temperature Effects on Agricultural Output, TFP and Inputs (ARDL models)

Split by Temperature Group Split by Income Group

(1) (2) (3) (4) (5) (6) (7) (8)
Estimator 2FE MG CCE♯ CCE 2FE MG CCE♯ CCE

Panel (a) Agricultural Output per Worker (ARDL) – Coefficient on Contemporaneous Temperature (Tit)
Low 0.476 0.292 0.207 0.444 High -1.474 -1.471 -1.619 -1.309

(0.407) (0.483) (0.521) (0.656) (0.412) (0.549) (0.610) (0.948)
Medium -1.407 -1.190 -1.452 0.0376 Medium -1.285 -1.523 -1.464 -0.115

(0.701)** (0.632)* (0.739)* (0.888) (0.730)* (0.747)** (0.874)* (0.778)
High -1.387 -2.194 -1.671 -0.934 Low 0.549 0.0952 0.381 1.345

(0.960) (0.668)*** (0.675)** (0.813) (0.830)* (0.514)*** (0.495)*** (0.690)*
– Coefficient on Lagged Temperature (Ti,t−1)
Low 363 0.300 -0.00322 0.690 High 1.533 0.844 0.715 0.618

(0.389) (0.467) (0.456) (0.663) (0.347) (0.421)* (0.496)* (0.696)***
Medium 1.834 1.369 1.156 1.721 Medium 0.965 0.994 0.308 0.936

(0.689)*** (0.505)*** (0.657)* (0.787)** (0.785) (0.763) (0.673) (1.088)
High 0.551 0.873 0.857 1.004 Low 0.411 0.752 0.914 1.931

(0.865) (0.633) (0.619) (0.927) (0.641)** (0.450)* (0.548) (0.634)

Panel (b) Agricultural TFP (ARDL) – Coefficient on Contemporaneous Temperature (Tit)
Low 0.688 0.540 0.461 1.485 High 0.550 0.243 0.385 1.699

(0.303)** (0.331) (0.380) (0.511)*** (0.277)** (0.309) (0.384) (0.622)***
Medium -0.872 -0.667 -0.956 -0.252 Medium -0.765 -0.961 -1.131 -0.606

(0.612) (0.581) (0.603) (0.614) (0.607) (0.570)* (0.576)* (0.633)
High -1.383 -1.518 -1.262** -0.804 Low -0.705 -0.771 -1.024 -0.452

(0.700)** (0.536)*** (0.486)** (0.630) (0.773) (0.527) (0.499)** (0.579)
– Coefficient on Lagged Temperature (Ti,t−1)
Low 0.273 0.225 -0.124 0.947 High 0.869 0.861 0.598 0.651

(0.285) (0.370) (0.323) (0.589) (0.263)* (0.372)** (0.388)** (0.652)***
Medium 2.000 1.575 1.130 1.624 Medium 1.195 1.337 0.802 1.180

(0.526) (0.487) (0.484) (0.662) (0.587)** (0.574)** (0.468)* (0.722)
High 0.829 1.484 1.574 1.479 Low 0.519 0.963 0.988 2.288

(0.572) (0.617) (0.535)*** (0.648)** (0.545) (0.465)* (0.493) (0.575)

Panel (c) Agricultural Input Index (ARDL) – Coefficient on Contemporaneous Temperature (Tit)
Low 0.102 0.089 0.270 0.080 High -0.099 -0.312 -0.083 -0.241

(0.204) (0.182) (0.269) (0.306) (0.198) (0.197) (0.253) (0.323)
Medium -0.504 -0.292 -0.429 -0.423 Medium 0.080 0.107 0.110 0.021

(0.242)** (0.148)* (0.184)** (0.246)* (0.270) (0.195) (0.234) (0.302)
High -0.256 -0.112 0.049 0.113 Low -0.556 -0.159 -0.244 -0.126

(0.305) (0.255) (0.254) (0.403) (0.344) (0.186) (0.229) (0.331)
– Coefficient on Lagged Temperature (Ti,t−1)
Low 0.188 -0.082 0.223 0.040 High -0.127 -0.225 -0.106 -0.492

(0.207) (0.226) (0.233) (0.327) (0.200) (0.204) (0.236) (0.280)*
Medium 0.077 0.022 0.008 0.158 Medium 0.306 -0.043 0.098 0.404

(0.236) (0.215) (0.227) (0.343) (0.231) (0.225) (0.251) (0.361)
High 0.0416 -0.230 -0.337 -0.185 Low 0.724 -0.028 -0.095 0.109

(0.408) (0.229) (0.247) (0.298) (0.356)** (0.234) (0.216) (0.301)

Notes: We present robust mean estimates and associated standard errors of country-specific temperature-
‘output’ coefficients by (temperature or income) group: low, medium, high (in rows). The columns are for
alternative underlying empirical models of the weather-growth relationship (all models include temperature
and precipitation): 2FE – pooled two-way fixed effects estimator; MG – simple Pesaran & Smith (1995)
Mean Group estimator; CCE – standard Pesaran (2006) Common Correlated Effects estimator; CCE♯ – dto
but only including cross-section averages of the dependent variable. All of these underlying models further
include country-specific linear and quadratic trends. Different panels of the table are for different dependent
variables: (a) agricultural output per worker, (b) agricultural TFP, (c) agricultural inputs (index). All results
are based on autoregressive distributed lag models. The sample is for 154 countries with 8,020 observations.
Outlier-robust standard errors in parentheses (cluster-robust for 2FE). *** p<0.01, ** p<0.05, * p<0.1
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Table 7: Cumulative Temperature Effects on Agricultural output

Split by Temperature Group Split by Income Group

(1) (2) (3) (4) (5) (6) (7) (8)
Estimator 2FE MG CCE♯ CCE 2FE MG CCE♯ CCE

Low 3.010 1.768 1.176 0.354 High 3.430 2.721 3.694 4.045
(1.891) (2.329) (1.961) (2.179) (2.219) (3.011) (2.670) (3.508)

Medium 1.533 -1.178 -4.199 4.366 Medium -1.144 -4.627 -5.573 -8.760
(2.872) (2.761) (2.675) (3.286) (3.002) (3.162) (2.779) (3.284)

High -3.001 -4.277 -3.528 -0.714 Low 0.209 -1.601 -4.416* -1.661
(4.931) (3.518) (3.402) (4.210) (3.087) (2.371) (2.527) (2.958)

Notes: We present robust mean long-run estimates and associated standard errors of country-specific
temperature-agricultural development coefficients by (temperature or income) group: low, medium, high
(in rows), with the exception of columns (1) and (5) which are pooled estimates using interactions. The
columns are for alternative underlying empirical models of the weather-growth relationship (all models include
temperature and precipitation): 2FE – pooled two-way fixed effects estimator; MG – simple Pesaran & Smith
(1995) Mean Group estimator; CCE – standard Pesaran (2006) Common Correlated Effects estimator; CCE♯

– dto but only including cross-section averages of the dependent variable. All of these underlying models
further include country-specific linear and quadratic trends. The sample is for 154 countries. Outlier-robust
standard errors in parentheses (cluster-robust for 2FE). *** p<0.01, ** p<0.05, * p<0.1.

3.4 Precipitation

Like previous research, we have primarily focused on temperature shocks as a proxy for the
effects of climate change. Other studies usually mention that they do not find any impact of
precipitation changes on income or its components. In Table 8, we report the ARDL results
of precipitation on income per capita and agricultural output per worker. While panel (a)
suggests an absence of robust contemporaneous effects on the former outcome, panel (b)
shows that agricultural output benefits from higher rainfall in medium/high-temperature and
low/high-income countries, with little evidence of a reversal effect one year later. The long-
run estimates presented in Table 9 indicate that a permanent 100 mm increase in rainfall is
associated with a 2.7% increase in agricultural output per worker in medium/high-temperature
or low income countries.33 Note, however, that in medium/high-temperature countries, for a
nearly balanced sample, median precipitation declined from 1,218mm in 1971 to 1,187mm in
2019. Hence, over the period 1971-2019, the decline in precipitation may have contributed to
a long-run fall in agricultural output of 0.85%.

Although we found fault with the presentation of the magnitudes of economic effects of
precipitation in Damania et al. (2020), their suggestion that regional rather than national data
hold the key to the apparent micro-macro puzzle for the economic significance of precipitation
is still a useful suggestion worthy of additional research.

33Long-run estimates for other dependent variables yield limited insights (insignificant) and are omitted here
but available on request.
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Table 8: Precipitation Effects on GDP pc and Agricultural Output pw (ARDL Models)

Split by Temperature Group Split by Income Group

(1) (2) (3) (4) (5) (6) (7) (8)
Estimator 2FE MG CCE♯ CCE 2FE MG CCE♯ CCE

Panel (a) Precipitation Effect on Aggregate GDP pc
– Coefficient on Contemporaneous Precipitation (PPit)
Low -0.0712 -0.121 -0.007 -0.335 High -0.000 0.184 0.007 -0.041

(0.108) (0.097) (0.092) (0.115)*** (0.089) (0.121) (0.107) (0.141)
Medium 0.016 0.071 -0.045 -0.074 Medium 0.025 0.104 -0.023 -0.150

(0.048) (0.111) (0.131) (0.140) (0.062) (0.097) (0.108) (0.113)
High 0.087 0.201 0.015 0.023 Low 0.081 -0.128 -0.0221 -0.212

(0.085) (0.104)* (0.098) (0.136) (0.086) (0.087) (0.098) (0.126)*
– Coefficient on Lagged Precipitation (PPi,t−1)
Low 0.133 0.00416 0.167 -0.0494 High -0.104 -0.160 -0.133 -0.241

(0.795)* (1.518) (0.925)* (1.404) (0.106) (0.121) (0.105) (0.139)*
Medium -0.181 -0.107 -0.148 -0.186 Medium 0.00730 0.287 0.0471 -0.158

(0.0601)*** (0.125) (0.108) (0.126) (0.0663) (0.135)** (0.116) (0.124)
High 0.0288 0.0216 -0.0792 -0.215 Low -0.100 -0.167 0.0261 -0.0663

(0.0799) (0.107) (0.0936) (0.118)* (0.0821) (0.0908)ù (0.0940) (0.133)

Panel (b) Precipitation Effect on Agricultural Output per worker
– Coefficient on Contemporaneous Precipitation (Pit)
Low 0.164 0.151 0.353 0.258 High 0.626 0.603 0.688 0.863

(0.174) (0.259) (0.254) (0.377) (0.304)** (0.225)*** (0.258)*** (0.322)***
Medium 0.317 0.732 0.814 0.892 Medium 0.0717 0.216 0.362 0.184

(0.126)*** (0.234)*** (0.231)*** (0.272)*** (0.0793) (0.195) (0.201)* (0.273)
High 0.331 0.619 0.536 0.689 Low 0.585 0.698 0.735 0.912

(0.166)** (0.206)*** (0.205)*** (0.270)** (0.202)*** (0.249)*** (0.228)*** (0.298)***
– Coefficient on Lagged Precipitation (PPi,t−1)
Low -0.0543 0.003 -0.293 -0.306 High 0.705 -0.314 -0.351 -0.462

(0.140) (0.261) (0.335) (0.350) (0.513) (0.176)* (0.205)* (0.249)*
Medium -0.434 -0.184 -0.162 -0.050 Medium -0.207 -1.000 -0.201 0.014

(0.083)*** (0.212) (0.246) (0.292) (0.084)** (0.193) (0.250) (0.311)
High 0.124 -0.028 0.014 0.092 Low -0.396 0.256 0.212 0.361

(0.209) (0.168) (0.196) (0.231) (0.129)*** (0.219) (0.277) (0.324)

Notes: We present robust mean estimates and associated standard errors of country-specific precipitation-
‘output’ coefficients by (temperature or income) group: low, medium, high (in rows), where ‘input’ refers
to aggregate GDP per capita or agricultural output per worker. The columns are for alternative underlying
empirical models of the weather-growth relationship (all models include temperature and precipitation): 2FE
– pooled two-way fixed effects estimator; MG – simple Pesaran & Smith (1995) Mean Group estimator; CCE
– standard Pesaran (2006) Common Correlated Effects estimator; CCE♯ – dto but only including cross-section
averages of the dependent variable. All of these underlying models further include country-specific linear and
quadratic trends. The sample is for 154 countries with (8,020) observations. Outlier-robust standard errors in
parentheses (cluster-robust for 2FE). *** p<0.01, ** p<0.05, * p<0.1
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Table 9: Cumulative Precipitation Effects on Agricultural output

Split by Temperature Group Split by Income Group

(1) (2) (3) (4) (5) (6) (7) (8)
Estimator 2FE MG CCE♯ CCE 2FE MG CCE♯ CCE

Low 2.308 0.817 -0.118 -0.109 High 5.625*** 1.936* 1.725 1.791*
(1.431) (1.277) (1.242) (1.087) (1.589) (1.064) (1.088) (1.035)

Medium 3.221 2.692** 3.260** 2.820** Medium 0.838 2.149* 1.453 1.188
(2.312) (1.324) (1.417) (1.276) (3.307) (1.143) (1.292) (1.131)

High 5.476*** 2.716*** 2.627** 2.722*** Low 1.617 2.159* 2.831** 2.688**
(1.453) (0.946) (1.098) (0.974) (2.569) (2.371) (2.527) (2.958)

Notes: We present robust mean long-run estimates and associated standard errors of country-specific
precipitation-agricultural development coefficients by (temperature or income) group: low, medium, high.
The columns are for alternative underlying empirical models of the weather-growth relationship (all models
include temperature and precipitation): 2FE – pooled two-way fixed effects estimator; MG – simple Pesaran &
Smith (1995) Mean Group estimator; CCE – standard Pesaran (2006) Common Correlated Effects estimator;
CCE♯ – dto but only including cross-section averages of the dependent variable. All of these underlying models
further include country-specific linear and quadratic trends. The sample is for 154 countries. Outlier-robust
standard errors in parentheses (cluster-robust for 2FE). *** p<0.01, ** p<0.05, * p<0.1.

4 Concluding Remarks

In this paper, we adopted dynamic heterogenous panel data models with common factors
to estimate the short-run and long-run effects of climate change as reflected by short-run
temperature shocks. In line with previous research pleading for the consideration of more
realistic damage functions, our less restrictive analysis of historical data indicates that perma-
nent climate change can have a large negative effect on the prosperity of countries, especially
those in high temperature geographic zones. We find that a permanent 1◦C rise in temperature
in this group of countries is associated with a long-term reduction in income per capita of 14%
— this effect is more substantial than previous research has suggested (Burke et al. 2015).
Evidence for a strongly differentiated effect across countries by income level (Dell et al. 2012)
is less consistent and at worst these specifications suggest a 6% drop in income per capita for
poor countries over the six decades analysed. Extrapolation of these results to the future is
likely to lack credibility, since we do not know what the shape of the damage function looks
like for temperature increases of 1◦C or more above pre-industrial levels (Pindyck 2013, 2020).
In the absence of counterfactuals in the data, and the possibility of catastrophic outcomes
(Weitzman 2012, Stern 2013), history cannot be our guide because our inferences are too
model-dependent (King & Zeng 2007). Our findings ought rather be interpreted as a warning
signal: even moderate climate change already has substantial negative economic implications
in hot, and often poor, countries.
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Appendix

Figure A-1: The heterogeneous effects of temperature shocks on income per capita

(a) Temperature-Income Effect and Average Country Temperature
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(b) Temperature-Income Effect and Average Income per Capita
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Notes: We present raw estimates of contemporaneous temperature from dynamic (ARDL) regressions
temperature of per capita GDP (y-axis) plotted against average country temperature and average income
per capita in Panels (a) and (b), respectively. These estimates are based on the regressions in columns [4]
and [8] of Panel (c) in Table 2 (contemporaneous temperature variable) in the main text. Dashed vertical
lines delimit low-, medium- and high-average temperature or -average income country groupings, respectively
(these are the full sample terciles). For ease of illustration, country estimates above |10| are not reported.
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