
Distributed Debugging Tool v1.7 © 2004 

 
 

The Distributed Debugging Tool 
 
 

 
 
 

Quickstart Guide 
(C programs) 

 
 
 

 
 
 

- PAGE 1 - 



Distributed Debugging Tool v1.7 © 2004 

Contents 
Contents ................................................................................................................. 2 
1. Introduction................................................................................................... 3 
2. Starting A Session .......................................................................................... 4 

Checking Your Program Status ............................................................................. 5 
3. Controlling Your Processes ............................................................................ 7 

Advancing Processes Forward By A Line................................................................ 7 
Stepping Into A Function ...................................................................................... 7 
Stepping Out Of A Function.................................................................................. 7 
Following If Branches ........................................................................................... 8 
Pausing Processes At A Breakpoint ....................................................................... 8 
Manually Pausing Processes ................................................................................. 8 

4. Viewing Data.................................................................................................. 9 
Current Line ......................................................................................................... 9 
Local Data .......................................................................................................... 10 
Keeping An Expression In View........................................................................... 10 
Finding A Segmentation Fault ............................................................................. 10 

5. Conclusion................................................................................................... 12 
 

- PAGE 2 - 



Distributed Debugging Tool v1.7 © 2004 

1. Introduction 
In this document you will use the example program provided with DDT to gain an 
overview of DDT and it’s features.  You will see how DDT can be used to debug a C 
program using the basic features found within DDT.  After following this guide you 
should be able to start a program, control your processes, examine data, set 
breakpoints and backtrack from a segmentation fault. 
 

- PAGE 3 - 



Distributed Debugging Tool v1.7 © 2004 

2. Starting A Session 
By now you should have installed DDT successfully. In your DDT directory you will 
find the examples subdirectory. We will now compile this: 
 

[examples]$ make –f cmake.makefile 

mpicc -c -g -O0 -o hello.o hello.c 

mpicc -g -O0 -o hello hello.o 

[examples]$ 

 

To verify that you have MPI working correctly, run the example without DDT first. 
 

[examples]$ mpirun -np 4 ./hello 

 
On termination, the hello program will, if your MPI supports I/O (input/output) from 
remote processors, have produced output that ends: 
 

[....] 

all done...(1) 

all done...(0) 

[examples]$ 

 
We now start DDT debugging this program: 
 

[examples]$ $DDT ./hello & 

 
DDT will present a dialog box; you should now ensure that the right number of 
processors are selected as well as the correct debugger interface for your compilers 
and the correct MPI implementation. 
 
If you are unsure of which MPI implementation to choose, look in the FAQ for more 
help.  The most common MPI is “generic”. 
 

- PAGE 4 - 



Distributed Debugging Tool v1.7 © 2004 

 
Fig.1 The session control window 

 
You should now see the DDT session control window as in Fig.1.  Select “Run” and 
DDT will connect to your processes, load your source files and take you into the 
main DDT window, ready to begin your debugging. 
 

Checking Your Program Status 

After loading the example program into DDT (as described above) your main DDT 
window should look like the one seen in Fig.2.  The source files that have been 
found are shown, and the current file, that from which MPI_Init is called, will be 
loaded and shown. You can examine any of your source files at any time by 
selecting it from the list. 
 
At the top of the screen is a collection of coloured numbered boxes, and three lines: 
“All”, “Root” and “Workers”. These are process groups. Process groups are used to 
control your processes en-masse. Each numbered box represents a process.  One of 
the lines will be brighter than the others, and one of the boxes may be brighter and 
have a dotted border.  These are the current group and the current process (if one is 
selected) respectively. 
 
The process boxes are either red or green. A green process is running, and a red 
process is stopped, paused or terminated. 
 
You should see a red bar on the line containing MPI_Init. This indicates that some 
processes in the red process group are on that line, and the red process group is 
the current group. If the line is bright, this also means that the currently selected 
process is on that line.  Hover your mouse pointer over this line and DDT will tell 
you which processes are at that point.  Select a different process group by clicking 
on “Workers”.  The red line will change to the colour of the Workers group.  
 
 
 
 

- PAGE 5 - 



Distributed Debugging Tool v1.7 © 2004 

 
Information about which line a processor is on is updated every time the program is 
paused. 
 

 
Fig.2 DDT main window 

 

- PAGE 6 - 



Distributed Debugging Tool v1.7 © 2004 

3. Controlling Your Processes 
Process groups as described above are used to control most of the operations you 
will wish to perform on your processes.  If you wish to make all processes stop at a 
point in your code, or all processes move a single step, the “All” process group 
would be selected.  Alternatively, if none of the predefined groups are exactly right 
for you, by right clicking in the process group area, you can create your own using 
drag and drop moves. 
 
The next step in our exercise will be to advance all the processes through the code. 
We will be using the process operation buttons found in the toolbar just below the 
process groups (see Fig.3).  These buttons are (from left to right): Play, Pause, Step 
In, Step Over, and Step Out. 
 

 
Fig.3 Process operation buttons 

 

Advancing Processes Forward By A Line 

Select the “All” process group using the mouse, and then press the `Step Over` 
button. The red line in your code will advance one line, your processes may also 
briefly turn green whilst they perform the step, returning to red when they have 
finished working. 
 
In the example, press step over again - until the processes are at the line which calls 
func1(). 
 

Stepping Into A Function 

Suppose we now wish to see what happens inside func1().  Press the `Step Into` 
button, and the code window leaps to the relevant part of the source code.  The 
processes have now moved into func1(). 
 
Do this again to enter func2(). 
 

Stepping Out Of A Function 

You should now be seeing the definition of func2() and it looks uninteresting so lets 
go back up to func1() and see what happens there.  Click the `Step Out` button.  
The processes will now continue until they reach the end of func2() and then return 
to func1(). 
 
After this the processes are still shown as being on the line of func1() that calls 
func2(); this is because it hasn’t finished executing the last part of this line, which is 
where the return value of func2() is assigned to test. 
 

- PAGE 7 - 



Distributed Debugging Tool v1.7 © 2004 

Following If Branches 

Probably the most important part of func1() is the if statement and we’d like to 
watch what happens in there; which path is taken.  By stepping over we can watch 
what happens as the program proceeds. Use the `Step Over` button to do this until 
you leave func1(). 
 

Pausing Processes At A Breakpoint 

You could keep using `Step Over` until you have reached a point in your code that 
is important to you, but this would be time consuming.  It’s also possible that some 
processes may take more instructions to reach a point of interest than others, 
leading to different processes being on different lines of code.  A better idea is to 
cause your processes to stop at a breakpoint. 
 
We’d like to see what is happening during an MPI operation - where process 0 is 
receiving data from all of the other processes.  Select the process group “Workers” 
and then click on the line containing MPI_Send; line 139.  Click the right mouse 
button and choose “Add breakpoint”, this will add a breakpoint for the currently 
selected group. 
 
Now select the “All” process group, and press play to resume execution.  After a 
short period of computation, you will see that process 0 is Green, still running, and 
processes 1, 2 and 3 have reached the breakpoint. 
 
You can have as many breakpoints as you like, each breakpoint you set will be active 
for the currently selected process group.  You can see all the breakpoints that are 
set by clicking on the breakpoints tab at the bottom of the window. 
 

Manually Pausing Processes 

Process 0 is still running, but we can guess that it will be waiting to receive data and 
is not actually “working”.  By selecting either the “Root” or the “All” group if neither 
is selected, and then pressing `Pause`, process 0 can now be stopped. 
 
Select process 0 and you will see the stack, located to the right side of the code. 
This can be viewed by clicking the mouse over the stack display window, which will 
currently be displaying the top of the stack. 
 
If you double click on process 0 the code window will jump to the point in the code 
where process 0 has paused and will bring the stack frame up to the correct stack to 
view the currently highlighted line in the code, and it’s associated variables. 
 
All of the process operation buttons, and the setting of breakpoints work on the 
currently selected process group. The ability to configure and save your own groups 
is a very powerful feature making it much easier to debug your programs using 
DDT. 
 

- PAGE 8 - 



Distributed Debugging Tool v1.7 © 2004 

4. Viewing Data 
Now that you know how to control processes in DDT, we are now ready to look at 
the data or contents of the processes. 
 

Current Line 

By clicking on any of the paused processes, we can examine the data on the current 
line of code.  If we choose any of the processes that have just executed a send 
procedure we can view the message that is about to be sent to process 0.  First 
select line 139 and then click on the “Current Line” tab, to the right of the window.   
 
The current line panel shows the variables that used on the current line of code for 
the currently selected process.  In this case we can see the “message” variable, and 
the first character of its contents.  Let’s view the whole contents.  To do this simply 
drag the ”message” variable into the `Evaluate` window and drop it there.  Now 
right click on the “message” variable inside the `Evaluate` window and choose the 
`View as vector` option.  Enter the number of elements you wish to see, in this case 
choose 25, and click OK.  You will see a “+” symbol appear next to the left of the 
variable name.  Click on this and you will see the whole message appear in a list.  
Click on a different process and this message will update to reflect the one held by 
the current process. 
 
You can see more than the currently selected line by dragging the mouse around the 
lines of interest in the code window. 
 

 
Fig.4 Current line for process 3 

 

- PAGE 9 - 



Distributed Debugging Tool v1.7 © 2004 

Local Data 

The variables known as “locals”, those in scope in your current function, and in the 
case of Fortran most other global variables, can be seen by clicking the locals tab. 
 

Keeping An Expression In View 

It would be useful to keep a particular eye on the values in “status”, the MPI 
structure containing success information regarding our MPI send/receive 
commands; we’d like to watch this as we proceed.  We can do this by putting 
expressions into the evaluate window. This is found below the current line/locals 
window. 
 
You can drag “status” from the locals window into the expression window using 
mouse drag and drop techniques, or you can type it in directly by right clicking in 
the evaluate window and selecting “Evaluate expression”. 
 
As status is a structure, it’s contents must be seen; do this by clicking the “+” 
preceding the variable name.  This will open up a hierarchical view of the structure.  
If you have structures within structures you can unfold these too. 
 
We’ll now make processes 1, 2 and 3 send the data. Press `Step Over` whilst the 
“Workers” group is selected. Now examine the status structure and everything 
should be well. On some MPIs the buffering may not be sufficient to let all three 
communications occur without first setting process 0 running, you will be able to 
use the process operation buttons talked about in the previous section to find this 
out if your processes do not stop and instead are running but waiting on I/O. 
 

Finding A Segmentation Fault 

The “hello” program was designed to crash; if the argument “crash” is supplied, it 
will throw a segmentation violation. 
 
We can restart “hello” by selecting `Session` and then the `Restart` option from the 
tool bar.  Then click on `End Session`. 
 
In the session control dialog, type the word “crash” in the arguments box.  Now 
commence the program as before.  When DDT is ready, press play to start 
everything going. 
 

- PAGE 10 - 



Distributed Debugging Tool v1.7 © 2004 

 
Fig.5 Segmentation fault in DDT 

 
One of the processes will bring up a SIGSEGV message (see Fig.5).  If you clear this 
message by clicking `OK`, the process that has failed will be selected by default 
and you can examine exactly where it was when the segmentation violation 
occurred. 
 
It is now straightforward to see that as argv[i] is 0, then dereferencing this has 
thrown the error. You can now go back, edit your program, remove the error, and 
recompile. 
 

- PAGE 11 - 



Distributed Debugging Tool v1.7 © 2004 

5. Conclusion 
You have now mastered the basic operations of DDT for debugging a C program.  
For a more in depth look at the possibilities with DDT you can attempt one of the 
two tutorials (tutorial-1 or tutorial-2) supplied with DDT. 
 
Alternatively you can take a look at the quick start guide and tutorials for Fortran to 
learn how to use DDT to debug Fortran 77 or Fortran 90 code. 
 
For more help on the features of DDT see the supplied Userguide. 

- PAGE 12 - 


	(C programs)
	Contents
	Introduction
	Starting A Session
	Checking Your Program Status

	Controlling Your Processes
	Advancing Processes Forward By A Line
	Stepping Into A Function
	Stepping Out Of A Function
	Following If Branches
	Pausing Processes At A Breakpoint
	Manually Pausing Processes

	Viewing Data
	Current Line
	Local Data
	Keeping An Expression In View
	Finding A Segmentation Fault

	Conclusion

