
Distributed Debugging Tool v1.7 © 2004

The Distributed Debugging Tool

Quickstart Guide
(F77 programs)

- PAGE 1 -

Distributed Debugging Tool v1.7 © 2004

Contents
Contents ... 2
1. Introduction... 3
2. Starting A Session .. 4

Checking Your Program Status ... 5
3. Controlling Your Processes .. 7

Advancing Processes Forward By A Line.. 7
Stepping Into A Function .. 7
Stepping Out Of A Function.. 7
Following If Branches ... 8
Pausing Processes At A Breakpoint ... 8
Manually Pausing Processes ... 8

4. Viewing Data.. 9
Current Line ... 9
Local Data .. 9
Keeping An Expression In View... 9
Finding And Fixing An Error ... 10

5. Conclusion... 12

- PAGE 2 -

Distributed Debugging Tool v1.7 © 2004

1. Introduction
In this document you will use the example program provided with DDT to gain an
overview of DDT and it’s features. You will see how DDT can be used to debug a
fortran 77 program using the basic features found within DDT. After following this
guide you should be able to start a program, control your processes, examine data,
set breakpoints and learn how to find and recover from errors in your programs.

- PAGE 3 -

Distributed Debugging Tool v1.7 © 2004

2. Starting A Session
By now you should have installed DDT successfully. In your DDT directory you will
find the examples subdirectory. We will now compile this:

[examples]$ make –f fmake.makefile

mpif77 -g -O0 -o hellof77 hello.f

[examples]$

To verify that you have MPI working correctly, run the example without DDT first.

[examples]$ mpirun -np 4 ./hellof77

On termination, the hello program will, if your MPI supports I/O (input/output) from
remote processors, have produced output that ends:

[....]

All done... 3

All done... 0

[examples]$

We now start DDT debugging this program:

[examples]$ $DDT ./hellof77 &

DDT will present a dialog box; you should now ensure that the right number of
processors are selected as well as the correct debugger interface for your compilers
and the correct MPI implementation.

If you are unsure which MPI implementation to choose, look in the FAQ for more
help. The most common MPI is “generic”.

- PAGE 4 -

Distributed Debugging Tool v1.7 © 2004

Fig.1 The session control window

You should now see the DDT session control window as in Fig.1. Select “Run” and
DDT will connect to your processes, load your source files and take you into the
main DDT window, ready to begin your debugging.

Checking Your Program Status

After loading the example program into DDT as described above your main DDT
window should look like the one seen in Fig.2. The source files that have been
found are shown, and the current file, that from which MPI_Init is called, will be
loaded and shown. You can examine any of your source files at any time by
selecting it from the list.

At the top of the screen is a collection of coloured numbered boxes, and three lines:
“All”, “Root” and “Workers”. These are process groups. Process groups are used to
control your processes en-masse. Each numbered box represents a process. One of
the lines will be brighter than the others, and one of the boxes may be brighter and
have a dotted border. These are the current group and the current process (if one is
selected) respectively.

The process boxes are either red or green. A green process is running, and a red
process is stopped, it could be paused or it may have terminated.

You should see a red bar on the line containing MPI_Init. This indicates that some
processes in the red process group are on that line, and the red process group is
the current group. If the line is bright, this also means that the currently selected
process is on that line. Hover your mouse pointer over this line and DDT will tell
you which processes are at that point. Select a different process group by clicking
on “Workers”. The red line will change to the colour of the Workers group.

- PAGE 5 -

Distributed Debugging Tool v1.7 © 2004

Information about which line a processor is on is updated every time the program is
paused.

Fig.2 DDT main window

- PAGE 6 -

Distributed Debugging Tool v1.7 © 2004

3. Controlling Your Processes
Process groups as described above are used to control most of the operations you
will wish to perform on your processes. If you wish to make all processes stop at a
point in your code, or all processes move a single step, the “All” process group
would be selected. Alternatively, if none of the predefined groups are exactly right
for you, by right clicking in the process group area, you can create your own using
drag and drop moves.

The next step in our exercise will be to advance all the processes through the code.
We will be using the process operation buttons found in the toolbar just below the
process groups (see Fig.3). These buttons are (from left to right): Play, Pause, Step
In, Step Over, and Step Out.

Fig.3 Process operation buttons

Advancing Processes Forward By A Line

Select the “All” process group using the mouse, and then press the `Step Over`
button. The red line in your code will advance one line, your processes may also
briefly turn green whilst they perform the step, returning to red when they have
finished working.

In the example, press step over again - until the processes are at the line: “CALL
FUNC1()”.

Stepping Into A Function

Suppose we now wish to see what happens inside FUNC1(). Press the `Step Into`
button, and the code window leaps to the relevant part of the source code. The
processes have now moved into FUNC1().

Do this again to enter FUNC().

Stepping Out Of A Function

You should now be seeing the definition of FUNC2() and it looks uninteresting so
lets go back up to FUNC1() and see what happens there. Click the `Step Out`
button. The processes will now continue until they reach the end of FUNC2() and
then return to FUNC1().

After this the processors are still shown as being on the line of FUNC1() that calls
FUNC2(); this is because it hasn’t finished executing the last part of this line, which
is where the return value of FUNC2() is assigned to test.

- PAGE 7 -

Distributed Debugging Tool v1.7 © 2004

Following If Branches

Probably the most important part of FUNC1() is the if statement and we’d like to
watch what happens in there; which path is taken. By stepping over we can watch
what happens as the program proceeds. Use the `Step Over` button to do this until
you leave FUNC1().

Pausing Processes At A Breakpoint

You could keep using `Step Over` until you have reached a point in your code that
is important to you, but this would be time consuming. It’s also possible that some
processes may take more instructions to reach a point of interest than others,
leading to different processes being on different lines of code. A better idea is to
cause your processors to stop at a breakpoint.

We’d like to see what is happening during an MPI operation - where process 0 is
receiving data from all of the other processes. Select the process group “Workers”
and then click on the line containing MPI_Send; line 54. Click the right mouse
button and choose “Add breakpoint”, this will add a breakpoint for the currently
selected group.

Now select the “All” process group, and press play to resume execution. After a
short period of computation, you will see that process 0 is Green, still running, and
processes 1, 2 and 3 have reached the breakpoint.

You can have as many breakpoints as you like, each breakpoint you set will be active
for the currently selected process group. You can see all the breakpoints that are
set by clicking on the breakpoints tab at the bottom of the window.

Manually Pausing Processes

Process 0 is still running, but we can guess that it will be waiting to receive data and
is not actually “working”. By selecting either the “Root” or the “All” group if neither
is selected, and then pressing `Pause`, process 0 can now be stopped.

Select process 0 and you will see the stack, located to the right side of the code.
This can be viewed by clicking the mouse over the stack display window, which will
currently be displaying the top of the stack.

If you double click on process 0 the code window will jump to the point in the code
where process 0 has paused and will bring the stack frame up to the correct stack to
view the currently highlighted line in the code, and it’s associated variables.

All of the process operation buttons, and the setting of breakpoints work on the
currently selected process group. The ability to configure and save your own groups
is a very powerful feature making it much easier to debug your programs using
DDT.

- PAGE 8 -

Distributed Debugging Tool v1.7 © 2004

4. Viewing Data
Now that you know how to control processes in DDT, we are now ready to look at
the data or contents of the processes.

Current Line

By clicking on any of the paused processes, we can examine the data on the current
line of code. If we choose any of the processes that have just executed a send
procedure we can view the message that is about to be sent to process 0. First
select process 1 (using a double click) and then click on the “Current Line” tab, to
the right of the window.

The current line panel shows the variables that used on the current line of code for
the currently selected process. In this case we can see the “message” variable, and
the dest and tag variables. We can see that the dest and tag variables are integers
with a value of 0. We can also tell from looking at the “message” variable that it is
an array, as we can see there is a “+” on the left of the variable name.

You can see more than the currently selected line by dragging the mouse around the
lines of interest in the code window.

Fig.4 Current line for process 1

Local Data

The variables known as “locals”, those in scope in your current function, and in the
case of Fortran most other global variables; can be seen by clicking the locals tab.

Keeping An Expression In View

It would be useful to keep a particular eye on the values in “ierr”, in order to know if
our mpi calls are throwing errors or not; we’d like to watch this as we proceed. We
can do this by putting expressions into the evaluate window. This is found below
the current line/locals window.

- PAGE 9 -

Distributed Debugging Tool v1.7 © 2004

You can drag “ierr” from the locals window into the expression window using mouse
drop and drop techniques, or you can type it in directly by right clicking in the
evaluate window and selecting “Evaluate expression”.

We’ll now make processors 1, 2 and 3 send the data. Press `Step Over` whilst the
“Workers” group is selected. Now examine the value of ierr for each of the 3
processes and it should still be 0. On some MPIs the buffering may not be sufficient
to let all three communications occur without first setting process 0 running, you
will be able to use the process operation buttons talked about in the previous
section to find this out if your processes do not stop and instead are running but
waiting on I/O.

Finding And Fixing An Error

The “hello” program was designed to break. If the program is started with exactly 8
processes it will abort with an error. Lets try to find and fix this error.

We can restart “hello” by selecting `Session` and then the `Restart` option from the
tool bar. Then click on `End Session`.

In the session control dialog, change the number of processes to 8. Now commence
the program as before. When DDT is ready, press play to start everything going.

Fig.5 Error output in DDT

Some of the processes will appear to end and some will appear to continue running.
Click on the `All` group and then pause the remaining processes using the `pause`

- PAGE 10 -

Distributed Debugging Tool v1.7 © 2004

button. Change the output window at the bottom so that you are viewing the
`stderr` queue.

You will see that process 5 has aborted with an invalid rank error. If you now
double click on process 5 your code window will jump to the line on which it has
broken.

It is now obvious to see that you are trying to call an MPI_Send without first
initializing the variable “dest”.

In this way it is possible to find errors and faults in your code and locate where they
are and what the problem is.

Hint: You will also have noticed a p4_error output in the `stdout` window, this is often a sign
that some memory allocation problem has occurred and is a good first guide to the fact that
you have a problem in your program. See Fig.6 for an example of this.

Fig.6 Errors in the Stdout window

- PAGE 11 -

Distributed Debugging Tool v1.7 © 2004

5. Conclusion
You have now mastered the basic operations of DDT for debugging a fortran 77
program. For a more in depth look at the possibilities with DDT you can attempt
one of the two tutorials (tutorial-1 or tutorial-2) supplied with DDT.

Note: These tutorials deal with c programs.

Alternatively you can take a look at the quick start guide and tutorials for C, to learn
how to use DDT’s powerful features on standard C code.

For more help on the features of DDT see the supplied Userguide.

- PAGE 12 -

	(F77 programs)
	Contents
	Introduction
	Starting A Session
	Checking Your Program Status

	Controlling Your Processes
	Advancing Processes Forward By A Line
	Stepping Into A Function
	Stepping Out Of A Function
	Following If Branches
	Pausing Processes At A Breakpoint
	Manually Pausing Processes

	Viewing Data
	Current Line
	Local Data
	Keeping An Expression In View
	Finding And Fixing An Error

	Conclusion

