
Distributed Debugging Tool v1.7 © 2004

The Distributed Debugging Tool

Userguide

- PAGE 1 -

Distributed Debugging Tool v1.7 © 2004

- PAGE 2 -

Distributed Debugging Tool v1.7 © 2004

Contents
Contents ... 3
1. Introduction... 7
2. Installation... 8

Licence Files... 8
Floating Licences.. 9
Getting Help... 10

3. Starting DDT.. 11
Debugging Multi-Process Programs ... 11
Debugging Single-Process Programs.. 13
Debugging A Core File ... 14
Attaching To Running Programs ... 14
Configuring DDT With Queuing Systems... 17
Starting A Job In A Queue ... 19
Choosing The Right Debugger.. 19

4. DDT Overview .. 21
Saving And Loading Sessions.. 22
Source Code... 22
Finding Lost Source Files .. 22
Dynamic Libraries... 23
Finding Code Or Variables .. 23
Jump To Line.. 23
Editing Source Code ... 23

5. Controlling Program Execution... 24
Process Control And Process Groups .. 24
Hotkeys.. 25
Starting, Stopping And Restarting A Program ... 26
Stepping Through A Program ... 26
Setting Breakpoints .. 26
Conditional Breakpoints ... 27
Suspending Breakpoints ... 27
Deleting A Breakpoint... 27
Loading And Saving Breakpoints... 28
Synchronizing Processes .. 28
Setting A Watch .. 28
Examining The Stack Frame.. 29
Align Stacks ... 29
Examining Threads... 30

6. Variables And Data .. 31
Current Line ... 31

- PAGE 3 -

Distributed Debugging Tool v1.7 © 2004

Local Variables ... 31
Arbitrary Expressions And Global Variables .. 32
Changing Data Values .. 32
Examining Pointers .. 32
Examining Multi-Dimensional Arrays.. 33
Visualizing Data ... 34
Cross-Process Comparison .. 35
Viewing Registers... 36
Interacting Directly With The Debugger .. 36

7. Program Input And Output... 38
Viewing Standard Output And Error .. 38
Displaying Selected Processes .. 38
Saving Output .. 39
Sending Standard Input (DDT-MP) .. 39

8. Message Queues .. 40
9. The Licence Server ... 42

Running The Server .. 42
Running DDT Clients .. 42
Logging.. 43
Troubleshooting... 43
Adding A New Licence .. 43
Examples ... 43
Example Of Access Via A Firewall ... 44
Querying Current Licence Server Status .. 45
Licence Server Handling Of Lost DDT Clients .. 46

A. Supported Platforms .. 48
B. Troubleshooting DDT.. 49

Problems Starting DDT Frontend .. 49
Problems Starting Scalar Programs ... 49
Problems Starting Multi-Process Programs ... 50

C. FAQs.. 52
DDT will not load - what's wrong? .. 52
Why can't DDT find my hosts or the executable?... 52
Why am I getting an error message about the debugger when starting my job? .. 52
The progress bar doesn't move and DDT 'times out' ... 52
The progress bar gets close to half the processes connecting and then stops and
DDT 'times out' .. 53
My program runs but I can't see any variables or line number information, why
not?... Error! Bookmark not defined.
I am using MPI_Get_processor_name() and I get "Process n has stopped with signal
SIGTRAP" when I click play.. 53

- PAGE 4 -

Distributed Debugging Tool v1.7 © 2004

My program doesn't start, and I can see a console error stating "QServerSocket:
failed to bind or listen to the socket".. 53
Why can't I see any output on stderr? ... 54
DDT complains about being unable to execute malloc.. 54
Why can't I use watches with the Intel IDB interface? ... 54
Why is my stack trace empty/incomplete? .. 54
Some features seem to be missing (e.g. watch points) - what's wrong? 54
My code does not appear when I start DDT... 54
When I use step out my program hangs.. 55
When viewing messages queues after attaching to a process I get a “Cannot find
Message Queue DLL” error ... 55
I get the error `The mpi execution environment exited with an error, details
follow: Error code: 1 Error Messages: “mprun:mpmd_assemble_rsrcs: Not enough
resources available”` when trying to start DDT... 55
What do I do if I can't see my running processes in the attach window? 55
When trying to view my Message Queues using mpich I get no output but also see
no errors.. 56
Obtaining Support.. 56

D. Debugging Fortran... 57
How do I view the contents of an array which is given as a parameter to a
subroutine and appears as "PTR TO ..." in the locals window? 57
Why is getting local variables so slow?.. 57
Why are there patched gdbs in the DDT distribution? ... 57

E. Notes On MPI Distributions ... 59
Bproc ... 59
HP MPI.. 59
LAM/MPI .. 59
MPICH And SMP Nodes ... 59
MPICH p4 ... 59
MPICH p4 mpd ... 60
MPICH-GM ... 60
IBM PE .. 60
NEC MPI ... 61
Quadratics MPI ... 61
SCore ... 61
Scyld .. 62
SGI Altix/Irix .. 62

F. Notes On Debuggers... 63
Absoft .. 63
GNU ... 63
Intel Compilers... 63

- PAGE 5 -

Distributed Debugging Tool v1.7 © 2004

Portland Group Compilers .. 64
Solaris DBX... 64
HP-UX And wdb ... 65

G. Architectures ... 66
AMD Opteron 64-Bit .. 66
SGI Altix 3000 .. 66
IBM AIX Systems ... 66

Index... 67

- PAGE 6 -

Distributed Debugging Tool v1.7 © 2004

1. Introduction
The Distributed Debugging Tool is an intuitive, scalable, graphical debugger. This
document introduces DDT and explains how to use it to its full potential. If you just
wish to get started with DDT, you will find that the examples directory of your DDT
installation contains a quick-start example.

DDT can be used as a single-process (non MPI) or a multi-process program
debugger. The availability of these capabilities will depend on the licence that you
have - although multi-process licences are always capable of supporting single-
process debugging.

Both modes of DDT are capable of debugging multiple threads, including OpenMP
codes. DDT provides all the standard debugging features (stack trace, breakpoints,
watches, view variables, threads etc.) for every thread running as part of your
program, or for every process - even if these processes are distributed across a
cluster using an MPI implementation.

Multi-process DDT encourages the construction of user-defined groups to manage
and apply debugging actions to multiple processes. Once you are comfortable
working with groups of processes, everything else becomes simple and intuitive. If
you have used a visual debugger before you will find DDT's interface familiar. Using
DDT to debug MPI code makes debugging parallel code as easy as debugging serial
code.

C, C++, Fortran and Fortran90 are all supported by DDT, along with a large number
of platforms, compilers and MPI libraries.

- PAGE 7 -

Distributed Debugging Tool v1.7 © 2004

2. Installation
DDT is downloadable from the Streamline Computing website. The package is
installed by untarring and running the install.sh script.

tar xvf ddt1.x-arch.tar

./install.sh

For the purposes of the rest of this document, the install directory that you choose
will be referred to as $DDTPATH

During this phase of installation, you will be given a choice of where to install DDT.
DDT can be installed by a single user in the user's home or by an administrator in a
common directory where file permissions permit.

A number of environment variables are required for DDT to function correctly. Users
can set these within their own accounts, or system administrators can provide
appropriate universal set up scripts.

It is important to follow the instructions in the README file that is contained in the
tar file.

Due to the vast number of different site configurations and MPI distributions that
are supported by DDT, it is inevitable that some users will need to take further steps
to get DDT working. For example, it may be necessary to ensure that environment
variables are propagated to remote nodes, and that DDT's libraries and executables
are available on the remote nodes.

Licence Files

Licence files should be stored as $DDTPATH/Licence.

If this is inconvenient, the user can specify the location of a licence file using an
environment variable, DDT_LICENCE_FILE. For example:

export DDT_LICENCE_FILE=$DDTPATH/SomeOtherLicence

The user also has the choice of using DDT_LICENSE_FILE as the environment
variable.

- PAGE 8 -

Distributed Debugging Tool v1.7 © 2004

The order of precedence when searching for licence files is:

• $DDT_LICENCE_FILE
• $DDT_LICENSE_FILE
• $DDTPATH/Licence.

If you do not have a licence file, the DDT frontend will not start. A warning message
will be presented.
For remote MPI processes, you will also require the licence to be installed on the
nodes. If this licence is not present, the remote nodes will be unable to connect to
the frontend.

Time-limited evaluation licences are available from the Streamline Computing
website.

Floating Licences

For users with floating licences, the licensing daemon must be started prior to
running DDT.

$DDTPATH/bin/licenceserver &

This will start the daemon, it will serve all floating licences in the current working
directory that match Licence* or License*.

The hostname, port and MAC address of the licence server will be agreed with you
before issuing the licence, and you should ensure that the agreed host and port will
be accessible by users.

DDT clients will use a separate client licence file which identifies the host, port, and
licence number.

Log files can be generated for accounting purposes.

For more information on the Licence Server please see section 9 of this document.

- PAGE 9 -

Distributed Debugging Tool v1.7 © 2004

Getting Help

In the event of difficulties - in either installing or using DDT - please consult the
appendix to this document or the support and software updates section of our
website. This document is also available from within DDT by pressing F1.

Support is also available from the support team – ddt@streamline-computing.com

- PAGE 10 -

mailto:ddt@streamline-computing.com

Distributed Debugging Tool v1.7 © 2004

3. Starting DDT
As always, when compiling the program that you wish to debug, you must add the
debug flag to your compile command. For the most compilers this is `-g`. It is also
advisable to turn off compiler optimisations as these can make debugging appear
strange and unpredictable. If your program is already compiled without debug
information you will need to remake the files that you are interested in again.

To start DDT simply type one of the following into a shell window:
ddt

ddt program_name

ddt program_name arguments

Once DDT has started it will display the `session Control` dialog used for
configuring, starting and stopping debug sessions.

Debugging Multi-Process Programs

Fig.1 Session control dialog

If your licence supports multi-process debugging, you will usually see the above
dialog.

If your previous DDT session was debugging non-MPI codes, the view will be more
compact than the above, and in this case you will be able to choose an MPI
implementation and this will restore the full complement of parameter boxes.

- PAGE 11 -

Distributed Debugging Tool v1.7 © 2004

In the application box, enter the full path to your application. If you specified one on
the command line, this will already be filled in. You may alternatively select an
application by clicking on the `...`.

The next box is for arguments. These are the arguments passed to your application,
and will be automatically filled if you entered some on the command line.

The MPIRun arguments box is for arguments that are passed to `mpirun` or your
equivalent (such as `scrun` on SCore, `mprun` on Solaris) – usually prior to your
executable name in normal mpirun usage. You can place machine file arguments – if
necessary – here. For most users this box can be left empty.

Please note that you should not enter the “-np” argument as DDT will do this for
you.

The MPIRun environment should contain environment variables that should be
passed to `mpirun` or its equivalent: some implementations allow you to set extra
variables such as MPI_MAX_CLUSTER_SIZE=1 on MPICH. These environment variables
may also be passed to your program, depending on which MPI implementation your
system uses. Most users will not need to use this box.

The choice of MPI implementation is critical to correctly starting DDT. Your system
will normally use one particular MPI implementation. If you are unsure as to which to
pick, try `generic`, consult your system administrator or Streamline. A list of
settings for common implementations is provided in the appendix.

A debugger is then chosen to interact with each of your processes. In the select
interface box, you should select from the appropriate debugger for your compiler
and platform: See choosing the right debugger (page 15).

Finally you should enter the number of processes that you wish to run. DDT
supports over 256 processes but this is limited by your licence.

Select run to start your program – or submit if working through a queue (see
Configuring DDT with Queuing Systems). This will run your program through the
debug interface you selected and will allow your MPI implementation to determine
which nodes to start which processes on.

The kill button is provided to end the current session that you are running. This will
close all processes and stop any running code. If any processes remain you may

- PAGE 12 -

Distributed Debugging Tool v1.7 © 2004

have to clean them up manually using the `kill` command or a command provided
with your MPI implementation such as `mpkill` on Solaris.

Debugging Single-Process Programs

Fig.2 Single-process session control dialog

Users with single-process licences will immediately see the session control dialogue
that is appropriate for single-process applications.

Users with multi-process licences should set the MPI Implementation to “none” -
this will then place DDT into single-process mode and a dialog similar to the above
will be shown. DDT can be placed into multi-process mode by changing the MPI
implementation to anything except “none”.

Select the application – either by typing the file name in, or selecting using the
browser by clicking the “...” button. Arguments can be typed into the supplied box.

Choose the correct debugger for the program. This will depend on the compiler
which you have used: see the section on choosing the right debugger (page 15).

Finally press run to start your program.

- PAGE 13 -

Distributed Debugging Tool v1.7 © 2004

Debugging A Core File

Fig.3 The open core dialog

DDT allows you to debug a single core file generated by your application. Core files
are not supported on all platforms and debug interfaces. The supported platforms
and debug interfaces are:

• Irix (SGI dbx)
• HP-UX (gdb)
• Linux (Intel idb, GNU gdb and Absoft Fx2)
• Solaris (Sun dbx)

To debug using a core file, click on the `Open Core` button from the session
control dialog. This switches to the `Open Core` dialog, which allows you to select
an application, a core file and a debug interface. Clicking on `Open` will load the
core file and start debugging it. While DDT is in this mode, you cannot play, pause
or step because there is no process active - you are able to evaluate expressions
and browse the variables and stack frames saved in the core file. Choosing to kill
the session and restart will return DDT to its normal mode of operation.

Attaching To Running Programs

DDT can attach to running processes on any machine you have access to, whether
they are from MPI or scalar jobs, even if they have different executables and source
paths. To make this possible you or your system administrator should provide a
script called `remote-exec` in the $DDTPATH/bin directory. It will be executed like
this:

remote-exec HOSTNAME APPNAME [ARG1] [ARG2] ...

- PAGE 14 -

Distributed Debugging Tool v1.7 © 2004

The script must start APPNAME on HOSTNAME with the arguments ARG1 ARG2 and
without further input (no password prompts). Standard output from APPNAME must
appear on the standard output of remote-exec. On most systems the script can be
implemented using rsh, as shown here:

#!/bin/sh

rsh $*

This particular implementation depends on having an appropriate `.rhosts` file in
your home directory as explained in the rsh manpage. DDT comes with a default
`remote-exec` file, set up as in the above example.

Once the script is set up (we advise testing it at the command line before using
DDT) you must also provide a plain text file listing the nodes you want DDT to look
for processes to attach to, e.g.

localhost

comp00

comp01

comp02

comp03

This file can be placed anywhere you have read access to, and may be provided by
your system administrator. DDT must be given the location of this file – to do this
just set the `Node list file` in the options window (`Session -> Configuration`).
Each host name in this file will be sent to the remote-exec script as the HOSTNAME
argument when DDT scans for and attaches to processes.

With the script and the node list configured, clicking on the `Attach` button will
show DDT's Attach Dialog:

- PAGE 15 -

Distributed Debugging Tool v1.7 © 2004

Fig.4 Attach dialog

Initially the list of processes will be blank while DDT scans the nodes provided in
your node list file for running processes. When all the nodes have been scanned (or
have timed out) the dialog will appear as shown. If you have not already selected an
application executable to debug, you must do so here. Ensure that the list shows all
the processes you wish to debug in your job, and no extra/unnecessary processes.
You may modify the list by selecting and removing unwanted processes, or
alternatively selecting the processes you wish to attach to and clicking on `Attach to
selected processes`. If no processes are selected, DDT uses the whole visible list.

Some MPI implementations (such as MPICH) create forked (child) processes that are
used for communication, but are not part of your job. To avoid displaying and
attaching to these, make sure the `Hide forked children` box is ticked. DDT's
definition of a forked child is a child processes that shares the parent's name. Some
MPI implementations (such as the Scyld implementation) create your processes as
children of each other. If you cannot see all the processes in your job, try clearing
this checkbox and selecting specific processes from the list.

Once you click on the `Attach to selected/listed processes` button, DDT will use
remote-exec to attach a debugger to each process you selected and will proceed to
debug your application as if you had started it with DDT. When you end the debug

- PAGE 16 -

Distributed Debugging Tool v1.7 © 2004

session, DDT will detach from the processes rather than terminating them – this will
allow you to attach again later if you wish.

Because DDT is capable of attaching to several MPI and non-MPI programs in the
same session, the rank numbers displayed may not be accurate – particularly if you
have attached to a subset of the processes in your job. Streamline is working on
methods to automatically determine process rank and/or display PID for processes
with no rank. If this is an issue for you, please contact Streamline for information on
and access to our feature development programme.

Configuring DDT With Queuing Systems

DDT can be configured to work with most job submission systems. In the
configuration window, you should choose `submit job through queue` . This
displays extra options and switches DDT into queue submission mode.

Your system administrator may wish to provide a DDT config file containing the
correct settings, removing the need for individual users to configure their own
settings.

In this mode, DDT uses a template script to interact with your queue system. The
“templates” subdirectory contains some example scripts that can be modified to
meet your needs. $DDTPATH/templates/sample.qtf, demonstrates the process of
creating a template file in some detail.

The template script is based on the file you would normally use to submit your job -
typically a shell script that specifies the resources needed such as number of
processes, output files, and executes `mpirun`, `vmirun`, `poe` or similar with
your application. The most important difference is that job-specific variables, such
as number of processes, number of nodes and program arguments, are replaced by
capitalized keyword tags, such as NUM_PROCS_TAG. When DDT prepares your job, it
replaces each of these keywords with its value and then submits the new file to your
queue.

Once you have selected a queue template file, enter submit, display and cancel
commands. When you start the debug session DDT will generate a submission file
and append its filename to your submit command. For example, if you normally
submit a job by typing `job_submit -u myusername -f myfile` then in DDT you
should enter `job_submit -u myusername -f` as the submit command.

- PAGE 17 -

Distributed Debugging Tool v1.7 © 2004

Fig.5 Queuing systems

To cancel a job, DDT will use a regular expression you provide to get a value for
JOB_ID_TAG. This is substituted into the cancel command and executed to remove
your job from the queue. The first bracketed expression in the regexp is used in the
cancel command. The elements listed in the table are in addition to the conventional
quantifiers, range and exclusion operators.

Element Matches
C A character represents itself
\t A tab
. Any character
\d Any digit
\D Any non-digit
\s Whitespace
\S Non-whitespace
\w Letters or numbers (a word character)
\W Non-word character

For example, your submit program might return the output “job id j1128 has been
submitted” - one regular expression for getting at the job id is “id\s(.+)\shas”. If

- PAGE 18 -

Distributed Debugging Tool v1.7 © 2004

you would normally remove the job from the queue by typing “job_remove j1128”
then you should enter “job_remove JOB_ID_TAG” as DDT's cancel command.

Some queue systems allow you to specify the number of processes, others require
you to select the number of nodes and the number of processes per node. DDT
caters for both of these but it is important to know whether your template file and
queue system expect to be told the number of processes (NUM_PROCS_TAG) or the
number of nodes and processes per node (NUM_NODES_TAG and
PROCS_PER_NODE_TAG). If these terms seem strange, see 'sample.qtf' for an
explanation of DDT's queue template system.

Please note that for DDT v1.5 onwards an extra environment variable must be set
whilst working with most queue systems: DDT_IGNORE_MPI_OUTPUT should be set
to 1 prior to starting DDT.

Starting A Job In A Queue

Clicking submit from the usual session control dialog will display the queue status
until your job starts. DDT will execute the display command every second and show
you the standard output. If your queue display is graphical or interactive then you
cannot use it here.

If your job does not start or you decide not to run it, click on `Cancel Job`. If the
regular expression you entered for getting the job id is invalid or if an error is
reported then DDT will not be able to remove your job from the queue – it is
strongly recommend you check the job has been removed before submitting
another as it is possible for a forgotten job to execute on the cluster and either
waste resources or interfere with other debug sessions.

Once your job is running, it will connect to DDT and you will be able to debug it.

Choosing The Right Debugger

DDT uses standard command-line debuggers to control your program. The number
of debuggers listed will depend on your platform and licence.

In general, the best debugger to choose is the one written for your compiler. The
choice for Linux can be overwhelming, and this table summarizes the options.

Compiler Recommended
Debugger

Version Notes

- PAGE 19 -

Distributed Debugging Tool v1.7 © 2004

Absoft FX2 Beta Available from Absoft and
Streamline

GNU GDB 5.2.1 and above Patched GDB included with
DDT supports Fortran

Intel IDB Build date 2003-
03-03 and above

More recent versions (2003-06-
10+) are faster and have better
memory usage

Portland PGDBG 4.0.2 and above May require MPICH to be
compiled -g, except for most
recent PGDBG
A supplied GDB, patched to
support Portland, can also be
used for codes compiled -
Mstabs

AMD Opteron users should note that there are 32 bit and 64 bit versions of GDB
supplied, these should be used for 32 bit and 64 bit applications as appropriate.

- PAGE 20 -

Distributed Debugging Tool v1.7 © 2004

4. DDT Overview
DDT uses a multi-document interface which is common in many present day
applications. This allows you to have many source files open, and to view one in the
full workspace area, or to tile or cascade them. You may switch between these
modes in the `Window` menu.

Each component of DDT (labeled and described in the key) is a dockable window,
which may be dragged around by a handle (usually on the left hand edge).
Components can also be dragged outside of DDT to form a new window.

You can hide or show each component using the `View` menu. The screen shot
shows the default DDT layout.

Key
(1) Menu bar
(2) Process controls
(3) Process group window (DDT-MP)
(4) File window
(5) Code window
(6) Variable window
(7) Expression window
(8) Output window
(9) Status bar

- PAGE 21 -

Distributed Debugging Tool v1.7 © 2004

Fig.6 DDT main window

Please note that on some platforms, the default screen size can be insufficient to
display the status bar – if this occurs, you should expand the DDT window until DDT
is completely visible.

Saving And Loading Sessions

Most of the user-modified parameters and windows are saved by right clicking and
selecting a save option in the corresponding window.

However, DDT also has the ability to load and save all these options concurrently to
minimize the inconvenience in restarting sessions. Saving the session stores such
things as process groups, the contents of the evaluate window and more. This
ability makes it easy to debug code with the same parameters set time and time
again.

To save a session simply use the `save Session` option from the `Session` menu.
Enter a filename (or select an existing file) for the save file and click OK. To Load a
session again simply choose the `Load Session` option from the `session` menu,
choose the correct file and click OK.

Source Code

When DDT begins a session, source code is automatically found from the
information compiled in the executable.
Source and header files found in the executable are reconciled with the files present
on the front-end server, and displayed in a simple tree view. Source files can be
loaded for viewing by clicking on the filename.

Whenever a selected process is stopped, the source code browser will automatically
leap to the correct file and line, if the source is available.

Finding Lost Source Files

On some platforms, not all source files are found automatically. This can also occur,
for example, if the executable or source files have been moved since compilation.
Extra directories to search for source files can be added by right clicking whilst in
the project files window, and selecting “Add source directories”. After adding the
directories necessary, right click again and select “Scan for more sources”.

- PAGE 22 -

Distributed Debugging Tool v1.7 © 2004

Dynamic Libraries

If a library is loaded dynamically, its source file may not be found at the time the
program starts. The source can be added by right clicking whilst in the project files
window, and selecting “Scan for more sources”.

Finding Code Or Variables

The `Find` and `Find in Files` dialogs are found from the `search` menu. The
`Find` dialog will find occurences of an expression in the currently visible source
file. The `Find in Files` dialog searches all source and header files associated with
your program and lists the matches in a result box. Click on a match to display the
file in the main code window and highlight the matching line; this can be of
particular use for setting a breakpoint at a function.

Jump To Line

DDT has a jump to line function which enables the user to go directly to a line of
code. This is found in the `search` menu. A dialog will appear in the center of your
screen. Enter the line number you wish to see and click OK. This will take you to the
correct line providing that you entered a line that exists. You can also use the
hotkey CTRL-G to access this function quickly.

Editing Source Code

If, prior to starting DDT, you set the environment variable “DDT_EDITOR” to be the
name of an editor/script that is an X application then on right clicking in the source
code window, DDT will offer to launch your editor and bring your code up at the line
selected by the mouse. For example:

export DDT_EDITOR=emacs

export DDT_EDITOR=xterm -e vi

- PAGE 23 -

Distributed Debugging Tool v1.7 © 2004

5. Controlling Program Execution
Whether debugging a multi-process or a single process code, the mechanisms for
controlling program execution are very similar.

In multi-process mode, most of the features described in this section are applied
using process groups, which we describe now. For single process mode, the
commands and behaviors are identical, but apply to only a single process – freeing
the user from concerns about process groups.

Process Control And Process Groups

Fig.7 The process group viewer

MPI programs are designed to run as more than one process and can span many
machines. DDT allows you to group these processes so that actions can be
performed on more than one process at a time. The status of processes can be seen
at a glance by looking at the process group viewer. The process group viewer is (by
default) at the top of the screen with multi-coloured rows. Each row relates to a
group of processes and operations can be performed on the currently highlighted
group (e.g. playing, pausing and stepping) by clicking on the toolbar buttons. Switch
between groups by clicking on them or their processes - the highlighted group is
indicated by a lighter shade.

Each process is represented by a square containing its MPI rank (0 through n-1).
The squares are colour-coded; red for a paused/stopped process and green for a
running process. Any selected processes are highlighted with a lighter shade of their
colour and the current process also has a dashed border. When a single process is
selected the local variables are displayed in the variable viewer and displayed
expressions are evaluated. You can make the code viewer jump to the file and line
for the current stack frame (if available) by double-clicking on a process.

Groups can be created, deleted, or modified by the user at any time, with the
exception of the `All` group, which cannot be modified. To copy processes from
one group to another, simply click and drag the processes. To delete a process,

- PAGE 24 -

Distributed Debugging Tool v1.7 © 2004

press the delete key. When modifying groups it is useful to select more than one
process by holding down one or more of the following:

Key Description
Control Click to add/remove process from selection
Shift Click to select a range of processes
Alt Click to select an area of processes

Note: Some window managers (such as KDE) use Alt and drag to move a window -
you must disable this feature in your window manager if you wish to use the DDT's
box select.

Groups are added and deleted from a context-sensitive menu that appears when
you right-click on the process group widget. This menu can also be used to rename
groups, delete individual processes from a group and jump to the current position
of a process in the code viewer. You can load and save the current groups to a file,
but be careful when using this feature as the number of processes might have
changed since the file was saved. If you are on a process group already when you
right click, the further option of `add complement with` with be enabled. This
allows a new group to be created using the set difference of the currently selected
group and the one you choose from the submenu.

Hint: To communicate with a single process, create a new group and drag that process into
it.

Hotkeys

DDT comes with a pre-defined set of hotkeys to enable easy control of your
debugging. All the features you see on the toolbar and several of the more popular
functions from the menus have hotkeys assigned to them. Using the hotkeys will
speed up day to day use of DDT and it is a good idea to try to memorize these.

Key Function
F9 Play
F10 Pause
F5 Step into
F8 Step over
F6 Step out
CTRL-D Down stack frame
CTRL-U Up stack frame
CTRL-B Bottom stack frame
CTRL-A Align stack frames with current
CTRL-G Goto
CTRL-F Find

- PAGE 25 -

Distributed Debugging Tool v1.7 © 2004

Starting, Stopping And Restarting A Program

The Session Control dialog can be accessed at almost any time while DDT is
running. If a program is running you can kill it and run it again or run another
program. When DDT's startup process is complete your program should
automatically stop either at the main function for non-MPI codes, or at the MPI_Init
function for MPI.

When a job has run to the end DDT will show a dialog box asking if you wish to
restart the job. If you select yes then DDT will kill any remaining processes and clear
up the temporary files and then restart the session from scratch with the same
program settings.

When killing a job, DDT will attempt to ensure that all the processes are shutdown
and clear up any temporary files. If this fails for any reason you may have to
manually kill your processes using `kill`, or a method provided by your MPI
implementation such as `lamclean` for LAM/MPI.

Stepping Through A Program

To start the program running click `play` and to stop it at any time click `pause`.
For multi-process DDT these start/stop all the processes in the current group (see
Process Control and Process Groups).

Like many other debuggers there are three different types of step available. The first
is `step into` that will move to the next line of source code unless there is a
function call in which case it will step to the first line of that function. The second is
`step over` that moves to the next line of source code in the bottom stack frame.
Finally, `step out` will execute the rest of the function and then stop on the next
line in the stack frame above.

When using step out be careful not to try and step out of the main function. Doing
this will cause problems with the debugger most likely resulting in your program
hanging. With some debuggers DDT will detect the defunct process and time out.

Setting Breakpoints

First locate the position in your code that you want to place a breakpoint at. If you
have a lot of source code and wish to search for a particular function you can use
the `Find`/`Find in files` dialog. Clicking the right mouse button in the code

- PAGE 26 -

Distributed Debugging Tool v1.7 © 2004

window displays a menu showing several options, including one to add or remove a
breakpoint. In multi-process mode this will set the breakpoint for every member of
the current group.

Every breakpoint is listed under the breakpoints tab towards the bottom of DDT's
window.

Conditional Breakpoints

Fig.8 The breakpoints table

Select the breakpoints tab to view all the breakpoints in your program. You may add
a condition to any of them by clicking on the condition cell in the breakpoint table
and entering an expression that evaluates to true or false. Each time a process (in
the group the breakpoint is set for) passes this breakpoint it will evaluate the
condition and break only if it returns true (typically any non-zero value). You can
drag an expression from the evaluate window into the condition cell for the
breakpoint and this will be set as the condition automatically.

Suspending Breakpoints

A breakpoint can be temporarily deactivated and reactivated by
checking/unchecking the activated column in the breakpoints panel.

Deleting A Breakpoint

Breakpoints are deleted by either right-clicking on the breakpoint in the breakpoints
panel, or by right clicking at the file/line of the breakpoint whilst in the correct
process group and right clicking and selecting delete breakpoint.

- PAGE 27 -

Distributed Debugging Tool v1.7 © 2004

Loading And Saving Breakpoints

To load or save the breakpoints in a session right click in the breakpoint panel and
select the load/save option. Breakpoints will also be loaded and saved as part of the
load/save session.

Synchronizing Processes

If the processes in a process group are stopped at different points in the code and
you wish to re-synchronize them to a particular line of code this can be done by
right clicking on the line at which you wish to synchronize them to and selecting
synchronize group. This effectively sets all the processes in the selected group
running and puts a break point at the line at which you choose to synchronize the
processes at, ignoring any breakpoints that the processes may encounter before
they have synchronized at the specified line.

If you choose to synchronize your code at a point where all processes do not reach
then the processes that cannot get to this point will run to the end.

Note: Though this ignores breakpoints while synchronizing the groups it will not actually
remove the breakpoints.

Setting A Watch

Fig.9 The watches table

A watchpoint is a type of breakpoint that monitors a variable's value and causes a
break once the value is changed. Unlike breakpoints, it is not set on a line in the
code window. Instead you must drag a variable from either the variables window or
the evaluate window into the watches table. It is not generally useful to watch a
variable that is allocated on the stack rather than the heap, and some debug
interfaces (such as GDB) will remove a watchpoint when its variable goes out of
scope. Variables on the heap do not go out of scope.

- PAGE 28 -

Distributed Debugging Tool v1.7 © 2004

For multi-process debugging, watches can only be set on a single process and not a
whole group.

Examining The Stack Frame

Fig.10 Selecting a stack frame

The stack frame (the current position in the stack) is displayed and changed using a
drop-down list in the variable window. When you select a stack frame DDT will jump
to that position in the code (if it is available) and will display the local variables for
that frame. The toolbar can also be used to step up or down the stack, or jump
straight to the bottom-most frame.

Align Stacks

The align stacks button, or CTRL-A hotkey, sets the stack of the current thread on
every process in a group to the same level – where possible – as the current process.

This feature is particularly useful where processes are interrupted – by the pause
button – and are at different stages of computation. This enables tools such as the
cross-process comparison window to compare equivalent local variables, and also
simplifies casual browsing of values.

- PAGE 29 -

Distributed Debugging Tool v1.7 © 2004

Examining Threads

Fig.11 Selecting a thread

You can select a thread from the drop-down list in the variable window. Changing
the thread will update the stack frame and local variables. Multi-process DDT users
should note that many MPI implementations are not thread safe so you must be very
careful when using threads. DDT supports both OpenMP and native threading
libraries such as pthreads. If your program uses the pthreads library (either natively
or via OpenMP) you may see an extra handler thread - this is not part of your
program but is used by the operating system to manage multiple threads and may
be present even when your program is only using one thread.

- PAGE 30 -

Distributed Debugging Tool v1.7 © 2004

6. Variables And Data
The variable window contains two tabs that provide different ways to list your
variables. The `Locals` tab contains all the variables for the current stack frame,
while the `Current Line` tab displays all the variables referenced on the currently
selected lines.

Fig.12 Displaying variables

Current Line

You can select a single line by clicking on it in the code viewer - or multiple lines by
clicking and dragging. The variables are displayed in a tree view so that user-
defined classes or structures can be expanded to view the variables contained within
them. You can drag a variable from this window into the `Evaluate Expression`
window; it will then be evaluated in whichever stack frame, thread or process you
select.

Local Variables

The locals tab contains local variables for the current process's currently active
thread and stack frame.

For Fortran codes the amount of data classed as local can be substantial – as this
can include many global or common block arrays. Should this prove problematic, it
is best to conceal this tab underneath the current line tab as this will not then
update after ever step.

- PAGE 31 -

Distributed Debugging Tool v1.7 © 2004

Arbitrary Expressions And Global Variables

Fig.13 Evaluating expressions

Since the global variables and arbitrary expressions do not get displayed with the
local variables, you may wish to use the `Current Line` tab in the local variables and
click on the line in the code window containing a reference to the global variable.

Alternatively, the Evaluate panel can be used to view the value of any arbitrary
expression. Right click on the evaluate window, click on `Add Expression`, and type
in the expression required in the current source file language. This value of the
expression will be displayed for the current process and stack/thread, and is
updated after every step.

Changing Data Values

In the evaluate window, the value of an expression may be set by right clicking and
selecting “edit value”. This will change the value of the expression in the currently
selected process.

Note: This depends on the variable existing in the current stack frame and thread.

Examining Pointers

Pointer contents cannot normally be examined in the variables window but after
dragging them into the evaluate window you can right click and select any of the
following new options: view as vector, reference, or de-reference.

If a structure contains another pointer you must drag this pointer onto its own line
in the evaluate window before you can start referencing/de-referencing it.

- PAGE 32 -

Distributed Debugging Tool v1.7 © 2004

Examining Multi-Dimensional Arrays

Large multi-dimensional arrays are not easy to view in a tree structure so DDT
provides a multi-dimensional array viewer. This allows you to type in an expression
optionally using up to two variables (i and j) and set the range for these variables.

Clicking `Evaluate` will fill a table with all evaluations of i and j. This data can be
exported to a csv (comma-separated variables) file which can be plotted or analyzed
in your favorite spreadsheet.

You can view any two-dimensional slice of your data by entering an expression
based on i and j, such as A(i+j,j,1) in Fortran or myArray[1][j][i+j] in C/C++. Once
the data is loaded into DDT's table you can visualize the data as a surface in 3-D
space (see next section).

Fig.14 Multi-dimensional array viewer

- PAGE 33 -

Distributed Debugging Tool v1.7 © 2004

Visualizing Data

A 2-D slice of an array, or table of expressions, may be displayed as a surface in 3-
D space through the multi-dimensional array (MDA) viewer. After filling the table of
the MDA viewer with values (see previous section), click `Visualize` to open a 3-D
view of the surface. To display surfaces from two or more different processes on the
same plot simply select another process in the main process group window and click
evaluate in the MDA window, and when the values are ready, click `Visualize` again.
The surfaces displayed on the graph may be hidden and shown using the
checkboxes on the right-hand side of the window.

If OpenGL is enabled on your system, the graph may be moved and rotated using
the mouse and a number of extra options are available from the window toolbar.

The mouse controls in OpenGL are:

• Hold down the left button and drag the mouse to rotate the graph.
• Hold down the right button to zoom - drag the mouse forwards to zoom in

and backwards to zoom out.
• Hold the middle button and drag the mouse to move the graph.

Fig.15 DDT visualization

The toolbar and menu offer options to configure lighting and other effects,
including the ability to save an image of the surface as it currently appears. There is
even a stereo vision mode that works with red-blue glasses to give a convincing

- PAGE 34 -

Distributed Debugging Tool v1.7 © 2004

impression of depth and form. Contact Streamline if you need to get hold of some
3D glasses.

If OpenGL is not enabled, you will still be able to visualize your data, but further
manipulation is not possible.

Cross-Process Comparison

The cross-process comparison window can be used to analyze expressions
calculated on each of the processes in the current process group. This window
displays information in three ways:

• Grouped by expression value
• Statistically - maximum, minimum, variance and similar with a box-and-

whisker plot which displays max, min and interquartile range graphically
• A plot of values. In the case of a 1-D array expression the plot of values will

display a line graph of values for all processes and these can be turned on
and off individually by clicking the appropriate checkbox.

Fig.16 Cross process comparison

To use this window, select the cross-process comparison window from the view
menu. Type the expression that you wish to analyze. If you wish to compare an

- PAGE 35 -

Distributed Debugging Tool v1.7 © 2004

array, select the `use variable i` button and type in the bounds that you require.
Click the `compare` button, and the current values will be evaluated on all the
processes in the current group. If a process is still running in the current group, its
value will not be found; press cancel and pause all the processes before trying
again.

Viewing Registers

To view the values of machine registers on the currently selected process, select the
registers window from the windows pull-down menu. These values will be updated
after each instruction, change in thread or change in stack frame.

Interacting Directly With The Debugger

Fig.17 Debugger interaction window

DDT provides a raw command dialog that will allow you to send commands directly
to the debugger interface. This dialog bypasses DDT and its book-keeping - if you
set a breakpoint here, DDT will not list this in the breakpoint list, for example.

Be careful with this dialog; we recommend you only use it where the graphical
interface does not provide the information or control you require. Sending

- PAGE 36 -

Distributed Debugging Tool v1.7 © 2004

commands such as `quit` or `kill` may cause the interface to stop responding to
DDT.

Each command is sent to a group of processes (selected from within the dialog box
- not necessarily the current group). To communicate with a single process, create a
new group and drag that process into it.

The raw process command window will not work with running processes and
requires all processes in the chosen group to be paused.

- PAGE 37 -

Distributed Debugging Tool v1.7 © 2004

7. Program Input And Output
DDT collects and displays output from all processes, placing output and error
streams in separate panels that are controllable and allow output to be filtered by
origin. Both standard output and error are handled identically, although on most MPI
implementations, error is not buffered but output is and consequently can be
delayed.

Viewing Standard Output And Error

Fig.18 Standard output window

At the bottom of the screen (by default) there are tabs for displaying standard
output and standard error.

The contents of these panels can be cut and pasted into the X-clipboard.

Displaying Selected Processes

By right clicking the mouse you can choose whether to view output for the current
process, the current process group if no process is selected, or for all processes.
You also have the option to copy a selection to the clipboard.

MPI users should note that most MPI implementations place their own restrictions
on program output. Some buffer it all until MPI_Finalize is called, others may ignore
it or send it all through to one process. If your program needs to emit output as it
runs, Streamline suggest writing to a file.

- PAGE 38 -

Distributed Debugging Tool v1.7 © 2004

Saving Output

By right-clicking in an output window, it is possible to save the contents of the
window to a file.

Sending Standard Input (DDT-MP)

DDT provides an `Input File` option in the session control window. Using this
window you may select the file you wish to use as the input file. DDT will
automatically insert the correct arguments to your MPI implementation.

Alternatively in DDT you may enter the arguments directly in the `MPI Arguments`
box. Typically you add an option to the mpirun command line, such as `-stdin
filename`. You may add the same options to the `MPI Run Arguments` box when
starting your DDT session.

Note: If DDT is running on a fork-based system such as Scyld, or a `-comm=shared`
compiled MPICH, your program may not receive an EOF correctly from the input file. If your
program seems to hang while waiting for the last line or byte of input, this is likely to be the
problem. See the FAQ or contact Streamline for a list of possible fixes.

- PAGE 39 -

Distributed Debugging Tool v1.7 © 2004

8. Message Queues
Open the Message Queue view by selecting 'Message Queues' from the 'View' menu.

Fig.19 Message queue window

When the window appears you can click 'Update' to get the current queue
information. Please note that this will stop all running processes. While DDT is
gathering the data a dialog box will be displayed and you can cancel the request at
any time.

You must select a communicator to see the messages in that group. The ranks
displayed in the diagram are the ranks within the communicator (not
MPI_COMM_WORLD). Different colours are used to display messages from each type
of queue.

DDT use the message queue debug interface to gather queue information. Within
this interface each communicator has three distinct message queues:

- PAGE 40 -

Distributed Debugging Tool v1.7 © 2004

Label Description

Send Queue Represents all the outstanding send operations
Receive Queue Represents all the outstanding receive operations
Unexpected Message Queue Represents messages that have been sent to this process

but have not been received

In order to take advantage of the message queue view within DDT you need to
compile the debug interface for your MPI implementation. In MPICH this is done by
using '-–enable-debug' when running configure. LAM automatically compiles the
library.

DDT will try to load the default library for the MPI implementation (provided one
exists) but for this to happen it must be in the LD_LIBRARY_PATH. If this is not
convenient you can set the environment variable, DDT_QUEUE_DLL, which can be the
absolute path (or just in the LD_LIBRARY_PATH).

If you experience problems connecting to the message queue library when attaching
to a process see the FAQ for possible solutions.

- PAGE 41 -

Distributed Debugging Tool v1.7 © 2004

9. The Licence Server
The licence server supplied with DDT is capable of serving clients for several
different licences, enabling one common server to serve all Streamline software in
an organization.

Running The Server

For security, the licence server should be run as an unprivileged user (eg. nobody). If
run without arguments, the server will use licences in the current directory (files
matching Licence* and License*). An optional argument specifies the path to be
used instead of the current.

System administrators will normally wish to add scripts to start the server
automatically during booting.

Running DDT Clients

DDT will, as is also the case for fixed licences, use a licence file either specified via
environment variables (DDT_LICENCE_FILE or DDT_LICENSE_FILE) or from the default
location of $DDTPATH/Licence.

In the case of floating licences this file is unverified and in plain-text, it can
therefore be changed by the user if settings need to be amended.

The fields are:

Name Required Description
hostname Yes The hostname, or IP address of the licence server
ports No A comma separated list of ports to be tried locally

for frontend-backend communication in DDT,
Defaults to 4242,4243,4244,4244,4245

serial_number Yes The serial number of the server licence to be used
serverport Yes The port the server listens on
type Yes Must have value 2 – this identifies the licence as

needing a server to run properly

Note: The serial number of the server licence is specified as this enables a user to be tied to
a particular licence.

- PAGE 42 -

Distributed Debugging Tool v1.7 © 2004

Logging

Set the environment variable DDT_LICENCE_LOGFILE to the file that you wish to
append log information to. Set DDT_LICENCE_LOGLEVEL to set the amount of
information required. These steps must be done prior to starting the server.

Level 0: no logging.
Level 1: client licences issued are shown, served licences are listed.
Level 2: stale licences are shown when removed, licences still being served are listed
if there is no spare licence.
Level 3: full request strings received are displayed
Level 6 is the maximum.

In level 1 and above, the MAC address, username, process ID, and IP address of the
clients are logged.

Troubleshooting

Licences are plain-text which enables the user to see the parameters that are set; a
checksum verifies the validity. If problems arise, the first step should be to check
the parameters are consistent with the machine that is being used (MAC and IP
address), and that, for example, the number of users is as expected.

Adding A New Licence

To add a new licence to be served, copy the file to the directory where the existing
licences are served and restart the server. Existing clients should not experience
disruption, if the restart is completed within a minute or two.

Examples

In this example, a dedicated licence server machine exists but uses the same
filesystem as the client machines, and DDT is installed at “/opt/software/ddt”

To run the licenceserver as nobody, serving all licences in “/opt/software/ddt”, and
logging most events to the “/tmp/licence.ddt.log”.

% su – nobody

Password:

% export DDT_LICENCE_LOGFILE=/tmp/licence.ddt.log

- PAGE 43 -

Distributed Debugging Tool v1.7 © 2004

% export DDT_LICENCE_LOGLEVEL=2

% cd /opt/software/ddt

% ./bin/licenceserver /opt/software/ddt/ &

% exit

Serving the floating licences from the same directory as a normal DDT installation is
possible as the licence server will ignore licences that are not server licences.

If the server licence is file “/opt/software/Licence.server.physics“ and is served by
the machine server.physics.acme.edu, at port 4252, the licence would look like:

type=3

serial_number=1014

max_processes=48

expires=2004-04-01 00:00:00

support_expires=2004-04-01 00:00:00

mac=00:E0:81:03:6C:DB

interface=eth0

debuggers=gdb

serverport=4252

max_users=2

beat=60

retry_limit=4

hash=P5I:?L,FS=[CCTB<IW4

hash2=c18101680ae9f8863266d4aa7544de58562ea858

Then the client licence could be stored at “/opt/software/Licence“ and contain:

type=2

serial_number=1014

hostname=server.physics.acme.edu

serverport=4252

Example Of Access Via A Firewall

SSH forwarding can be used to reach machines that are beyond a firewall, for
example the remote user would start:

- PAGE 44 -

Distributed Debugging Tool v1.7 © 2004

ssh -C -L 4252:server.physics.acme.edu:4242 login.physics.acme.edu

And a local licence file should be created:

type=2

serial_number=1014

hostname=localhost

serverport=4252

Querying Current Licence Server Status

The licence server provides a simple HTML interface to allow for querying of the
current state of the licences being served. Point your favorite web browser at a URL
of the form:

http://<hostname>:<serverport>/status.html

For example, using the values from the licence file examples, above:

http://server.physics.acme.edu:4252/status.html

Initially, no licences will be being served, and the output in your browser window
should look something like:

[Licences start]
 [Licence Serial Number: 1014]
 [No licences allocated - 2 available]
[Licences end]

As licences are served and released, this information will change. To update the
licence server status display, simply refresh your web browser window. For example,
after one DDT has been started:

[Licences start]
 [Licence Serial Number: 1014]
 [1 licences available]
 [Client 1]
 [mac=00:04:23:99:79:65; uname=gwh; pid=14007;
licence=1014]
 [Latest heartbeat: 2004-04-13 11:59:15]
[Licences end]

- PAGE 45 -

Distributed Debugging Tool v1.7 © 2004

Then, after another DDT is started and the web browser window is refreshed (notice
the value for number of licences available):

[Licences start]
 [Licence Serial Number: 1014]
 [0 licences available]
 [Client 1]
 [mac=00:04:23:99:79:65; uname=gwh; pid=14007;
licence=1014]
 [Latest heartbeat: 2004-04-13 12:04:15]
 [Client 2]
 [mac=00:40:F4:6C:4A:71; uname=graham; pid=3700;
licence=1014]
 [Latest heartbeat: 2004-04-13 12:04:59]
[Licences end]

Finally, after the first DDT finishes:

[Licences start]
 [Licence Serial Number: 1014]
 [1 licences available]
 [Client 1]
 [mac=00:40:F4:6C:4A:71; uname=graham; pid=3700;
licence=1014]
 [Latest heartbeat: 2004-04-13 12:07:59]
[Licences end]

Licence Server Handling Of Lost DDT Clients

Should the licence server lose communication with a particular instance of a DDT
client, the licence allocated to that particular DDT client will be made unavailable for
new DDT clients until a certain timeout period has expired. The length of this
timeout period can be calculated from the licence server file values for beat and
retry_limit:

lost_client_timeout_period = (beat seconds) * (retry_limit + 1)

So, for the example licence files above, the timeout period would be:

60 * (4 + 1) = 300 seconds

- PAGE 46 -

Distributed Debugging Tool v1.7 © 2004

During this timeout period, details of the “lost” DDT client will continue to be output
by the licence server status display. As long as additional licences are available, new
DDT clients can be started. However, once all of these additional licences have been
allocated, new DDT clients will be refused a licence while this timeout period is
active.

After this timeout period has expired, the licence server status will continue to
display details of the “lost” DDT client until another DDT client is started. The
licence server will grant a licence to the new DDT client and the licence server status
display will then reflect the details of the new DDT client.

- PAGE 47 -

Distributed Debugging Tool v1.7 © 2004

A. Supported Platforms
A full list of supported platforms and configurations is maintained on the Streamline
Computing website. It is likely that MPI distributions supported on one platform will
work immediately on other platforms.

Platform Operating Systems MPI Compilers
Intel/AMD x86
AMD Opteron
(32+64)
Intel Itanium 2

Redhat 7 and above,
SuSE, Debian, and
similar

SGI Altix, Bproc,
LAM-MPI, MPICH,
Myricom MPICH-GM,
Quadrics MPI, Scali
MPI Connect, SCore,
Scyld

GNU, Absoft, Intel
and Portland

HP Itanium and PA-
RISC

HP-UX 11.22 and
11.11

MP-MPI Native

IBM Power AIX 5.1 and above IBM PE Native
SGI MIPS IRIX SGI MP Toolkit Native
Sun Ultrasparc Solaris 8 and above Sun Clustertools 4

and above
Native

- PAGE 48 -

Distributed Debugging Tool v1.7 © 2004

B. Troubleshooting DDT
If you should encounter any difficulties in using DDT, you should, in the first
instance, view the FAQ (Appendix C).

You may find a problem with your DDT that has already been fixed by Streamline,
please check the support pages of the Streamline Computing website for updates. If
your problem persists, contact Streamline directly by emailing ddt@streamline-
computing.com.

Problems Starting DDT Frontend

If DDT is unable to start, this is usually one of three reasons:

• DDT is not in the PATH – the shell reports that DDT is not found. Change your
path to include the $DDTPATH/bin directory

• The licence is invalid – in this case DDT will issue an error message. You
should verify that you have a licence file, that it is stored as
$DDTPATH/Licence, and check manually that it is valid by inspection. If DDT
still refuses to start, please contact Streamline

Problems Starting Scalar Programs

Please note that v1.5 onwards may erroneously report a problem with MPI when
encountering a problem, instead of suggesting that your program cannot start.

There are a number of possible sources for problems. The most common is – for
users with a multi-process licence – that the MPI implementation has not been set to
“none”.

Other potential problems are

• A previous DDT session is still running, or has not released resources
required for the new session. Usually this can be resolved by killing stale
processes. The most obvious symptom of this is a delay of approximately 60
seconds and a message stating that not all processes connected. You may
also see, in the terminal, a QServerSocket message

• The target program does not exist or is not executable
• The selected debugger cannot be found
• The selected debugger has crashed

- PAGE 49 -

mailto:ddt@streamline-computing.com
mailto:ddt@streamline-computing.com

Distributed Debugging Tool v1.7 © 2004

• DDT's backend daemon – ddt-debugger – is missing from $DDTPATH/bin – in
this case you should check your installation, and contact Streamline for
further assistance.

Problems Starting Multi-Process Programs

If you encounter problems whilst starting an MPI program with DDT, the first step is
to establish that it is possible to run a single-process (non-MPI) program such as a
trivial “hello world” - and resolve such issues that may arise. After this, attempt to
run a multi-process job – and the symptoms will often allow a reasonable diagnosis
to be made.

In the first instance, verify that MPI is installed correctly by running a job outside of
DDT, such as the example in $DDTPATH/examples.

mpirun -np 8 ./a.out

Verify that mpirun is in the PATH, or the environment variable DDTMPIRUN is set to
the full pathname of mpirun.

If the progress bar does not report that at least process 0 has connected, then the
remote ddt-debugger daemons cannot be started or cannot connect to the
frontend.

The majority of such problems are caused by environment variables not propagating
to the remote nodes whilst starting a job. To a large extent, the solution to these
problems depend on the MPI implementation that is being used. In the simplest
case, for rsh based systems such as a default MPICH installation, correct
configuration can be verified by rsh-ing to a node and examining the environment.
It is worthwhile rsh-ing with the env command to the node as this will not see any
environment variables set inside the .profile command. For example if your nodes
use a .profile instead of a .bashrc for each user then you may well see a different
output when runnin “rsh node env” than when you run “rsh node” and then run “env”
inside the new shell.

If only one, or very few, processes connect, it may be because you have not chosen
the correct MPI implementation. Please examine the list and look carefully at the
options. Should no other suitable MPI be found, please contact Streamline for
advice.

- PAGE 50 -

Distributed Debugging Tool v1.7 © 2004

If a large number of processes are reported by the status bar to have connected,
then it is possible that some have failed to start due to resource exhaustion, timing
out, or, unusually, an unexplained crash. You should verify again that MPI is still
working, as some MPI distributions do not release all semaphore resources correctly
(for example MPICH on Redhat with SMP support built in).

To check for time-out problems, set the DDT_NO_TIMEOUT environment variable to
1 before launching the frontend and see if further progress is made. This is not a
solution, but aids the diagnosis. If all processes now start, please contact Streamline
for further long-term advice

- PAGE 51 -

Distributed Debugging Tool v1.7 © 2004

C. FAQs

DDT will not load - what's wrong?

Check that you have the environment variables set up (see the installation README
file) and that the DDT executable ($DDT) exists.

If DDT will not load then you may be missing some libraries, or they may be
incompatible with your Linux/Unix version - view the output of "ldd $DDT" and look
for the missing libraries. Contact Streamline for further assistance.

Why can't DDT find my hosts or the executable?

Ensure that the hostname(s) given are reachable using ping, if not try using the IP
addresses. If DDT fails to find the executables, ensure the executable is available on
every machine, and - for the common MPICH distribution - that you can "rsh" to
each host without the password prompt.

Why am I getting an error message about the debugger when
starting my job?

Your MPI distribution most likely is not correctly compiled to include a small amount
of debugging information. An alternative cause is that the version of GDB you are
using is not compatible; GDB version 5 and above has been tested, our favorites are
5.2 upwards, and the DDT distribution comes with a patched GDB 5.3 to improve
Fortran array support. Ensure a supported version of GDB is in your path on all
nodes.

The progress bar doesn't move and DDT 'times out'

It's possible that the program 'ddt-debugger' hasn't been started by mpirun or has
aborted. You can log onto your nodes and confirm this by looking at the process list
BEFORE clicking 'Ok' when DDT times out. Ensure ddt-debugger has all the libraries
it needs and that it can run successfully on the nodes using mpirun.

Alternatively, there may be one or more processes ('ddt-debugger', 'mpirun', 'rsh')
which could not be terminated. This can happen if DDT is killed during its startup or
due to MPI implementation issues. You will have to kill the processes manually,
using 'ps x' to get the process ids and then 'kill' or 'kill -9' to terminate them.

- PAGE 52 -

Distributed Debugging Tool v1.7 © 2004

This issue can also arise for mpich-p4mpd, and the solution is explained in
Appendix E.

If your intended mpirun command is not in your path, you may either add it to your
path or set the environment variable DDTMPIRUN to contain the full path of the
correct mpirun.

The progress bar gets close to half the processes connecting and
then stops and DDT 'times out'

This is likely to be caused by dual processor configuration for your MPI distribution.
Make sure you have selected 'smp-mpich' or 'scyld' as your MPI implementation in
DDT's configuration window. If this doesn't help, see Appendix E for a workaround
and contact us for further assistance.

I am using MPI_Get_processor_name() and I get "Process n has
stopped with signal SIGTRAP" when I click play

Gdb has a known problem with fork() and gethostbyname() which causes it to crash
your program. Many MPI implementations such as Scyld use fork() during MPI_Init -
any subsequent calls to MPI_Getprocessor_name() or gethostbyname() will not work
under gdb. You can:

• Replace your MPI with a non-fork based one, e.g. MPICH (not -comm=shared)
• Use a different debugger, such as Absoft's Fx2
• Avoid using MPI_Get_processor_name()/gethostbyname()

My program doesn't start, and I can see a console error stating
"QServerSocket: failed to bind or listen to the socket"

Ordinarily this message is not a sign of a problem - it is emitted when another DDT
session, is running and consequently the DDT master uses another socket instead.
However, if you know this not to be the case and your program is not starting, it's
likely that a previous run of DDT has been unable to terminate and release
resources completely. This is known to occur occasionally for MPICH-GM. If this
happens, run /usr/bin/killall -9 ddt-debugger on your nodes - you can actually use
mpirun to do this for you.

- PAGE 53 -

Distributed Debugging Tool v1.7 © 2004

Why can't I see any output on stderr?

DDT automatically captures anything written to stdout/stderr and displays it. Some
shells (such as csh) and debuggers (such as dbx on Solaris) do not support this
feature in which case you may see your stderr mixed with stdout, or you may not
see it at all. In any case we strongly recommend writing program output to files
instead, since the MPI specification does not cover stdout/stderr behaviour.

DDT complains about being unable to execute malloc

Should this error message occur, often due to backend-debugger failure, it is
possible to bypass this step. Set the environment variable DDT_DONT_GET_RANK to
any non-empty value on the nodes and this will force DDT to guess ranks, which
may resolve the problem.

Why can't I use watches with the Intel IDB interface?

This is a known issue with Intel's IDB debugger on several systems, please contact
Streamline for more information/assistance.

Why is my stack trace empty/incomplete?

This is a known issue with Intel's IDB on several systems and GDB on the Opteron
architecture, contact Streamline for more information/assistance.

Some features seem to be missing (e.g. watch points) - what's
wrong?

This is because not all debugger's support every feature that DDT does and so they
are disabled by removing the window/tab by from DDT's interface. For example if
you are using Intel's IDB debugger then the watches tab has been removed as this
debugger doesn't support watches.

My code does not appear when I start DDT

This is probably due to the currently selected font not being correctly installed on
your system. Go into the Session – Configuration window and choose a font such as
Times or Century Schoolbook and you should now be able to see the code.

- PAGE 54 -

Distributed Debugging Tool v1.7 © 2004

When I use step out my program hangs

You cannot use the step out feature from the Main function of your program. This
will cause the debugger to hang. With some debuggers DDT will return a time out
error. Make sure you only use step out inside loops and functions.

When viewing messages queues after attaching to a process I get
a “Cannot find Message Queue DLL” error

This is due to the fact that you have started your MPI process outside of DDT. The
message queue process cannot then find which DLL to use for the version of MPI
that you have started. The way to fix this is to set the variable DDT_QUEUE_DLL
explictly before you start DDT.

Example: “export DDT_QUEUE_DLL=/usr/local/mpich/lib/libtvmpich.so”

The files needed for LAM and MPICH are listed here:

• Lam – liblam_totalview.so
• MPICH – libtvmpich.so

I get the error `The mpi execution environment exited with an
error, details follow: Error code: 1 Error Messages:
“mprun:mpmd_assemble_rsrcs: Not enough resources available”`
when trying to start DDT

This error occurs when running DDT on a Solaris machine. If you select more
processes than you have processors in your machine then mprun is not able to
allocate the resources needed. To fix this simply add the argument `-W` to the
`MPI Arguments` box, this will tell mprun to wrap the processes and will enable you
to start your desired number of processes in DDT.

What do I do if I can't see my running processes in the attach
window?

This is usually a problem with either your remote-exec script or your node list file.
First check that the entry in your node list file corresponds with either localhost (if
you're running on your local machine) or with the output of `hostname` on the
desired machine.

- PAGE 55 -

Distributed Debugging Tool v1.7 © 2004

Secondly try running remote-exec manually ie. `remote-exec ls` and check the
output of this. If this fails then there is a problem with your remote-exec script. If
`rsh` is still being used in your script check that you can rsh to the desired
machine. Otherwise check that you can attach to your machine in the way specified
in the `remote-exec` script. If you still experience problems with your script then
contact Streamline for assistance.

When trying to view my Message Queues using mpich I get no
output but also see no errors

This is a known problem on the Opteron system with 64/32bit compatibility. The
64bit library that is built with mpich on the Opteron does not return any data that
DDT can interpret. Try copying in a library built on a compatible system such as
Redhat 9 and setting the DDT_QUEUE_DLL argument to point to this library.

If you need a copy of this library but cannot build one please contact Streamline.

Obtaining Support

If you are unable to resolve your problem, the most effective way to get support is
to email Streamline with a detailed report of your problem. If possible, you should
obtain a log file for the problem and email this to Streamline.

Generating a log file is simple. Firstly the DDTLOG environment variable must be
given the name of a file to write to. Secondly, start DDT with a -debug flag. For
example, bash users would type:

export DDTLOG=$HOME/ddt.log

ddt –debug

The user should then attempt to demonstrate the problem, and quit or kill DDT.

- PAGE 56 -

Distributed Debugging Tool v1.7 © 2004

D. Debugging Fortran

How do I view the contents of an array which is given as a
parameter to a subroutine and appears as "PTR TO ..." in the
locals window?

Note: This only occurs with gdb and the g77 compiler, as far as we know.

Use the Multi-dimensional array viewer BUT you must ensure the expression you
type dereferences the array before you use it.

Example:

If your array is A and it appears as, say, PTR TO REAL*4(4,4,-1), in the locals
window, the expression you type in must first of all dereference A - otherwise gdb
will produce a segmentation fault

To view the contents of A(1,2,3) you should type in

(*A) (1,2,3)

and click "evaluate"

Why is getting local variables so slow?

Firstly please check that the patched gdb supplied with this distribution is being
used in preference to the default gdb.

DDT parses the response to gdb's "info locals" command, and this can frequently
produce massive responses for Fortran codes. If your local variables are still slow,
try viewing only the current line and putting the variables that you are interested in
in the evaluate window instead.

Why are there patched gdbs in the DDT distribution?

A disagreement between the data description format of the Intel compilers and the
g77 compiler for multi-dimensional arrays has led to the situation where the format
descriptions are the reverse of each other.

- PAGE 57 -

Distributed Debugging Tool v1.7 © 2004

Unfortunately, standard gdb produces the correct result for g77 for some of the
command set, and the correct result for Intel for the remainder. We therefore
provide one version that produces the correct result for g77 all the time, and
recommend that idb is used for Intel compiled Fortran codes. You can verify the
problem on your existing gdb by viewing a REAL(5*4) array 'x' and examining the
output of the three commands:

print x

print x(1,2)

whatis x

under the Intel compiler and then the g77 compiler.

Our patches also improve Portland support (see B.4), and fix a commonly occurring
segmentation fault when viewing the parameters of a Fortran subroutine.

- PAGE 58 -

Distributed Debugging Tool v1.7 © 2004

E. Notes On MPI Distributions
This appendix has brief notes on many of the MPI distributions supported by DDT.
Advice on settings and problems particular to a distribution are given here.

Bproc

By default, the p4 interface will be chosen. If you wish to use GM (Myrinet), place -
gm in the MPIrun arguments, and this will be used instead. Select Generic as the MPI
implementation.

HP MPI

Select HP MPI as the MPI implementation.

LAM/MPI

No reported issues with this distribution. Select LAM-MPI as the MPI
implementation.

MPICH And SMP Nodes

This issue affects some distributions where shared memory is used to communicate
between processors on a dual processor machine. For mpich-p4 this will only affect
you if your configuration of mpich specified -comm=shared.

Under these circumstances the dual CPUs use a different starting mechanism for
mpirun. We recommend selecting the `smp-mpich` or `scyld` implementation
from DDT's configuration window as appropriate. If this does not solve your
problem, or you are using an unsupported MPI implementation then you can try
setting MPI_MAX_CLUSTER_SIZE=1. This will still allow you to use a large cluster, but
it will fool MPI into using rsh/ssh instead of fork to start jobs. It will still use all
available cpus, for MPICH you could do this by specifying a dual processor machine
TWICE in the machines.LINUX file instead of specifying hostname:2.

MPICH p4

No reported issues with this distribution, choose MPICH as the MPI implementation.

- PAGE 59 -

Distributed Debugging Tool v1.7 © 2004

MPICH p4 mpd

This daemon based distribution passes a limited set of arguments and environments
to the job programs. If the daemons do not start with the correct environment for
DDT to start, then the environment passed to the ddt-debugger backend daemons
will be insufficient to start.

It should be possible to avoid these problems if .bashrc or .tcshrc/.cshrc are correct.
However, if unable to resolve these problems, you can pass DDTPATH, HOME and
LD_LIBRARY_PATH, plus any other environment variables that you need, such as
LM_LICENSE_FILE if you`re using the Portland debugger, manually. This is achieved
by adding -MPDENV- DDTPATH={insert ddtpath here} HOME={homedir}
LD_LIBRARY_PATH={ld-library-path} to the "program arguments" area of the run
dialog. Alternatively from the command line you may simply write:

$DDT {program-name} -MPDENV- HOME=$HOME DDTPATH=$DDTPATH
LD_LIBRARY_PATH=$LD_LIBRARY_PATH

and your shell will fill in these values for you.

Choose MPICH as the MPI implementation.

MPICH-GM

No reported issues with this distribution. Select Generic as the MPI implementation.

IBM PE

If you are able to use poe outside of a queuing system, set the environment variable
DDTMPIRUN to the full pathname of poe. If your poe does not take the standard
mpirun arguments (eg. -np xx), it is advisable to write a wrapper script called
mpirun which will invoke poe with the arguments you want.

In the present release of DDT, it is necessary to set the DDT_DONT_GET_RANK
variable to 1 for MPI debugging. Without this, processes will not be able to start.

A sample Loadleveller script, which starts debugging jobs on IBM AIX (POE) systems
is included in the $DDTPATH/templates directory. When working with Loadleveller,
it is necessary to set the environment variable DDT_IGNORE_MPI_OUTPUT to 1.

- PAGE 60 -

Distributed Debugging Tool v1.7 © 2004

In order to view source files it is important to have bash and gdb in your path. GDB
is provided with the DDT distribution. Bash can be installed locally if not on your
system, and is available from ftp.gnu.org.

Select IBM PE as the MPI implementation.

NEC MPI

Select Generic as the MPI implementation.

Quadratics MPI

Select Generic as the MPI implementation.

SCore

DDT is supported by SCore versions 5.6.0 and above, a patch is available for SCore
5.40. DDT can be launched either within a scout session, or using a queue. Presently
an omission in SCore prevents arguments being passed to programs; we expect a
patch to be issued imminently – contact Streamline if this issue affects you.

There are several methods to start DDT on an SCore system and your administrator
should recommend one for use with your cluster. Streamline recommend using a
Sun GridEngine and provide a queue template file for this system. However, we have
found the following method to work on single-user mode clusters:

1) Make sure your home directory is mounted on each cluster node
2) Create a host file containing a list of the computer nodes your intend to run

the job on
3) Start a scout session: scout -F host.list
4) Start DDT at the prompt: ddt
5) Make sure DDT is configured for SCore mode, with the correct number of

processes. Use the MPI Argument `nodes=MxN` to specify the number of
processes per node and number of nodes, as documented for scrun. Make
sure to multiply these numbers when selecting the number of processes for
DDT! Both must be specified for single-user mode Score systems

6) Click on `Start`

Note that the first release of Score 5.6.0 shipped with a flaw in scrun.exe – this
prevents DDT shutting down a job correctly. The scout session must be closed and

- PAGE 61 -

ftp://ftp.gnu.org/

Distributed Debugging Tool v1.7 © 2004

reopened between DDT sessions on these systems. This only affects single-user
mode Score 5.6.0 installs.

If environment variables are not being propagated to remote nodes, we suggest
moving $DDTPATH/bin/ddt-debugger to $DDTPATH/bin/ddt-debugger.bin, and
creating a replacement executable shell script which sets the correct environment
variables before running ddt-debugger.bin – for example:

#!/bin/sh

. ./bashrc

$DDTPATH/bin/ddt-debugger.bin $*

Choose SCore as the MPI implementation.

Scyld

When running under Scyld, DDT starts all its ddt-debugger processes on the local
machine instead of on the nodes. This is because Scyld represents the cluster as a
single system image. For all but the largest clusters this should not be a problem. If
this is an issue for you (insufficient file handles etc.) then contact Streamline for
additional assistance.

The process details window will not show any hostnames when running under Scyld.
This should not matter because Scyld represents a cluster as a single system image.

Choose Scyld as the MPI implementation.

SGI Altix/Irix

Some versions SGI's MP Toolkit can cause GDB to crash due to a library problem.
This is easily resolved if it occurs. Compile your application with the extra linking
flag "-lrt" and try DDT again. SGI MP Toolkit should be chosen from the MPI
implementations list.

- PAGE 62 -

Distributed Debugging Tool v1.7 © 2004

F. Notes On Debuggers
Always compile with a minimal amount of, or no, optimization - many compilers
reorder instruction execution and omit debug information when compiled with
optimization turned on.

Some MPI implementations such as MPICH 1.2.5, require you to compile your code
with the same compiler family as the implementation was compiled with. For
example, if your copy of MPICH was compiled up using the Intel compilers, you
should also compile your programs using the Intel compilers. Debugging with a mix
of compilers may be possible in some cases but this is not supported or
recommended.

Absoft

DDT supports the new Absoft fx2 debugger. Fx2 debugger does not support
multiple threads at this time. DDT has been tested with version 7 and 8 of the
Absoft FORTRAN 77/90/95 compilers.

GNU

Choose GNU (GDB) interface. Note that fortran arrays within subroutines may appear
as `PTR TO`, see section 3. DDT has been tested with gcc/g77 and comes with a
patched gdb version 5.3/6 - which corrects some bugs relating to fortran.

Intel Compilers

Choose the Intel (IDB) interface. It is important to have a recent idb, with a build
date of 2003-03-03 or greater. Versions of 2003-06-10 and beyond have improved
performance and fewer bugs than the 2003-03-03 version. Users of Intel compilers
should be able to obtain a recent IDB from Intel easily, and the binary can be
installed by the user in a local path.

DDT has been tested with icc/ifc version 7.1 and above. Some versions of IDB
handle watch and stack information incorrectly, which DDT cannot always correct
for. At times it may be impossible to view the full stack trace. Streamline do not
recommend using watches with the IDB interface until this is resolved as they can
cause your debug session to become unusable.

- PAGE 63 -

Distributed Debugging Tool v1.7 © 2004

Some earlier releases of IDB are unable to limit printing arrays and will print the
whole array instead of a sensible sized prefix. For huge arrays this may be a
problem. By keeping the `local variables` panel concealed, this will limit the number
of times this issue arises.

On some systems IDB takes an unusually long time to return a list of source files to
DDT (several minutes) – particularly for older versions of IDB. It is possible to work
around the problem by setting the environment variable DDT_IDB_MANUAL_FILES to
1 – this will prevent IDB from building file lists automatically but when your job
starts there will be no files in the file tree. You can add these manually by right-
clicking on the file tree and choosing to add source directories. You may need to
refresh DDT by double-clicking on the current process before the source file
appears with correctly-highlighted lines of code. We expect future versions of IDB to
resolve this.

Portland Group Compilers

To use the Portland compilers with GDB, recompile your code with `-g -Mstabs`
options for compatability. Owners of the Portland Cluster Development Kit (CDK)
may also use PGDBG to debug a cluster.

DDT has been tested with Portland Tools 4 and 5.1-3.

When using PGDBG as the backend debugger it is important to ensure that the -
Munroll and -fast options are not used to compile your MPI distribution (this is a
known problem with PGDBG and the 1.2.x series of MPICH) as PGDBG is unable to
execute a step-out which is necessary during MPI startup when this optimization is
turned on.

Solaris DBX

A bug in some versions of DBX prevents redirection of stdout/stderr, which means
that DDT cannot display the program's output. If your version of DBX is affected
then Streamline recommend writing output to a file instead.

Watches are not supported by this debugger in multi-threaded codes - which
includes all parallel codes using Sun Clustertools - consequently DDT cannot
support watches when using DBX.

DDT has been tested on Solaris 5.8 and 9 with the Forte Developer 7 tools suite.

- PAGE 64 -

Distributed Debugging Tool v1.7 © 2004

HP-UX And wdb

DDT has been tested to work with the gdb that is supplied with wdb v4.0. This is
available from http://www.hp.com/go/wdb. Ensure that this gdb is in your path and
select gdb as the interface.

- PAGE 65 -

Distributed Debugging Tool v1.7 © 2004

G. Architectures

AMD Opteron 64-Bit

This architecture requires a very recent GDB, including some patches (from SUSE)
that have yet to be included at the main archive sites.

Without these recent GDBs, you may experience a loss of stack trace information in
the select() I/O function and consequently DDT may not run. DDT will use the 64-bit
GDBs included with DDT (filenames ending with .64).

SGI Altix 3000

Some versions SGI's MP Toolkit can cause GDB to crash due to a library problem.
This is easily resolved. Compile your application with the extra linking flag "-lrt" and
try DDT again.

IBM AIX Systems

In the present release of DDT, it is necessary to set the DDT_DONT_GET_RANK
variable to 1 for MPI debugging. Without this, processes will not be able to start.

A sample Loadleveller script, which starts debugging jobs on IBM AIX (POE) systems
is included in the $DDTPATH/templates directory.

In order to view source files it is important to have bash and gdb in your path. GDB
is provided with the DDT distribution.

- PAGE 66 -

Distributed Debugging Tool v1.7 © 2004

Index
Absoft, 55
AIX, 41, 52, 57
Align Stacks, 24
Altix, 41, 54, 57
Bproc, 51
Breakpoints, 22

Conditional Breakpoints, 22
Deleting A Breakpoint, 23
Loading, 23
Saving, 23
Suspending Breakpoints, 23

Core File, 10
Cross-Process Comparison, 29
Data

Changing, 27
Debug flag, 47
Debugger, 15
Dynamic Libraries, 18
FAQ, 44
Finding Code Or Variables, 18
Help, 7
Hotkeys, 21
HP MPI, 51
HP-UX, 56
IBM PE, 52
Input, 32
Installation, 6
Intel Compilers, 55
Irix, 54
Jobs

Cancelling, 15
Regular Expression, 14, 15
Starting, 15

Jump To Line, 19
Double Clicking, 20

LAM/MPI, 51
Licence Server, 36
Log File, 47
Message Queues, 34

MPI rank, 20
MPICH

GM, 52
p4, 51
p4 mpd, 51
SMP, 51

Multi-Dimensional Arrays, 27
NEC MPI, 52
OpenMP, 5, 25
Opteron, 16, 41, 46, 47, 57
Pointers, 27
Portland Group, 56
Process

Control, 20
Groups, 20

Process Group
Adding A Process, 20
Creating, 20
Deleting, 20

Pthreads, 25
Quadratics MPI, 52
Queue

Configuring, 13
Queuing, 13
Raw Command, 31
Registers

Viewing, 30
Restarting, 21
SCore, 9, 41, 52, 53
Scyld, 53
Session

Loading, 18
Saving, 18

SGI, 54
Single-Process

Multi Process Licence, 10
Single Process Licence, 10

Solaris, 9, 11, 41, 45, 47, 56
Solaris DBX, 56

- PAGE 67 -

Distributed Debugging Tool v1.7 © 2004

Source Code, 18
Source Files

Find Missing, 18
Stack Frame, 24
Standard Error, 32
Standard Output, 32
Starting, 21
Starting DDT, 8

Stepping Through A Program, 22
Stopping, 21
Sun Clustertools, 41, 56
Support, 7
Synchronizing Processes, 23
Threads

Examining, 25
Visualizing Data, 28

- PAGE 68 -

	Userguide
	Contents
	Introduction
	Installation
	Licence Files
	Floating Licences
	Getting Help

	Starting DDT
	Debugging Multi-Process Programs
	Debugging Single-Process Programs
	Debugging A Core File
	Attaching To Running Programs
	Configuring DDT With Queuing Systems
	Starting A Job In A Queue
	Choosing The Right Debugger

	DDT Overview
	Saving And Loading Sessions
	Source Code
	Finding Lost Source Files
	Dynamic Libraries
	Finding Code Or Variables
	Jump To Line
	Editing Source Code

	Controlling Program Execution
	Process Control And Process Groups
	Hotkeys
	Starting, Stopping And Restarting A Program
	Stepping Through A Program
	Setting Breakpoints
	Conditional Breakpoints
	Suspending Breakpoints
	Deleting A Breakpoint
	Loading And Saving Breakpoints
	Synchronizing Processes
	Setting A Watch
	Examining The Stack Frame
	Align Stacks
	Examining Threads

	Variables And Data
	Current Line
	Local Variables
	Arbitrary Expressions And Global Variables
	Changing Data Values
	Examining Pointers
	Examining Multi-Dimensional Arrays
	Visualizing Data
	Cross-Process Comparison
	Viewing Registers
	Interacting Directly With The Debugger

	Program Input And Output
	Viewing Standard Output And Error
	Displaying Selected Processes
	Saving Output
	Sending Standard Input (DDT-MP)

	Message Queues
	The Licence Server
	Running The Server
	Running DDT Clients
	Logging
	Troubleshooting
	Adding A New Licence
	Examples
	Example Of Access Via A Firewall
	Querying Current Licence Server Status
	Licence Server Handling Of Lost DDT Clients

	Supported Platforms
	Troubleshooting DDT
	Problems Starting DDT Frontend
	Problems Starting Scalar Programs
	Problems Starting Multi-Process Programs

	FAQs
	DDT will not load - what's wrong?
	Why can't DDT find my hosts or the executable?
	Why am I getting an error message about the debugger when st
	The progress bar doesn't move and DDT 'times out'
	The progress bar gets close to half the processes connecting
	I am using MPI_Get_processor_name() and I get "Process n has
	My program doesn't start, and I can see a console error stat
	Why can't I see any output on stderr?
	DDT complains about being unable to execute malloc
	Why can't I use watches with the Intel IDB interface?
	Why is my stack trace empty/incomplete?
	Some features seem to be missing (e.g. watch points) - what'
	My code does not appear when I start DDT
	When I use step out my program hangs
	When viewing messages queues after attaching to a process I
	I get the error `The mpi execution environment exited with a
	What do I do if I can't see my running processes in the atta
	When trying to view my Message Queues using mpich I get no o
	Obtaining Support

	Debugging Fortran
	How do I view the contents of an array which is given as a p
	Why is getting local variables so slow?
	Why are there patched gdbs in the DDT distribution?

	Notes On MPI Distributions
	Bproc
	HP MPI
	LAM/MPI
	MPICH And SMP Nodes
	MPICH p4
	MPICH p4 mpd
	MPICH-GM
	IBM PE
	NEC MPI
	Quadratics MPI
	SCore
	Scyld
	SGI Altix/Irix

	Notes On Debuggers
	Absoft
	GNU
	Intel Compilers
	Portland Group Compilers
	Solaris DBX
	HP-UX And wdb

	Architectures
	AMD Opteron 64-Bit
	SGI Altix 3000
	IBM AIX Systems

	Index

