

Through-life Engineering Services (TES): Now and the Future

Dr. Jorn Mehnen

Deputy Director, EPSRC Centre in Through-life Engineering Services Cranfield University

Email:j.mehnen@cranfield.ac.uk

BOMBARDIER

Through-life Engineering Services (TES)

are the technical services that are necessary to guarantee the required and predictable performance of a complex engineering system throughout its expected operational life with the optimum whole-life cost

Degradation study: component and systems.

Diagnostics and Prognostics: RUL

Design and Manufacturing for Maintenance.

Virtual Service Engineering

Service Intelligence: data analytics

> TES Research

Maintenance, Repair and Overhaul (MRO) Autonomous Maintenance.

Obsolescence Management.

Service Cost Modelling.

Maintenance Training and visualisation: augmented reality.

Examples of experimental research

Developments in Thermography inspections

Degradation of Linear Actuators

Ball-screw configuration:

Rack and pinion configuration:

Actual Rig:

Damaged balls and gear rack:

Main features:

- Up to 120mm stroke
- Variable speed up to 30mm/s
- Variable load up to ±50kg
- Ball-screw and rack-and-pinion configurations
- Portable design
- Instrumentation: Position, motor current, vibration and temperature measurements
- Faults to be tested: spalling, wear, jamming, backlash, lack of lubrication, etc.

Degradation at the System Level: No-Fault-Found (NFF): AFCS Testing

Degradation study of heat exchangers using thermography

The heat exchanger life testing rig at the centre laboratory

Test rig novelty: the heat exchange process is introduced into an environment chamber capable of cycling between - 40C to 120C to simulate service environmental conditions

Initial outcomes:

- Initial failure analysis of most common degradations and their causal mechanisms performed based on public literature and industry interviews
- Identified thermal cycling as major cause of failure.
- Construction of a test rig to carry out life analysis of air-to-air heat exchanger

A fault injection rig

SAH Fault location	Input	Output	Current (mA)									
T1	'00'	Н	0	'01'	Н	0	'10'	Н	0	'11'	Н	59
T2	'00'	Н	0	'01'	Н	0	'10'	Н	0	'11'	Н	59
Т3	'00'	Н	0	'01'	Н	0	'10'	Н	0	'11'	Н	59
T4	'00'	Н	0	'01'	Н	0	'10'	Н	0	'11'	Н	50
T5	'00'	Н	0	'01'	Н	0	'10'	L	43	'11'	L	0
Т6	'00'	Н	0	'01'	Н	0	'10'	L	43	11'	L	0
Т7	'00'	Н	0	'01	L	49	10'	П	-0	'11'	L	0
Т8	'00'	Н	0	'01	L	49	10'	Н	0	'11'	L	0

HSIO (digital)

FIU

DMM (analogue)

DUT

Reference circuits

Train Skirt Maintenance Example

Operations Excellence Institute

Through-life Operations
Simulation Lab – Centre of
Excellence for Augmented
Reality – Maintenance Training

Blended learning to extend the Through-life System Sustainment MSc

"Mind Palace" –
Visualization and Data
Analytics for Throughlife Engineering

New EPSRC-TES Centre project

cr4.globalspec.com

Dr Jörn Mehnen j.mehnen@cranfield.ac.uk

"Mind Palace" – future research direction

IoT Lab - TES applications

Remote maintenance

- Performance monitoring
- Predictions and warnings
- Visualisation
- Cost assessment
- Active repair

Process automation

Supply chain based spare parts planning

Flexible integration of various services (use and offer)

Embrace Industry 4.0

TES National Strategy Development 10th Sept 2015

TES National Strategy – Industry leadershipRolls-Royce and HVM Catapult to co-chair

Concluding remarks

- UK could further develop the TES market share through R&D capability and IP development
- We need both OEMs offering TES and multi-platform TES providers
- TES supply chain needs significant development: risks should be shared
- UK National Strategy for TES industries is timely and necessary

For more information contact:

Professor Rajkumar Roy, Director Andy Shaw, National Centre Manager

The EPSRC Centre in Through-life Engineering Services

E:{r.roy, a.shaw}@cranfield.ac.uk

T: +44 (0)1234 750111

www.through-life-engineering-services.org/