Domain

Automation Systems Engineering

Application domain

Automotive Powertrain Assembly

Objectives

Seamless Virtual-to-Real Engineering

24 months | 4 Partners | 670k (350k funding)

3 Deployment

Direct Digital Deployment

Engineering Solutions

Research Innovation

Engineering Services

End User Requirements

Decision making System Engineering

Data Processing
Data Analytics

IoT Devices
Data Source

Data Collection
Data Transport
infrastructure

Digital Models (cyber system)

Digital to Physical Transition

Physical System

Eng. Data Re-use

Collaborative platform for Virtual Engineering

PLC Control Code Auto-Generation Direct control code deployment

3Deployment Project Scope

Digital Models

Virtual to Physical Transition

Physical System

Engineering database

Library of re-usable components

Virtual Engineering Tools

Processes Simulation Processes Validation

Control Code generation and Deployment

PLC control code Auto, manual, dry cycles Template based (Ford FAST) HMI screens Multi vendors

vueOne Mapper

V-Lib vueOne Editor

Logic Engine

Virtual Engineering case study

Engine Assembly Stations

(Ford UK, Fox, Puma programs)

Oil pan rundown

Block load

Trigger wheel assembly

Engine offload

Manifold rundown

Coolant cavity leak test

Ball seal and cup plug

Clutch assembly

Intake tappet selection

Exhaust tappet selection

Tappet verification

Control code deployment test platform

Automation System Workbench

(WMG, University of Warwick)

8 Modular stations

8 Automatic stations

2 manual / semi-auto stations

Tooling: Festo, SMC, purpose made

ABB and Mitsubishi 6R robots

Control: Schneider, Mitsubishi, Siemens, ...

1 AGV

Energy Monitors

Battery Pack Assembly process

Ubisens UWF position tracking system

• • •

Project Technical Outputs

- Library of re-usable component for OEM
- Library of VE Studies for OEM production station
- Direct deployment of Control code from VE models
- Auto generation of HMI screens
- PLC code compliant with Industry Standards (Ford FAST Template)
- Lightweight, open, deployable Virtual Engineering tool set
- Common visualisation platform for collaboration

Commercial outputs / Funding opportunities

- Improved Engineering Solution (FDS vueOne software)
- New Engineering Services (FDS, HSSMI)
- Extended OEM partner's VE capabilities (Ford)
- New VE-based collaboration platform across supply chain
- VE solution for SMEs (All)
- Extended research scope and new funding opportunities (AII)
- Development of UK engineering capabilities
- Opportunities for spin off- businesses provision of engineering services

Questions - Contacts

Daniel Vera daniel.vera@fullydistributedsystems.com

Robert Harrison robert.harrison@warwick.ac.uk

Fahim Syed fahim.syed@hssmi.org

Andy Baker abaker5@ford.com

Manufacturing System Lifecycle Operate 💾 Engineer Cyber-Physical System Loop **Virtual Engineering** Virtual Validation Mobile application **Automation Cyber-Physical Interfaces Industrial Robots** IoT devices integration Human process Web services architecture **Towards Autonomous Manufacturing** Layout Intelligent control Self configuring control **Component Library** Data capture / management Common Data model Design Knowledge management **Energy monitoring** Engineering data re-use Sensor data PLC data **lot Devices**