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Introduction

Pressures from a variety of sources are causing man to investigate alternatives
to the chemical pesticides which have been used so widely during the past few
decades. Pressures are brought to bear by environmentalists concerned about
the effects of pesticides on wildlife, by pest-control experts concerned about the
effects of these pesticides on parasites and predators of the pests and about the
increasing resistance of the pests to the pesticides, by consumers concerned
about toxic residues in food, and by public health officials concerned about
human poisoning. In Sri Lanka, for example, more people die of pesticide
poisoning than of malaria (Matthews, 1983). Furthermore, research, develop-
ment and production costs for chemical pesticides have soared, making them
expensive in the developed nations, while in the developing nations, if pesticides
are used at all, farmers select the least expensive—which are usually the most
toxic. ‘Biological’ control strategies, including the use of pathogens of pests,
attempt to circumvent most of these problems.

Viruses have been used to control mites (Reed, 1981) and rabbits {Fenner,
1983) but this review is concerned principally with the insect-pathogenic
baculoviruses (BVs). Insects are hosts to a wide variety of viruses, including
picornaviruses, parvoviruses and poxviruses. Each of these groups also has
representatives infecting vertebrate animals. Attention has been focused on the
BVs as pesticidal agents because of their lack of similarity to any viruses of
hosts other than invertebrates. There is some logic in this approach, but other
groups of insect-pathogenic viruses should not be ignored. It may be that the
host spectra of other virus groups, such as the cytoplasmic polyhedrosis viruses
and the iridescent viruses, are restricted to invertebrates even though viruses
with similar morphologies and biochemical characteristics infect vertebrates
{and higher plants in the case of iridescent viruses). In fact, a cytoplasmic
polyhedrosis virus is used in Japan against the pine caterpillar, Dendrolimus
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specrabilis (Aizawa, 1976), and an iridescent virus has been tested against feather-
iackets {Tipula spp. larvae), although with disappointing results {Carter, 1978).

Insect viruses are in use, or are being considered for use, in forestry,
horticulture and agriculture, including grassland. Entwistle (1983) listed 31
lepidopteran, 6 hymenopteran and one coleopteran pest species for which control
with BVs has been demonstrated to be feasible or highly likely. There is little
or no current effort to apply viruses for control of disease vectors or of stored
product and timber pests.

If a virus is to be considered seriously as a pest-control agent then detailed
knowledge of the virus, its host, and their interactions with the environment
must be amassed. Information is required on the structural and biochemical
characteristics of the virus, its host spectrum, and median lethal doses (LD s,s)
and median lethal times (LTsos) for different stages of the host(s). The habits
and life cycle of the host, and the mechanisms whereby the virus persists and
spreads in the field (epizootiology) must be understood. Techniques for mass
production and purification of the virus must be developed and it must be
shown to be safe for man and other non-target organisms. This chapter considers
all these aspects and discusses the advantages and disadvantages of using insect-
pathogenic viruses as pesticides. Industrial aspects are discussed oniy briefly as
they will be considered in detail in a subsequent volume. Recent reviews on the
use of viruses as pest-control agents include those of Falcon (1982), Payne (1982)
and Entwistle (1983).

The baculoviruses

Only an outline of the structure and replication of BVs is given here. For more
detailed accounts the reviews of Harrap and Payne (1979), Granados {1980a)
and Kelly (1982} should be consulted.

The BVs have been classified into three subgroups according to whether or
not the virions become embedded (occluded) in inclusion bodies (IBs), and, if
50, on the size and shape of the 1B (Matthews, R.EF., 1982). Details of the
subgroups are presented in Figure I and Table 7. The rod-shaped virions are
enveloped. Those of the granulosis viruses (GVs) become occluded in capsule-
shaped [Bs (granules), whereas the nuclear polyhedrosis virus (NPV} IBs
{polyhedra) are polyhedral, cuboidal, or ‘orange segment-shaped’, depending
on the virus. The NPVs are subdivided into those in which each occluded virion
has a single nucleocapsid per virion envelope (SNPVs) and those in which the
occluded virions have multiple nucleocapsids per virion envelope {(MNPVs),

STRUCTURE
The virion

BV virions have been found to contain up to 35 proteins (Vlak, 1979), some of
which are giycosylated {Dobos and Cochran, 1980} and/or phosphorylated
(Tweeten, Bulla and Consigli, 1980). The nucleocapsid consists of a protein
capsid containing DNA and further proteins (Figure /). Its dimensions fall
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Figure 1. Baculovirus subgroups. (a) Non-ccecluded baculovirus virion. (b) Granulosis virus in-
clusion body. {¢) Nuciear polyhedrosis virus inclusion body; singly enveloped nucleocapsids (SNPV).
{d) Nuclear polyhedrosis virus inclusion body; multipie nucleccapsids per virion envelope (MNPV).
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within the ranges 40-140nm x 250—400nm. The capsid is constructed from
helically arranged subunits (Burley er ai, 1982), and structures described as
claws and nipples (Kawanishi and Paschke, 1970) or caps (Federici, 1980) are
present at its ends.

The double-stranded DNA molecule 1s a closed circle and is supercoiled.
Most molecular weight estimates for BV DNAs fall between 70 x 10° and
120 x 10%. Associated with the DNA is a highly basic protein (Tweeten, Bulla
and Consigli, 1981) which may play a part in its condensation (Burley et al., 1982).

Many of the larger virion proteins are associated with the lipid-containing
membrane which forms the virion envelope. The virions of occluded BVs occur
in two forms, each with a distinct envelope: the form which becomes occluded
derives its envelope from membrane synthesized within the nucleus, while
another form acquires its envelope by budding from the plasma membrane.
The latter form normally has only one nucleocapsid per envelope, even if the
virus 15 a MNPV, although Longworth and Singh (1980) observed that a few
budded virions of Epiphyas postvittana MNPV had two nucleocapsids per
virion. The occluded virtons are specialized for infection of the host midgut
cells, while the budded virions spread the infection to other cells and can readily
infect susceptible cell cultures.

Some of the envelope proteins of occluded and budded forms of the same
virus are distinct, while others are related (Volkman, 1983). At one end of a
budded virion the envelope bears a number of spikes (Summers and Volkman,
1976), which are probably glycoproteins.

The polyamines spermidine and putrescine have been found in some NPVs.
In Heliothis zea SNPV all of the spermidine and most of the putrescine was
shown to be associated with the vinion envelope (Elliott and Kelly, 1979).

The inclusion body

IBs are formed by the cytoplasmic polyhedrosis viruses and poxviruses of insects
as well as by the occluded BVs. They afford protection to the virions outside
the host, often for considerable periods between generations of larvae. Retention
of occluded virus infectivity is far superior to that of viruses which do not form
IBs, and is a further reason why interest has centred on the occluded viruses
as microbial control agents.

The IB matrix is a paracrystalline lattice of protein subunits laid down to
form an extremely stable structure which survives putrefaction of the dead host,
but is broken down at low and high pH values. Reducing agents enhance the
rate of 1B dissolution in alkali (Croizier and Meynadier, 1972) and are essential
for the dissolution of IBs of poxviruses and of the SNPV of Tipula paludosa at
pH 10-5 (Bergoin, Guelpa and Meynadier, [975).

The protein subunits are constructed from monomers, some of which have
been reported to be glycosylated and phosphorylated (Kelly, 1981a). Proposals
as to how the subunits are formed from the monomers include ionic, hydrophobic
and disulphide bonding (Eppstein and Thoma, 1977).

There appears to be a high degree of similarity between the 1B monomer
proteins of different BVs. Their molecular weights all fall within the range
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25000-33000. Several serological investigations with antisera have demon-
strated relationships within and between the IB proteins of GVs, SNPVs and
MNPVs, and these have been confirmed recently using monoclonal antibodies
(Roberts and Naser, 1982a; Hohmann and Faulkner, 1983). The latter authors
found stronger reactions within BV subgroups than between subgroups. The
amino acid sequences of a few IB proteins have been determined and confirm
that there is a high degree of similarity between them, especiaily between
lepidopteran NPVs {(Rohrmann er al, 1981; Rohrmann, 1982).

Around each IB is a layer of material which appears electron-dense when
sections are viewed in the electron microscope. It appears to be more resistant
than the IB matrix to alkaline dissolution (Kawanishi, Egawa and Summers,
1972; Green, 1981) and may be composed of carbohydrate (Minion, Coons and
Broome, 1979),

IBs from infected insects contain alkaline protease activity. This is displayed
when IBs dissolve in alkali (Yamafuji, Yoshihara and Hirayama, 1957) and
enhances their rate of dissolution (Summers and Smith, 1975). No such enzyme
activity has been detected in IBs from infected cell cultures.

INFECTION OF THE HOST

Most infections are initiated by the ingestion of infective virus. The virions of
occluded viruses are released by dissofution of the IBs in the alkali of the midgut.
Gut enzymes {Faust and Adams, 1966) and the IB protease may alse have roles.
Granados and Lawler (1981) found that few dutographa californica MNPV IBs
remained intact after 15 minutes in the larval midgut (pH 10-4) of the cabbage
looper, Trichoplusia ni.

The virions must survive the harsh conditions of the midgut while they
traverse the peritrophic membrane and attach to the microvilli of midgut cells.
The virion envelope fuses with the microvillus membrane, releasing the
nucleocapsid(s) into the cell (Granados, 1978).

The SNPVs of the most Diptera and Hymenoptera replicate only in the
midgut cells, and IBs are shed into the gut lumen by lysis of infected cells. In
the Lepidoptera, however, infection of the midgut is only the preliminary to
infection of other tissues. Enveloped nucleocapsids develop and IB protein
polymerization may occur in midgut cells, but virions are rarely occluded.
Instead they bud into the haemocoel (Harrap, 1970} and are carried in the
haemolymph to other susceptible tissues. It has also been suggested (Granados
and Lawler, 1981) that some inoculum nucleocapsids may pass straight through
the gut cells and bud into the haemocoel.

REPLICATION

BVs replicate in the nucleus, within which the DNA is released from NPV
nucleocapsids, while GV nucleocapsids release their DNA into the nucleus via
nuclear pores (Granados, 1980a). The infected nucleus hypertrophies and
becomes the dominant feature of the cell. A ‘virogenic stroma’ is formed and
nucleocapsids develop at its periphery. Nucleocapsids produced early enter the
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cytoplasm either by budding through the nuclear envelope (Injac et al., 1971)
or via ruptures in it (Adams, Goodwin and Wilcox, 1977). They then leave the
cell by budding through a portion of modified plasma membrane which becomes
the virion envelope (Hunter, Hoffmann and Collier, 1975}. These virions spread
the infection to other cells. Later i occluded BV infections most nucleocapsids
are retained in the nucleus where they acquire envelopes and become occluded.
Occlusion of naked nucleocapsids has never been observed, which suggests that
there is an B protein receptor on the virion envelope.

IBs develop randomly throughout the nucleus, except those of two dipteran
SNPVs which develop in intimate assoctation with the inner nuclear membrane
(Smith and Xeros, 1954; Stoltz, Pavan and Da Cunha, 1973}. The number of
IBs produced per cell may vary {rom a few to several hundred, depending in
part on the IB size. The yield per insect depends on many factors, including
species and instar. Evans, Lomer and Kelly (1981) found maximum yields of
27 x 107 IBs per first-instar larva and 3-4 x 10% IBs per fifth-instar larva for
Mamestra brassicae MNPV, IBs have been reported to constitute up to 409,
of the insect dry weight (Bucher and Turnock, 1983).

Some progress has been made recently in understanding the biochemical
events involved in BV replication. Kelly and Lescott (1981} identified four phases
of virus protein synthesis in Spodoptera frugiperda cell cultures infected with 7.
ni MNPV, The phases were induced in a cascade fashion, with synthesis of one
phase blocked if the proteins of the previous phase were rendered non-functional.
The early proteins include enzymes such as thymidine kinase (Kelly, 1981b),
while the virus structural proteins appear later. Synthesis of the lafer proteins
is probably dependent on virus DNA synthesis, which reaches a high rate.

Nearly all of the late messenger RNA is virus-specific, with approximately
25% of that in A. californica MNPV-infected cells specific for IB protem (Adang
and Miller, 1982). The control of IB formation is undoubtedly complex; studies
with A. californica MNPV mutants led Potter and Miller (1980) to suggest that
about half of the genome might be involved. Another small protein (molecular
weight 10000) is produced late and in large quantities in A. californica MNPV-
infected cells. It is present in the virion as 2 minor component, but its function
is not known (Smith, Vlak and Summers, 1983).

Insect-cell culture

A brief account of insect-ceil culture techniques is relevant because of their
value in studies of BV replication (page 380), genetics (page 385) and safety
testing (page 388). Furthermore, there are hopes that viruses used as insecticides
might be mass produced in cell cultures (page 400). Recent reviews of insect-cell
culture include those of Stockdale and Priston (1981), Vaughn and Dougherty
(1981) and Grace (1982).

Increasing numbers of insect cell lines and culture media are becoming
available (Hink, 1976, 1980). Most of the cell lines are from lepidopteran and
dipteran insects; lines from several insect orders, including the Hymenoptera,
have not yet been developed.

MNPVs, SNPVs and non-occluded BVs have been replicated in cell cultures,
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All attempts to replicate GVs in cell lines have failed so far, but Vago and
Bergoin (1963) and Rubinstein, Lawler and Granados (1982) have reported GV
replication in primary cell cultures. Replication was incomplete in the latter
case. As one of the preferred sites of GV replication is the fat body it will be
of interest to see if a GV will replicate in any of the cell lines derived from fat
bodies which are now becoming available (Mitsuhashi, 1981).

Susceptible cell cultures are readily infected with budded virions, so the
haemolymph of an infected insect or medium from an infected cell culture
provides effective inoculum, Virions released from IBs have much lower
infectivity for cell cultures.

One of the most widely used cell lines is one derived by Hink (1970) from
the ovaries of T, ni adults and designated TIN-368. 1t has been used for plague
assays of 4. californica MNPV (Hink and Strauss, 1977 and Galleria mellonella
MNPV (Fraser and Hink, 1982). A plaque assay of H. zea SNPV in an H. zea
cell line was described by Yamada and Maramorosch {1981},

A virus which will produce plaques in cell culture can be cloned by picking
from single plaques, as carried out by Lee and Miller (1978) for A. californica
MNPV in a Spodoptera frugiperda cell line.

A cell culture, like the whole organism, can harbour inapparent virus infections
{Granados, Nguyen and Cato, 1978; Plus, 1978; Heine, Kelly and Avery, 1930).
Plus (1980) stressed the importance of initiating cell lines from insects reared
from surface-sterilized eggs as a precaution against virus contamination.

Baculovirus characterization and identification

ANALYSIS OF PROTEINS BY SODIUM DODECYL SULPHATE-POLYACRYLAMIDE GEL
ELECTROPHORESIS

The technique of sedium dodecyl sulphate—polyacrylamide gel electrophoresis
{SDS-PAGE) permits the number of virus proteins to be determined and their
molecular weights to be estimated. It provides useful information, but suffers
from a number of limitations and should not be used as the sole technique in
virus identification (Allaway and Payne, 1983).

SEROLOGY

Serological methods are used to compare different viruses, and to diagnose
infection in insects, especially in epizootiological studies. They are also used in
safety testing (page 388) where they provide a means of detecting virus or virus
components in non-target organisms and of detecting anti-viral antibodies in
vertebrates exposed to the virus. Apparently the IB protein, the virion envelope
and the nucleccapsid of an cecluded BV each bears distinct antigenic determin-
ants.

Prominent among several techniques which have been used is immuno-
diffusion, which is useful for investigating antigenic relationships, although it
lacks sensitivity. The sensitive technigue of enzyme-linked immunosorbent assay
(ELISA) is becoming widely used. McCarthy and Henchal {1983) used an
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antiserum against aucleocapsids in an ELISA to detect A. californica MNPV
virions in larvae and in cell cultures, Brown, Allen and Bignell {1982},
investigating the relationships between four MNPVs of Spodoptera spp., used
an indirect ELISA with enzyme-labelied protein A of Staphylococeus aureus in
place of enzyme-labelled anti-immunogiobulin.

Monoclonal antibodies are increasing the specificity of serological techniques.
Roberts and Naser (1982b) developed hybridomas secreting monoclonal anti-
bodies against the IB protein and against a major virion protein of A. californica
MMNPYV. These antibodies were used in several serological methods, and have
recently been used in a protein-blotting technique incorporating ELISA (Naser
and Miltenburger, 1983). Hohmann and Faulkner (1983) reported the applica-
tion of a similar technique to investigate BV relationships. Volkman and Falcon
{1982) used a monoclonal antibody against the 1B protein of 7. ni SNPV in an
ELISA to diagnose infection in larvae. They found that host tissue caused
mterference, but concluded that the test was sensitive enough to be useful.

RESTRICTION ENDONUCLEASE ANALYSIS OF DNA

For definitive characterization and unequivocal identification of a BV it is
preferable to analyse the genome rather than phenotypic characters. One of the
techniques that discriminates best between double-stranded DNA viruses is
restriction endonuclease (REN) analysis of their nucleic acids. Smith and
Summers {1979} could differentiate five A. californica MNPV isolates by this
technique, whereas the SDS~-PAGE protein profiles of the isolates were identical.

BIOASSAYS

Precise bioassay techniques yield important information about the virus—host
relationship. This information is vital for selecting virus strains with high
infectivity and for estimating suitable rates for field application. Many factors
can affect the dose—response relationship and/or the LD, of an insect virus
and each of these must be standardized. Larval instar {page 396), larval weight
and/or age within instar (Burgerjon et al., 1981; Evans, 1983} diet composition,
IB purification technique (Baugher and Yendol, 1981) and incubation tempera-
ture {Boucias, Johnson and Alien, 1980) should all be carefully controlled.

Techniques in which a larva consumes only a portion of virus-inoculated
diet are less preferable to those in which the whole of the dose is ingested on
a leaf disc {Evans, 1981), a small piece of diet (Nordin, 1976), or in a small drop
{Klein, 1978; Hughes and Wood, 1981). Laing and Jaques (1980) described a
bioassay technique for larvae of boring species such as the codling moth, Cydia
pomonella.

Estimates of LTsys may also be useful, especially for predicting how rapidly
insects will be killed in the field.

HOST RANGE

BV host ranges have been widely investigated but many of the results require
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confirmation, as viruses which replicated in inoculated hosts were not always
identified, often because suitable techniques were not available when these
experiments were carried out. Some of the cases of virus replication could have
been due to latent virus activation (see below) rather than to cross-transmission.
In many studies only gross effects of infection (e.g. IB formation, host death)
were looked for, although a virus might infect a host sublethally or only some
virus functions might be expressed without IB formation. Furthermore, an insect
resistant to infection by ingestion of IBs might be susceptible if injected with
budded virions.

With these provisos in mind it can be stated tentatively that the MNPVs are
the least host-specific of the occluded BVs. A. californica MNPV has the widest
known host range, infection having been reported in more than 30 insect species
and in cell cultures from at least 13 species. Replication of H. zea SNPV, on
the other hand, appears to be restricted to members of the genus Heliothis
{Ignoffo and Couch, 1981). Some (GVs have been transmitted to other species,
e.g. C. pomonella GV to five closely related species (Huber, 1982), and Heliothis
armigera GV to four other species including 7. ni and two Spodoptera species
(Hamm, 1982).

When selecting a virus for possible use against more than one pest spectes
it is important to determine the dose-mortality relationship (page 383) for each
host. A virus is not likely to control an insect if the LD, is extremely high, as
for Agrotis segetum GV in Agrotis exclamationis larvae in which the LDy, for
neonate larvae was found to be 12 x 10° 1Bs compared with 1-1 x 10* IBs for
the homologous host {Allaway and Payne, 1984).

LATENCY

There have been many reports of insects harbouring ‘latent’ viruses, especially
BVs, but no firm conclusion can be drawn from many of them. The best-
substantiated reports concern the development of a homologous NPV in an
insect fed with IBs of a heterologous NPV, with both viruses being characterized
{Longworth and Cunningham, 1968; Maleki-Milani, 1978; Jurkovitova, 1979).
McKinley et ol (1981) found that activation of a latent virus was more common
than cross-infection after feeding four NPVs to heterclogous hosts. Two aspects
of their results are particularly interesting: first, there was a straight-line
relationship between dose and mortality, i.e. there was no threshold dose of
heterologous virus above which activation of homologous virus occurred;
second, it appeared that each of the insects in their cultures carried a latent virus.

Because of the phenomenon of latency it is vital that all insect and cell-culture
stocks used for virus studies are checked as closely as possibie for the presence
of latent viruses.

Baculovirus classification and nomenclature

The BV subgroups were described on page 376, and the reader will have gathered
that an individual virus is identified by the name of the insect from which it was
isolated, e.g. Gilpinia hercyniae SNPV, Pieris rapae GV. Some insects, e.g. T ni
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and the Douglas fir tussock moth, Orgyia pseudotsugata, are host to both a
SNPV and a MNPYV; regrettably some authors do not specify which type of
virus they have worked with.

The system of naming a BV after an insect host is far from satisfactory because
many, if not most, of the BVs can infect several hosts. The wide host range of
A. californica MNPV has been discussed (page 384), and DNA REN analyses
indicate that this virus, T. ni and G. mellonella MNPVs (Smith and Summers,
1979) and an NPV from Diparopsis watersi (Croizier ef al., 1980) are very closely
related. In fact many of the REN pattern differences between these viruses were
no greater than the differences between strains of A. californica MNPV,

Sometimes a virus is found to be more infective for another host, e.g. Pieris
brassicae GV is more infective for P. rapae than for the ‘natural’ host (Payne,
Tatchell and Williams, 1981), and M. brassicae MNPV is more infective for
Plusia gamma than for the ‘natural’ host (Allaway and Payne, 1984). Clearly, a
more logical approach to BV classification and nomenclature is required.

Baculovirus genetics

There appears to be a multiplicity of genotypes for each of the BVs., A virus
isolated from a single infected larva may contain a variety of genomes, as
demeonstrated by the regular presence of submolar fragments of DNA after
REN digestion {e.g. Smith and Summers, 1978; Mclntosh and Ignoffo, 1983),
Even when no submolar fragments can be detected in REN analysis, a small
proportion of the genomes may display variability which can be detected in
plaque-purified strains (Smith and Summers, 1980).

There may be differences between virus isolates from members of the same
host species collected from different geographical areas, eg. isolates of
Spodoptera littoralis MNPV (Kislev and Edelman, 1982), Neodiprion sertifer
SNPV (Brown, 1982) and Lacanobia oleracea GV (Crook, Brown and Foster,
1982} differed in their DNA REN patterns. Heterogeneity in the genome of a
single ‘virus’ is also reflected in variability of phenotypic characters. Isolates
may differ serologically, c.g. 4. segetum MNPV {Allaway and Payne, 1983), in
their SDS-PAGE protein patterns, e.g. N. sertifer SNPV (Brown, 1982), and in
bioclogical characteristics of cructal importance in the use of these agents for
pest control. Isolates of Oryctes rhinoceros non-occluded BV (Zelazny, 1979),
C. pomonella GV (Harvey and Volkman, 1983} and A. segerum MNPV (Allaway
and Payne, 1983) have been shown to differ in LDy, for their hosts.

For the reasons just outlined it is preferable that cloned virus strains be used
in all investigations. Viruses which produce plaques in cell culture can be cloned
from single plaques. For those viruses for which no plague system is available,
the next best appreach is to inject groups of insects with serial dilutions of
budded virions, and to select for virus isolation a single infected inscct from a
group injected with a dose smaller than the LDso. Green (1981) used the latter
approach with 7. paludosa SNPV,

A. californica MNPV has been adopted for study by a number of laboratories
and rapid progress is being made in mapping the genome of its dominant
variant. Physical maps have been derived using RENs (Miller and Dawes, 1979;
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Vlak, 1980; Cochran and Faulkner, 1983). EcoRI digestion yields 24 fragments,
21 of which have been cloned by Liibbert er al. {1981). It has been agreed that
the map should start at EcoRI fragment I, which includes the IB protein gene.
Smith and Summers (1982) found that DNAs from several NPVs, GVs and a
non-occluded BV had sequences homologous with this fragment,

The locations on the physical map of the genes for several functions, including
IB protein, have been found by marker rescue and by using Southern and
Northern blotting techniques. The copy-DNA technigque has been used to
determine the relative amounts of virus messenger-RNA species in the mfected
cell, and to identify the proteins for which they code (Adang and Miller, 1982;
Smith, Viak and Summers, 1982; Erlandson and Carstens, 1983}

Recombination between MNPV genomes has been demonstrated. Croizier,
Godse and Viak (1980) inoculated G. mellonella larvae with MNPVs from G.
mellonella and A. californica, and isolated recombinants. Smith and Summers
(1980) plaque-purified recombinants between 4. californica MNPV and Rachi-
plusia ou MNPV from wild-type R. ou MNPV, and suggested that recombination
may be important in the evolution of BVs.

The genomes of BVs can now be manipulated using the techniques of genetic
engineering. It may soon be possible to construct new virus strains with improved
characteristics as microbial control agents.

Epizootiology

A common objective in pest control with a virus is the establishment of an
epizootic in a pest population from which the virus is absent or in which it is
only enzootic. In order to achieve this i is important that the mechanisms
whereby the virus spreads from host to host within a generation and between
generations are understood. Some knowledge of how well the virus persists in
the field 15 also necessary.

Insects which feed at plant surfaces become infected with occluded viruses
principally by ingesting IBs present on the plant, deposited there from the faeces
or the cadavers of infected insects. In order to ensure virus persistence, large
quantities of virus arc produced, of which only a tiny proportion may be utilized
as mnoculum. During a SNPV epizootic in the European spruce sawfly, G.
hercynige, in Wales it was estimated that more than 10!* IBs/hectare were
produced, of which only 0-00025% was utilized the following year (Evans and
Harrap, 1982).

Virus may be disseminated by the movement of infected larvae, eg NPV.
infected larvae of the cabbage moth, M. brassicae can move several metres in
cabbage plots {Evans and Allaway, 1983). NPV-infected larvae of some species,
e.g. the gypsy moth, Lymantria dispar, (Doane, 1970) and M. brassicae (Evans
and Allaway, 1983) tend to climb to the tops of plants before they die, thus
ensuring maximum contamination of the plants with their virus load. In many
lepidopteran species the BV-killed cadaver hangs from the host plant while
putrefaction occurs; then the skin bursts, shedding the liquefied contents together
with the virus IBs. Soil-dwelling, plant-feeding insects, such as Tipula spp. larvae,
are less likely to contaminate their food source with infective doses of virus.
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The main mode of transmission for two viruses of Tipula spp. appears to be
by cannibalism (Carter, 19732, b; Green, 1981).

IBs may also be deposited on plants in the facces of predators, or they may
be transferred from the soil by rain-splash or by the activities of animals.

TRANSMISSION TQO THE NEXT GENERATION

In a permanent ecosystem, such as a forest, IBs produced in one generation of
larvac may persist on foliage until the next generation has hatched, as Entwistle
and Adams (1977) showed for G. hercynige SNPV. Virus may also contaminate
the egg surfaces, and this may be ingested by the hatching larvae, as Doane
(1975) demonstrated for L. dispar NPV.

In an annual crop, on the other hand, virus is transferred to the plants from
a reservoir, usually the soil. There have been several investigations into the
survival in soil of viruses of brassica pests. David and Gardiner (1967) reported
good survival of P. brassicae GV in soil for at feast two years, and Jaques (1969)
found large amounts of an NPV of 7. ai in soil 231 days after application
with little or no evidence of leaching of IBs. Evans (1982), however, found a 98%
loss of M. brassicae NPV IBs after 52 weeks: nevertheless, with sufficient IBs
initially, enough could survive to infect the next generation.

Some larvae which receive small doses of virus, and/or which become infected
in a late instar, may survive to produce infected adults which may disperse the
virus and transmit it to their progeny. Entwistle (1976) considered that this was
an mmportant dispersal mechanism during an epizootic of G. hercyniae SNPV,

It has been claimed that some viruses are transmitted within the egg, but
this has not yet been unequivecally demonstrated. It has been shown, however,
that infected adults can contaminate the egg surface. Hamm and Young (1974)
demonstrated transmission of H. zea NPV to the next generation in this way.

ROLES OF PARASITES AND PREDATORS

Hymenopteran parasites of insects can act as virus vectors when females oviposit
in infected insects and subsequently in uninfected insects. The infective material
probably consists of budded virions. Transmission by this mechanism has been
shown for several viruses, including P. rapae GV (David, 1965), Heliothis
virescens NPV (Irabagon and Brooks, 1974) and . dispar NPV (Raimo, Reardon
and Podgwaite, 1977).

Predators may disperse virus after feeding on infected insects. The following
are a few examples of cases in which an infective BV, often in significant amounts,
has been demonstrated in the faeces of predators: insects predatory upon
Heliothis punctiger (Beekman, 1980) and M. brassicae (Evans and Allaway,
1983), birds predatory upon G. hercyniae (Entwistle, Adams and Evans, 1978)
and Wiseana spp. (Kalmakoff and Crawford, 1982); and mammals and birds
predatory upon L. dispar {Lautenschlager and Podgwaite, 1979},

Parasites and predators therefore have important roles in the transmission
and dispersal of viruses, in addition to their more direct roles in regulating
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insect numbers. Integrated pest management (IPM) practices should therefore
aim at maximum conservation of these animals.

EPIZOOTICS

The normal situation for most virus diseases is an enzootic, occasionally
becoming epizootic when the host population density increases. Doane (1976)
has described how an NPV epizootic develops in an L. dispar population, result-
ing in a spectacular reduction in population size, which is then likely to remain
small for a number of years because of the high level of virus in the environment.
Only when this declines is there likely to be a repeat of the cycle of resurgence
in insect numbers followed by another epizootic. Briese {1981) proposed that
climate, too, might influence the development of GV epizootics in the potato
moth, Phthorimaea operculella.

Entwistle e al. (1983} described the patterns of virus dispersal in G. hercyniae
SNPYV epizootics. The spread of the disease from an initial focus became wave-
like and then became random, These authors suggested that other insect viruses,
e.g. O. rhinoceros non-occluded BV, might follow similar patterns of spread.

Safety

It has been argued (Burges, Croizier and Huber, 1980) that BVs are inherently
safe for use as pesticides because man has been exposed to them throughout
his evolution and no adverse effects are known. The presence of BVs can be
demonstrated on marketed vegetables, some of which are eaten raw. There are,
however, a number of potential hazards associated with the mass production
and mass application of BVs, and these should be evaluated as fully as possible.
It is better to use a pesticide with the confidence that it has passed a series of
stringent safety tests than to risk an accident which could set back microbial
control for decades.

The viruses which have been most exhaustively tested for safety to date are
those registered for use in the US. In a large series of tests on H. zeq SNPV
no adverse effects have been found, except for possible enhancement of simian
virus 40-transformation of human amnion cells (MclIntosh and Maramorosch,
1973).

POTENTIAL HAZARDS

The virus, and other materials in the formulation, should be tested for infectivity,
toxicity, carcinogenicity, teratogenicity and allergenicity in non-target
Organisms.

A change in the host specificity of a virus might occur by mutation, or by
recombination with another virus or with cellular DNA. BV genomes resemble
those of papovaviruses, many of which are oncogenic, in that they are both
circular double-stranded DNA molecules. Tests for hybridization between BV
and vertebrate virus DINAs, and between BV and cell DNAs, would provide
an indication of the likelihood of recombination events.
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The safety of humans is the prime concern, and it must be remembered that
some highly susceptible individuals, i.. those with hereditary immmunodeficiency,
those with acquired immune deficiency syndrome, and those receiving immuno-
suppressant therapy, could be exposed to virus-containing sprays and dusts.
Persons involved in virus production and field application receive the greatest
exposure, especially when the virus is disseminated as a spray.

Perhaps the most likely hazard is an allergic response in the skin or respiratory
system. Repeated inhalation might lead to a pulmonary condition similar to
farmers’ lung disease. One worker involved in H. zea SNPV-production is
reported to have developed an allergy (Rogoff, 1973}

The welfare of other organisms, including domestic animals, wild mammals,
birds, fishes and beneficial insects, must also be safeguarded.

TESTS ON VERTEBRATE ANIMALS

Animals have been inoculated with BV IBs, virions and DNA via a variety of
routes. In the vast majority of these tests, e.g. after feeding H. zea SNPV 1Bs
to pregnant rats {Ignoffo, Anderson and Woodard, 1973) and after inoculating
O. rhinoceros non-occluded BV into mice (Gourreau, Kaiser and Monsarrat,
1982), no harmful effects were found. M. brassicae NPV 1Bs and A. californica
NPV virions were fed to rodents and no chromosomal aberrations were detected
(Miltenburger, 1980).

There are two reports of adverse effects in BV-inoculated pigs: Gourreau et
al. (1979) found an increased rate of liver lesions in pigs inoculated intra-
peritoneally with O. rhinoceros non-occluded BV; and Déller, Gréner and Straub
{1983) found slight temperature increases in piglets fed M. brassicae NPV IBs.

G. Déller and co-workers have suggested that an antibody response in an
animal is suggestive of virus replication, and have been unable to detect
antibodies to IBs and virions in mammals exposed by feeding and inhalation
{Doller and Huber, 1983; Doller, Groner and Straub, 1983). Carey and Harrap
(1980), however, found that some rats exposed to Spodoptera spp. NPVs
developed antibodies to the virtons and/or the IB protein and antibody responses
have occurred in mice fed IBs (D. L. Knudson, in discussion after Granados,
1980b).

Workers involved in H. zea SNPV production (Ignoffo and Couch, 1981} and
in field trials with N. sertifer SNPV (Entwistle er al., 1978) have been monitored
and no antibodies against BV components have been found in their sera.

Care is necessary when interpreting results of serum tests as a number of
non-specific reactions have been detected between mammalian sera and IB
proteins {Daéller, 1980, 1981).

There is evidence both for the survival of BV 1Bs intact in the mammalian
gut, and for their breakdown. Carey and Harrap (1980) recovered infective IBs
21 days after feeding to rats, while Déller, Groner and Straub (1983) found
evidence of IB breakdown in the piglet gut, but were unable to detect infectious
virus in the organs.

To test for adverse effects on wildlife the approach of Lautenschlager,
Rothenbacher and Podgwaite (1978) could be emulated. These authors
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monitored a variety of parameters in five species of caged and free-living
mammals in a woodtand after aerial application of L. dispar MNPV they found
no adverse effects. Déller and Enzmann {1982) showed that fish can mount a
good antibody response to IB protein, and proposed that tests for immune
responses in fish could form part of an environmental monitoring programme.

TESTS ON VERTEBRATE-CELL CULTURES

BVs have been inoculated into a wide variety of vertebrate-cell cultures and in
the majority of cases no cytopathic effect occurred and no evidence of virus
replication could be found, e.g. H. zea SNPV in primate cells {ignoffo and
Rafajko, 1972), 4. californica MNPV in three mammalian cell lines (Milten-
burger, 1980) and O. rhinoceros non-occluded BV in mammalian and fish cells
{Gourreau, Kaiser and Montsarrat, 1981). Lack of IB production or other
cytopathic effect should not be construed as lack of virus replication, but sensitive
tests for a range of virus functions should be performed.

BV virions are readily taken up by vertebrate cells in culture. Granados
(1980b) reported uptake of A. californica MNPV virions into cytoplasmic
vacuoles in Hela and fathead minnow cells, and similar observations were
made by Volkman and Goldsmith (1983) and Miltenburger and Reimann
(1980). The latter authors (Reimann and Miltenburger, 1983) also found evidence
of some nucleocapsids breaking down in the vacuoles, and of others budding
out of the cell. They could not detect virus in the cell nuclet, but Tjia, Zu
Altenschildesche and Doerfler (1983), using a DNA hybridization technique,
found DNA of 4. californica MNPV in the nuclei of inoculated mammalian
cells for at least 24 hours, after which it was rapidly lost. The limit for DNA
detection by this technique is one viral genome per 5-10 cells (Miltenburger,
1980}, so it is possible that it might have persisted undetected in a few cells.
Mo evidence of transcription of the virus genome could be found.

Mclntosh, Maramorosch and Riscoe (1979) found that 4. californica MNPV
virions were taken into cytoplasmic vacuoles in a viper cell line. There was no
evidence of virus replication, but the cells grew more slowly, and there was a
large increase in the number of C-type particies present in that cell line.

There have been a few reports of BY replication in mammalian cells. The
first of these was by Himeno ¢t al. (1967) who announced that IBs had developed
in human cells inoculated with Bombyx mori NPV DNA. Aleshina et al. {1973a)
subsequently reported replication of B. mori NPV in mouse fibroblasts.
Mcintosh and Shamy (1980) reported evidence of A. californica MNPV
replication in a Chinese hamster cell line, but no evidence of replication was
found by Volkman and Goldsmith (1983} in the same virus-cell system, or by
Reimann and Miltenburger (1983) in another Chinese hamster cell line. One
further report of a BV-induced change in mammalian cells is of an increase 1n
nuclear size after inoculation with L. dispar NPV (Aleshina et al., 1973b).

OTHER COMPONENTS OF BACULOVIRUS PREPARATIONS

Potential hazards from other materials present in a virus formulation must also
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be assessed. [nsect fragments, insect diet and contaminant micro-organisms may
be present, depending on the production method. Chemicals may be added to
protect the virus from ultra-violet (UV}-light, to enhance adhesion to foliage
or to stimulate larval feeding, and some viruses are applied in oil suspensions.

One cause for concern is the possible presence of contaminant viruses. Two
small RNA viruses were found in a preparation of Darna trima GV (Harrap
and Tinsley, 1978), and a small RNA virus has been found in A. californica
MNPV preparations (Morris, Hess and Pinnock, 1979; Vail er al., 1983). The
latter virus has affinities with the mammalian caliciviruses, and is infective for
T. ni larvae, in which smali doses can initiate inapparent infections. 7. ni larvae
are used for A. californica MNPV production.

The risks posed by contaminant viruses are still largely unknown, but one
small RNA virus (Nodamura virus) isolated from insects is lethal to mice when
injected by various routes (Scherer, Verna and Richter, 1968). Until the risks
can be shown to be negligible it would seem prudent for any virus which is to
be applied as a spray to undergo a purification procedure sufficient, at least,
to remove contaminant virions.

Most mass-produced insect virus preparations, however, consist of ground,
Iyophilized virus-infected larvae, and therefore contain insect material and
contaminating micro-organisms. Podgwaite, Bruen and Shapiro (1983} found
approximately 10%3-10° viable bacteria and fungi per gram of ‘Gypchek’ (L.
dispar MNPV). Many of the organisms that they found are opportunistic human
pathogens. Padhi and Maramorosch (1983) determined viable bacterial counts
in commercial preparations of H. zea SNPV. They found 10° bacteria per gram
in ‘Elcar’, whereas ‘Viron/H’ (now discontinued) contained 102 bacteria per gram,
including Bacillus cereus which was pathogenic to silkworm larvae.

Dubois (1976) demonstrated that bacterial contaminants can be destroyed
chemically. In the UK, field trials have been carried out with highly purified
preparations of N. sertifer SNPV (Cunningham and Entwistle, 1981), P.
brassicae GV {Tatchell and Payne, 1984) and C. pomonella GV (Glen and Payne,
[984).

‘Gypchek’ production also involves the hazard posed by the allergenic,
urticarious setae of L. dispar larvae. Personnel are protected by filter masks,
and a method has been devised for removing the setae during processing (Shapiro
et al., 1981).

Other components of BV preparations (e.g. UV-protectants, oils) should be
tested for possible hazard, especially for carcinogenicity by inhalation,

REGISTRATION REQUIREMENTS AND GUIDE-LINES FOR SAFETY TESTING

Harrap (1982) has given a comprehensive account of registration requirements
for viral (and other microbial) insecticides, and of the guide-lines produced by
several national and international bodies for safety testing them. In the UK the
controlling bady is the Pesticides Safety Precautions Scheme of the Ministry
of Agriculture, Fisheries and Food (Papworth, 1980), while in the US 1t 1s the
Environmental Protection Agency (Rogoff, 1980} Many developing nations lack
the facilities and resources for safety testing. Virus preparations which might
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be of value to these nations could be safety tested in laboratories in the developed
nations as a contribution to their overseas aid programmes.

Too few BVs have been exhaustively safety tested to allow conclusions to be
drawn about the safety of BVs in general, but the current impression is that
these viruses appear to be safe for field use. However, the evidence that IBs
can be dissolved in the mammalian gut and that virions can be taken into
mammalian cells, together with the reports of replication in mammalian cells
and of adverse effects in mammals, mean that severai BVs will need to pass
stringent safety tests before the group in general receives a blanket seal of
approval.

Strategies for pest control with viruses

INTRODUCTION QF VIRUS

Many pests have been introduced into new areas of the world as a result of
man’s activities, It has been estimated that 309, of the most serious pests in the
US are of foreign origin. The pests are often introduced without all of their
natural enemies, including viruses. There have been several cases where a virus
has subsequently been introduced, either deliberately or by accident, and has
provided effective control of the pest. Two examples concern sawflies introduced
into North American forests from Europe. In each case the subsequent release
of an NPV from Europe initiated epizootics and controlled pests {Bird, 1953;
Bird and Elgee, 1957).

This strategy was also applied to the non-occluded BV of the coconut palm
rhinaceros beetle, Oryctes rhinoceros, which was discovered in Malaysia (Huger,
1966), but was appareatly absent from the Pacific islands where O, rhinoceros
causes serious damage to palms (pages 393 and 396).

SUPPLEMENTATION OF EXISTING DISEASE

Where a virus 1s present in an insect population, increasing the amount of virus
in the environment may lead to a greater proportion of insects becoming infected.
One virus application may be sufficient to reduce numbers of a pest to an
econornically acceptable level, especially in a forest. Cunningham and Entwistle
{1981) stated that a single NPV application to young trees is likely to protect
them from sawfly damage for their lifetime. In an agricultural situation it may
be necessary to use a virus more like a chemical insecticide, with adequate
protection provided only by several applications during the lifetime of the crop.

MANIPULATION OF EXISTING DISEASE

In some situations it is possible to increase the level of virus discase in a pest
population by the adoption of certain management practices. An example
concerns Wiseana cervinata which damages pasture in New Zealand. An NPV
is widespread and can control this pest, but cultivation of the land buries the
virus reservoir beyond the range of the larvae. Kalmakoff and Crawford (1982)
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therefore recommended oversowing damaged areas of pasture without cultiva-
tion. They also recommended the regular movement of stock over pastures to
spread the virus.

Techniques for virus dissemination

RELEASE OF INFECTED/CONTAMINATED INSECTS

This dissermnination technique has special attraction for viruses which survive
poorly outside the host, e.g. 0. rhinoceros non-occluded BV, which has been
introduced into a number of South Pacific islands by releasing infected beetles
(Bedford, 1981}. Only the mid-gut cells are susceptible in the adult, which may
survive for many weeks. The infection has a debilitative effect, however: the
beetles stop boring into palms and females stop egg-faying. Monsarrat and
Veyrunes (1976} estimated that an infected adult excretes about 300ng virus
per day. Some of this virus is transmitted during mating, and some serves as
a source of infection for larvae, in which the infection rapidly becomes systemic
and causes death.

Some insect viruses, e.g. P. brassicae GV (Tatchell, 1981), are transmitted to
the progeny if the ovipositor of the female is contaminated, but this technique
has not yet been widely applied to virus dissemination in the field.

SPRAYING

Most viruses are applied in aqueous sprays using equipment developed for
spraying chemical insecticides. Morris (1980) and Smith and Bouse (1981} have
argued for a research programme to design equipment specifically for the
application of viruses and other microbes.

Equipment producing smalt droplets is preferred. Virus application in droplets
with diameters of 100—-150 um usually results in higher insect mortality than in
larger droplets (Smith and Bouse, 1981). Entwistle et al. (1978) used a micro-
droplet machine producing droplets with a mean diameter of 50 um. Reed and
Springett (1971} suggested that P. operculella GV might best be disseminated
as a mist as the [Bs would be more likely to enter the stomata, thereby becoming
more accesstble to the larvae within the leaves.

Virus dissemination in charged droplets from an electrostatic sprayer means
that a larger proportion of IBs adhere to the leaves, especially the undersides
which are the sides often favoured by insects, and which provide some protection
from sunlight for the virus. A disadvantage of electrostatic sprayers is poorer
spray penetration into the plant canopy (Matthews, G.A., 1982).

A modification of spray application was carried out by Hamm and Hare
(1982} who introduced NPVs of H. zea and S. frugiperda on to corn via an
overhead irrigation system. Instead of spraying the crop, Young and Yearian
{1980} sprayed the soil with an NPV of the soybean looper, Pseudoplusia
includens, at soybean planting time.

If a virus spreads rapidly, then blanket spraying may be unnecessary. This
is the situation with the SNPV of the red-headed pine sawfly, Neodiprion lecontei,
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for which Cunningham (1982) has proposed spot introductions or ‘zebra stripe
spraying’ from atrcraft. Spot introductions into glasshouses of the GV of the
tomato moth, Lacanobia oleracea, were suggested by Crook, Brown and Foster
(1982).

BAITS

The application of insecticides in baits has the advantage that less insecticidal
material is required, and the disadvantage of increased costs of field application.
Baits are especially valuable if insects which have a burrowing or mining habit
can be encouraged to spend longer at the plant surface and ingest larger doses
of insecticidal material.

Most research into the application of viruses in baits has involved H. zea
SNPV and baits based on cottonseed and soybean (page 395). Johnson and
Lewis (1982} used wheat bran baits to apply two MNPVs to corn.

DIPPING SEEDLINGS

Ignoffo er al. (1980) suggested that IBs could be introduced on to cabbages by
dipping them in an IB suspension at the time of transplanting.

Yiruses undergoing trials and/or in use
Details of viruses registered for use in various countries are given in Table 2,
and some of them are discussed more fully below,

l.  Heliothis zea SNPV has been marketed for almost a decade in the US
for the control of H. zea and H. virescens on cotton {Ignoffo and Couch, 1981).
Some workers, e.g. Shieh and Bohmfalk {1980), have found it to be an effective

Table 2. Viruses registered for use.

Virus

Eised on

Country

Product name

Heliothis zeq SNPY

Orgyia psewdotsugaia MNPV

Lymantria dispar MNPV
Awrographa californica MNPY

Neodiprion sertifer SNPV

Neodiprion lecontei SNPV

Dendrolimus spectabilis
cytoplasmic polyhedrosis

virus

Cotton and other crops

Cotion, sorghum
Fir trees
Deciduous trees
Several crops

Pine trees

Pine trees

Pine trees

us

Australia

us

Canada (temporary
registration)

us

USSR

US {experimental
use permit)

us

USSR

Finland

Canada (temporary
registration)

Japan

Elcar

TM™M Biocontrol-1
Virtuss

Gypchek
Virin-ENSh
SAN 404

Neochek S
¥irin—-Diprion
none
Lecontvirus

Matsukemin
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insecticide, while others, e.g. Pfrimmer (1979), have obtained wvariable and
sometimes disappointing results.

Much effort has been expended in attempts to achieve more consistent results.
Some of this effort has involved the development of baits, and two in particular
have been tested: ‘Coax’ based on cottonseed and ‘Gustol” based on soybean.
Many workers (e.g. Hostetter et al., 1982, and Potter and Watson, 1983a) have
shown in laboratory and field tests that applying the virus in a bait increases
larval mortality. Some of the increased mortality may not be virus-induced,
however, as treatment of cotton with ‘Coax’ alone results in increased mortality
{Henry, 1982). This has been attributed to larvae spending longer at the surface
before tunnelling into the bolls, thereby extending their exposure to parasites
and predators.

Smith, Hostetter and Ignoffo (1978, 1979) compared different formulations,
application rates, types of spray nozzie and nozzle pressures. They found that
the efficiency of application was affected by nozzle type and droplet size.

H. zea SNPV can also contro! Heliothis spp. on other crops. Ignoffo et al.
(1978) found that it reduced H. zeu¢ populations on soybeans by 92-100%, and
Smith and Hostetter (1982) reported better control of H. zea on soybean and
cabbage than on cotton. In Australia H. zea SNPV is undergoing tests for its
ability to protect navybeans from Heliothis spp. (R. E. Teakle, personal
cormmunication).

2. Autographa californica MNPV, originally isolated from the alfalfa looper,
is considered to have a potential commercial value because of its wide host
range. It has been reported that it can control T. ni as effectively as chemicals
on cabbage (Hostetter et al, 1979) and lettuce {Vail, Seay and Debolt, 1980),
and it 1s being assessed as an alternative to Orgyia pseudotsugata MNPV for
the control of the Douglas-fir tussock moth, O. pseudotsugata. Although the
latter virus can control its host effectively, the high cost of its production and
its limited market mean that there is no commercial interest in it {Martignoni,
Steltzer and Iwai, 1982).

3. Neodiprion sertifer SNPV has been extensively tested against its host,
the Furopean pine sawtly, in Eastern and Western Europe and in North America
(Cunningham and Entwistle, 1981). Entwistle et al. (in press) have induced high
larval mortality in pine forests in Scotland with applications of 5 x 10° to
2 x 109 IBs/hectare. These quantities of virus can be produced in 20-50 larvae.
This remarkable efficiency is attributed to the high larval susceptibility to this
virus and to its rapid spread.

4. Neodiprion lecontei SNPV has shown promise in trials in Canada. Its
host has been controlled with applications of 5 x 10% to 8 x 10° IBs/hectare
{(Cunningham, 1982).

5. Galleria mellonella MNPV was shown by Dougherty, Cantwell and
Kuchinski (1982) to control wax moth larvae effectively in bee-hives. A non-
hazardous insecticide is especially important for this pest of honeycomb.
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6. Panolis flammea NPV has shown very promising results against its host,
the pine beauty moth, which is a pest of iodgepole pines in Scotland (P, F,
Entwistle, personal communication).

7. Heliothis armigera SNPV was shown to provide control of its host on
sorghum in Botswana by Roome (1975} and 15 still under investigation in that
country where H. armigera is a pest of many crops {Flattery, 1983).

8. Choristoneura occidentalis NPV and GV have shown promise for the
control of their host, the western spruce budworm on Douglas fir. The impact
of the NPV on the population size was still detectable one year after spraying
{Shepherd, Gray and Cunningham, 1982}, and a GV application rate of only
25 ‘larval equivalents’/acre resulted in 569 mortality (Cunningham, Kaupp and
McPhee, 1983).

9. Pieris brassicae GV has been demonstrated by a number of workers,
including Kelsey {1958), to provide control of larvae of the small cabbage white
butterfly, Pieris rapae. Tatchell and Payne (1984) recently found that a spray
containing 10° IBs/ml reduced the larval population by more than 90%. The
virus is rapidly inactivated in the field, however, and regular spraying would
be necessary to maintain satisfactory control.

10.  Cydia pomoneila GV has been tested in many countries for control of
the codling moth in orchards. Huber and Dickier (1977) reported that four
sprays resulted in good control, but there was no persistence of the disease into
the next season. Much virus is probably removed from the orchard on the
surface of the apples. Trials carried out by Glen and Payne (1984) led them to
conclude that the use of C. pomonella GV effectively reduces the more severe
forms of fruit damage, but the quantities of virus required to control less severe
forms of damage would probably be uneconomic.

11.  Oryctes rhinoceros non-occluded BV has been introduced into a number
of South Pacific islands. In Tonga it was still infecting 84%; of the beetle
population after seven years {Young and Longworth, 1981). Control of the
rhinoceros beetle has led to a revival of the copra industry in Western Samoa

iMarschall and loane, 1982).

Timing of field applications

The timing of field applications of virus can be crucial in determining the level
of pest control achieved. Significant pest damage is not usually noticed until
the larvae are in the later instars, when larger doses of virus are necessary to
infect them. This, coupled with the fact that most insect viruses kilf their hosts
more slowly than chemical insecticides, means that for many pests the virus
must be applied before crop damage appears. Pest forecasting systems can be
used to indicate when pest numbers are approaching damaging levels.
Increases in LDgg of 10*fold to 10°-fold from early to late larval instars
have been found for a number of lepidopteran BVs, including P. brassicae GV
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{Payne, Tatcheli and Williams, 1981} and Mamestra configurata MNPV (Bucher
and Turnock, 1983), and LT ;45 are often longer in later instars. In some cases
the increased LD, may be offset by the increased food consumption of larger
larvae, as in H. armigera where the first three larval instars have a similar
probability of becoming infected with H. zea SNPV in the field (R. E. Teakle
and J. M. Jensen, personal communication).

Increases in resistance to NPVs in the later instars of sawflies appear to be
small compared with those in the Lepidoptera. For N. sertifer and G. hercyniae
the increases in LD, are about tenfold to fiftyfold from the first to the fifth
larval instar (Entwistle, Adams and Evans, unpublished work cited in Evans
and Harrap, 1982; Entwistle et al,, in press). This means that these pests can
be controlled if virus is applied after the first instar. Infection of the larvae when
they are larger means that more virus is produced and is available to infect the
next generation. This approach is more applicable in stable ecosystems, such
as forests and pasiures where some pest damage can be tolerated, than in annual
Crops.

Virus persistence in the field

A rapid loss of infective virus from plant surfaces can usually be detected after
field application, which could be a physical loss of IBs from plants and/or a
loss of infectivity in virus on the plants,

There have been many studies of rates of infectivity loss, but, as pointed out
by Richards and Payne (1982), most of them have started with amounts of virus
giving 100%, mortality in bioassays and have not therefore achieved their
objectives. These authors outlined a sound experimental approach which they
applied to measure survival of infectivity of a Pieris sp. GV on cabbage in the
UK. They found that the half-life varied from (-35 day in June to 10 day in
October. They showed, using **P-labelled IBs, that the IBs had not been lost
from the cabbages.

If a virus can be protected from inactivation then smaller amounts need be
applied and/or the timing of application becomes less critical. The extent to
which virus inactivation can make timing of application critical was shown by
Potter and Watson (1983b). I they sprayed H. zea SNPV against H. virescens
just after the eggs were laid, 15%, of the larvae died, whereas if they sprayed
just before the eggs hatched, 80%; died.

INACTIVATION BY ULTRA~VIOLET LIGHT

The main factor causing infectivity loss in the field appears to be the UV
component of sunlight. Attempts are made to protect some IB preparations by
adding a UV-absorbing substance. A polyflavinoid marketed as ‘Shade’ has
been used with H. zea SNPYV, and increased virus persistence and/or mortality
of larvae has resulted. "Shade’ is incorporated into L. dispar MNPV preparations
{Lewis, 1981), and has been shown to act as a UV-protectant for this virus in
alaboratory test, although more protection was afforded by the feeding stimulant
*Coax’ (Shapiro, Poh Agin and Bell, 1983),
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INACTIVATION BY COTTON LEAF SECRETIONS

Cotton leaf secretions have a high pH due to substances secreted by epidermal
glands (Elleman and Entwistle, 1982), and there is some evidence that IBs on
the leaf surface can be affected {Andrews and Sikorowski, 1973). Richards {MSc
thesis cited in Richards and Payne, 1982) found that an unbuffered suspension
of S. lirtoralis NPV was completely inactivated 6 days after application to cotton
leaves, whereas infectivity was preserved for much longer if the virus was applied
in a phosphate buffer, pH 7. Some workers in the US have applied H. zea
SNPV to cotton in buffered suspensions, but resuits have varied in different
areas. Further investigations are necessary to determine whether there are
advantages to be gained by applying viruses to cofton in buffered suspensions.

Virus production

Viral insecticides are currently produced in the host insect which is either
collected in the field or reared in an insectary. For some species more than 108
larvae per year are produced. High standards of hygiene are vital to reduce the
risk of infection by pathogens which could decimate the insect stocks and
contaminate the product.

The production of H. zeq SNPV (*Elcar’) has been described by Ignoffo and
Anderson {1979) and Ignoffo and Couch (1981). H. zea larvae are reared on a
semi-synthetic diet in the wells of plastic trays. Fach larva yields about 3-5 x 10°
IBs which are extracted, purified and spray dried. The final product contains
99-6%, inert ingredients and is stored at —20°C. ‘Elcar’ is produced in the US
by Sandoz Inc. who also produce smaller quantities of A. californica MNPV
and an NPV of T. ni for experimental purposes. Both of these viruses are
produced in 7. ni {arvae and the 1B preparations are spray-dried (Yearian and
Young, 1982).

A process for the mass production of L. dispar MNPV (‘Gypchek’) has been
described by Shapiro et al. (1981) and Shapiro (1982), in which the IB vield
represents a 5600-fold increase over the moculum.

For the production of sawfly viruses, either field-collected larvae are infected
and then maintained on host plant material, or infected larvae are collected in
the field (Cunningham and Entwistle, 1981).

Production of viruses in insects is labour-intenstve and therefore costly in
the developed nations. The most time-consuming stage in ‘Elear’ production is
the introduction of larvae into the trays, while in ‘Gypchek’ production it
is the removal of the infected tarvae from their containers.

OPTIMIZING PRODUCTION

The host insect

The insect species from which a virus was isolated may not be the most
susceptible (page 385). Use of a more susceptible host for virus production
would mean a smaller inoculum requirement.
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Alternative hosts might also be considered for insect species which have a
long life cycle, which are small and produce a low yield, or which have allergenic
and urticarious setae. Shapiro et al. (1982} suggested that O. pseudotsugata
MNPV might be produced in the saltmarsh caterpillar, Estigmene acrea, which
is more easily reared than the homologous host. It is important to check that
virus produced in an alternative host does not have reduced virulence for the
original host.

Insect diet

Dict may affect the growth rate of an insect, its susceptibility to virus infection,
and the virus yield. Synthetic or semi-synthetic diets are used for most insects,
and cost is an important factor. A diet rich in wheat germ was found to be the
most cost effective for L. dispar MNPV production, although higher IB yields
could be obtained using other, more expensive, diets (Shapiro, Bell and Owens,
1981). Shapiro (1982} found a substitute for agar which was 409 cheaper than
agar and resulted in improved growth of L. dispar larvae with higher IB yields,

Glen and Payne {1984} increased the yield of C. pomonella GV by incorporat-
ing into the diet a juvenile hormone analogue {methoprene) which resulted in
larger larvae.

Insect stage and virus dosage

The lower IB doses necessary to infect younger larvae must be balanced against
the early deaths of these larvae with smaller IB yields. The optimum dosage
must be determined. If it is too low, many larvae will not become infected,
whereas if it is too high, inoculum will be wasted and larval growth will be
retarded resulting in suboptimal yields.

Incubation environment

Temperature affects the rate of insect growth, the rate of virus replication and
the virus yield. The optimum temperature for each of these may not be the
same and it is necessary to determine the optimum for yield. Relative humidity
and photoperiod must also be maintained at their optima.

Preservation of virus infectivity

Conditions which destroy infectivity (e.g. increased temperature, extremes of
pH) must be avoided during harvesting, purification, formulation and storage
of virus.

QUALITY CONTROL

Each batch of virus must be carefully bioassayed {page 383) and tested for the
presence of harmful contaminants, especially human pathogens. Morris, Vail
and Collier {1981) suggested that quality control procedures should include
tests for contaminants such as small RNA viruses.



400 J. B. CARTER

Future prospects

USE OF VIRAL INSECTICIDES IN INTEGRATED PEST MANAGEMENT

The relatively narrow host spectra of insect viruses may be environmentally
attractive, but mean that markets for viral insecticides are restricted and that
a virus alone is unlikely to afford protection against all the pests in a particular
ecosystem. For example, if C. pomonella GV is used for codling moth control
in orchards, other lepidopteran pests, especially tortrix moths, may resurge.
On the other hand, use of the virus has the advantage that parasites and
predators of the fruit-tree red spider mite, Panonychus ulmi, are not killed, so
damaging numbers of this pest are not reached, which may occur if an
organophosphorus insecticide is used to control codling moth (Glen et al., 1984).

A virus may form a useful component of an IPM programme in which pests
are controlled by husbandry practices, chemicals and biological agents. The
most widely used microbial control agent is Bacillus thuringiensis, most strains
of which have wide spectra of activity against lepidopteran insects. In fact, the
existence of this microbial insecticide is one of the factors limiting the develop-
ment of viral insecticides, although for some pests the two might be used together.
B. thuringiensis, together with P. rapue GV and A. californica MNPV, have
been reported to control P. rapae and T. ni on cabbage almost as effectively as
chemical insecticides (Sears, Jaques and Laing, 1983).

IPM on cotton might include the use of H. zea SNPV and B. thuringiensis
or chlordimeform against Heliothis spp., 4. califorrica MNPV and B. thuringien-
sis against the cotton leaf-perforator, Bucculatrix thurberiella (Bell and Romine,
1982), and diflubenzuron against the cotton boll weevil, 4nthonomus grandis
(Bull et af., 1979).

YIRUS PRODUCTION IN CELL CULTURE

Several laboratories are attempting to develop reliable and economic cell-culture
systems for the mass production of insect viruses as alternatives to production
in Insects, which has a number of associated problems (pages 398-399), and
because a high-purity product is more feasible from cell cultures. Much progress
has been made, but several problems remain to be solved. An outline of insect-
cell culture technigues was given on pages 381-382. The possible application of
those techniques to virus production will now be discussed.

Production systems

Insect cells can be grown in fermenters of the type used for vaccine production
and Vaughn {1981) has suggested that the slack periods of such plants could
be used for insect-virus production. When A, californica MNPV was produced
in TN-368 cells in fermenters 2-3 litres in volume it was found (Hink and Strauss,
1980) that more vigorous aeration was required than in small volumes, and
this resulted in foaming and cell damage. Antifoam was added and the concen-
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tration of methylcellulose, already present to inhibit cell clumping, was increased
to protect the cells.

Attempts have been made to aveid the stresses imposed on cells in traditional
fermenters by using alternative systems. Miltenburger and David {1980) blew
air through silicone rubber tubing coiled inside a fermenter. Oxygen diffused
through the silicone rubber inte the medium. Hilwig and Alapatt {1981) and
Vaughn and Dougherty (1981) have worked on roller bottle systems, but
Stockdale and Priston (1981} believe that they are too bulky and labour-intensive
for adoption by industry. Vaughn and Dougherty (1981) are also developing a
‘perfusion culture system’: this consists of vessels containing coils which provide
a large surface area for cefl attachment; pH and oxygen concentration are
adjusted outside the vessel. Pollard and Khosrovi (1978) presented a design for
a continucus-flow tubular fermenter.

Optimizing production

Some of the factors which can affect IB yield were investigated by Gardiner,
Priston and Stockdale (1976) for A. californica MNPV in TN-368 cells. They
found an optimum temperature of 27°C, an optimum pH range of 5-5-6-5 and
an optimum osmotic pressure range of 250-500 milliosmoles. For the same
virus-cell system Hink (1982) reported production of 10® IBs/ml medium and
suggested that this must be increased twentyfold before the system becomes
econormic.

The IB yield can be affected by the growth phase of the cells at the time of
virus inoculation (Lynn and Hink, 1978), and by iheir concentration. The cell
concentration giving maximum IB yield per ml of medium was higher than that
at which the maximum number of [Bs per cell was produced (Hink, Strauss
and Ramoska, 1977; Stockdale and Gardiner, 1977). The latter authors suggested
that the reduced IB production at higher cell densities might be due to depletion
of a vital precursor. Wood, Johnston and Burand (1982) reported a 98%
reduction in virus production in high-density attached cuitures compared with
low-density cultures. Inhibition of virus production did not occur unless there
was cell-to-cell contact. Further investigations are necessary into the mechanisms
of, and ways of overcoming, inhibition of IB production at high cell concentra-
tions.

Virus strains and cell strains should be selected to give a high-yielding system.
Cells should be cloned and the clones screened for desirable properties, e.g.
more rapid growth rate {(Mclntosh and Rechtoris, 1974). The quality of IBs
produced in a celi line must also be checked. Lynn and Hink (1980) found that
A. californica MNPV IBs produced in ceils from four insect species were less
infective for T. ni larvae than [Bs produced in T ni cells.

Most insect-cell culture media are expensive, principally because most of
them contain foctal bovine serum. Dougherty, Cantwell and Kuchinski (1982)
calculated that, for G. mellonella MNPV production in cell culture, half the
cost, including labour, was for serum. Serum-free media are now being developed
and have been reported for a S. frugiperda cell line with replication of A.
californica MNPV (Wilkie, Stockdale and Pirt, 1980}, an L. dispar cell line with
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replication of L. dispar NPV {Goodwin and Adams, 1980) and for several other
cell lines {(Mitsuhashi, 1982). Weiss ez al. (1981) reduced the cost of their medium
for S. frugiperda cells by omitting antibiotics. They encountered no con-
tamination problems.

Changes in virus on passage

Several studies, e.g. Faulkner and Henderson (1972), have demonstrated that
I1Bs produced during the first few passages in cell culture are as infective as IBs
produced in insects. Upon repeated passage, however, the quality and yield of
[Bs have been found to decline. Hirumi, Hirumi and McIntosh (1975) reported
that passage of 4. californica MNPV in T. ni cells led to the production of
aberrant virions and a reduction in IB yield. After 40 passages the yield had
dropped a hundredfold, with IBs developing in only 4% or less of the cells
(McIntosh, Shamy and Iisiey, 1979). MacKinnon ¢t ol. (1974) found a reduction
in average yield of T. ni MNPV IBs from 28 per cell initially to 25 per cell
after 50 passages, with extensive production of abnormal capsids. Knudson and
Harrap {1976) found that passage of S. frugiperda NPV in S. frugiperda cells
led to the production of [Bs containing few or no virions, and Yamada, Sherman
and Maramorosch {1982) reported reduced yields of H. zea SNPV IBs after 20
passages in H. zea cells.

Hink and Strauss (1976) described two plaque morphologies after passage of
A. californica MNPV in vitro. In one type of plaque there were between 81 and
352 IBs per nucteus, while in the other there were only 2-13 IBs per nucleus.
The plaque types were named many-polyhedra (MP) and few-polyhedra (FP)
plagues respectively. The FP plaques became increasingly dominant on passage.
IBs from MP plaques contained normal virions (multiple nucleocapsids per
virion) and were much more infective for 7. ni larvae than IBs from FP plaques,
which either contained only a few virions (each with only a single nucleocapsid
per virion) or appeared devoid of virions. Similar phenomena have been reported
for 7. ni MNPV {Potter, Faulkner and MacKinnon, 1976), G. mellonella MNPV
{Fraser and Hink, 1982) and for H. zea SNPV (M. J. Fraser and W.J. McCarthy,
unpubtlished, in Fraser, Smith and Summers, 1983).

Most FP forms are genetically stable. They have a selective advantage in
vitro as FP-infected celis produce higher titres of budded viriens than MP-
infected cells {Potter, Jaques and Faulkner, 1978). Wood (1980) suggested that
FP forms might be deletion mutants of MP forms, but several FP forms have
been found to contain insertions of host DNA (Miller and Miller, [982; Fraser,
Smith and Summers, 1983).

One way of avoiding the FP form becoming dominant in cell cultures would
be to return regularly for inoculum to haemolymph from insects infected by
ingestion of IBs. Insect haecmolymph, however, is unlikely to supply the quantities
of inoculum that an industrial-scale process would demand, so some means will
have to be found of preventing the development of FP and other aberrant virus
forms in vitro.
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VIRUS PURIFICATION

The debate concerning the degree of purification necessary before a virus is
sprayed in the field has not yet been resolved. Of primary concern are the
potential hazards posed by the presence of contaminants (pages 390~391). Other
considerations are the costs involved and the possible effects of purification on
virus infectivity and persistence.

There have been several reports {e.g. Magnoler, 1968; Carner, Hudson and
Barnett, 1979; Evans and Harrap, 1982) of laboratory and field tests in which
purified IB preparations had lower infectivity and/or poorer environmental
persistence than IB preparations contaminated with insect fragments, gut
contents and micro-organisms. It is well known that proteins can protect viruses
from inactivation, so the contaminants may afford some protection, especially
from UV light. N. sertifer SNPV, however, controls its host effectively when
applied as a highly purified IB preparation (Entwistle et al., 1n press). It is
interesting that I. dispar larvae were deterred from feeding on foliage con-
taminated with decayed cadavers or extracts from healthy larvae, but were not
deterred by foliage treated with purified NPV Bs (Capinera, Kirouac and
Barbosa, 1976).

The most efficient way of purifying 1Bs is by seme form of gradient centrifuga-
tion, but this can make the final product prohibitively expensive in the developed
nations, let alone the developing nations. In the future, if viruses are produced
in cell cultures they should be free from contaminating micro-organisms and
minimat purification should be necessary. In the meantime, tests should be
carried out to evaluate the hazards posed by contaminants in virus preparations
produced in insects, which should be subjected to rigorous quality control
procedures before field application.

NEW VIRUS STRAINS

Ideal attributes in a viral pesticide are high infectivity and high virulence for a
broad range of pest species, rapid replication with high yields, and good field
persistence with high resistance to UV inactivation. No known virus is endowed
with all of these attributes, but progress towards the development of such an
agent should be possible by two approaches, i.e. by searching in nature for new
virus strains and by the genetic manipulation of existing tsolates.

There can be no doubt that the number of insect virus strains isolated to
date is only a tiny fraction of the total in nature. Virus strains with desirable
properties will undoubtedly be found among future isolates.

A virus might be genetically improved by selecting for desired traits, or by
using the techniques of genetic engineering. The former approach was used by
Brassel and Benz (1979} who selected a strain of C. pomonella GV which was
56 times more resistant to UV light than the original isolate, and remained
infective for twice as long in the field. Wood er al. (1981) induced mutations in
A. californica MNPV, then isolated a mutant with icreased virulence for T ni
larvae, demonstrated by a significantly reduced LT, Among several possibili-
ties for genetically engineering virus strains is the suggestion by Miller, Lingg
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and Butla (1983) that the gene for an insect-specific toxin might be incerporated
into the virus genome to kill the host more rapidly.

PATENTS

A search by Stockdale {in press) revealed that 13 patents had been filed for
processes or formulations involving insect viruses. 1t is not possible to patent
the viruses, however, and this is one of the reasons why viral pesticides have
not been developed more rapidly. There are some hopes that this situation may
change and that it may become possible to patent an organism if it is the
product of a biotechnological process (Crespi, 1980) or if it has undergone
genetic manipulation (Kayton, 1983). If these hopes are realized then there will
be more incentive for commercial concerns to invest in microbial pesticide
development.

DEVELOPMENT OF PEST RESISTANCE

There are not yet any reports of selection of an insect strain with high resistance
to a virus, as occurred in the rabbit to myxoma virus (Fenner, 1983). It is a
possible outcome, however, if a virus is widely used over a long period. Genetic
variability, upon which selection could operate, has been demonstrated in a
number of insect species, ¢.g. varying levels of susceptibility to a GV in the
Indian meal moth, Plodia interpunctella (Hunter and Hoffmann, 1973) and to an
NPV in the light brown apple moth, Epiphyas postvittana {Briese et al., 1980).

Some workers have attempted to select for virus resistance. Ignoffo and Allen
{1972) failed to select for increased resistance to an NPV in H. zea after
inoculating 25 generations of larvae with doses at, or greater than, the LD,
and breeding from the survivors. Briese and Mende (1983), however, selected
for resistance to a GV in P. operculella within six generations of insects from
the wild, but they were able to select for only a slight increase in resistance in
a laboratory strain which was already highly resistant.

CONCLUSION

Advances in BV research are providing greater insight into the viruses them-
selves, e.g. their genetics, and into their interactions with their hosts, e.g. their
epizootiology. This information means that the viruses can be used as pesticides
on a more rational basis.

A number of insect viruses are currently used as pesticides and the potential
of others has been demonstrated. Entwistle (1983) is optimistic that BVs will
become the principal means of regulating lepidopteran and sawfly pests of
forests. Viral pesticides can have an important role in Third World countries
if they can be produced locally and if it can be shown that they are safe to
disseminate in an unpurified or semi-purified state.

The potential for viral insecticides in the agriculture and horticulture of the
Developed World is more limited at present. Consumers demand fruit and
vegetables free from blemishes, so growers look for products which provide a



Viruses as pest-control agents 405

quick and virtually complete kili of pests. Often this cannot be achieved with
viruses, so until there is a change in consumer attitude, chemicals are likely to
remain the main tools for pest control. As the integrated pest management
approach gains ground, however, viruses of pests should have increasingly useful
roles.
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