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Introduction

Revival of interest in the art of coupling biological systems with electrochemical
techniques has resulted from a subtle blend of scientific advances and commercial
requirement. The science of bioelectrochemistry has a distinguished academic
lineage stemming from the classic work of Galvani on frog muscle, in the 18th
century, and encompassing fundamental work on the redox potentials of
biological materials fostered by Ehrlich’s investigations into dye reduction by
animal tissue, published in 1885. In retrospect, perhaps one of the most premoni-
tory papers published on the subject of this review was a short work by Cohen
{1931), in which he described a bacterial cell acting as an electrical half cell,
using mediators such as ferricyanide and benzoquinone to shuttle electrons from
the biological catalyst to an electrode. This principle forms the basis of some
of the most commercially attractive bioelectrochemical systems demonstrated
to date. Effective coupling of redox proteins to electronic systems by direct
electron transfer has potential applications ranging from biological memories
for computers to electrically driven biocatalysts for chemical synthesis, but
probably the best short-term practical proposition is the development of
biosensors for industrial and clinical monitoring, The technology required to
produce efficient biocatalytic electrodes may also be exploited in biofuel cells,
but as in the case of bio-organic synthesis, the advantages are more subtle and
success may eventually depend on the vagaries of pelitical and economic
pressure.

The combination of a large number of studies revealing the elegance of
biological catalysts, together with developments in the production and purifica-
tion of enzymes, has led to their increasing use for analysis, therapy and industrial
catalysis. Analytical applications of enzymes represent by far the largest market,
the principal usage being in diagnostics and food analysis. It is difficult to
estimate future trends in commercial biochemical analysis and authoritative
opinions on the matter are generally coveted secrets. It is very obvious, however,
that enzymatic methods of analysis have found increasing acceptance and are
likely to continue to rise in popularity (see also Chapter 1). Appendix A to this
chapter shows a survey of enzymes used routinely in either clinical or guality
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control laboratories; all the enzymes listed arc widely available and marketed
either for automated procedures or as test kits. Although relatively pure enzymes
with high specific activity may now be obtained at reasonable prices, significant
economic advantages are offered by systems using immobilized enzymes and it
is likely that these will occupy an increasing share of the market (see Chapter 5).

The ubiquity of the spectrophotometer in conventional assays {4ppendix 4)
is meeting mounting opposition from electrochemical alternatives. Electro-
chemistry has made notable inroads into analytical instrumentation over the
past two decades, matching a rapidly expanding range of applications with im-
proved reproducibility and stability. Elegant, yet simple devices such as the ion-
selective potentiometric electrode, the polarographic oxygen membrane
electrode and coulometric electrochemical detectors, provide a tempting alterna-
tive to the complex instrumentation and/or methods traditionally associated
with enzyme assays. The proposal, originally attributable to Clark and Lyons
{1962), to combine the specificity of immobilized enzymes with such electro-
chemical devices to produce the enzyme electrode, has blossomed intc a new
multidisciplinary field. With a range of over 2000 enzymes now available,
effecting dozens of readily measurabie physical or chemical changes, the breadth
of research activity proposed or under way is hardly surprising. While there
is undoubtedly a shortage of novel sensors compatible with microprocessor
conirol of a variety of processes and environments, it may be argued that the
greatest immediate demand is for more efficient versions of the assays represented
in Appendix A. A large number of sensors based on enzymes and whole organisms
have already been proposed as alternatives to these routine assays, these
generally relying on the electrochemical detection of enzyme products or
substrates. It is worth reflecting, however, on a common feature of the assays
shown in Appendix A: that all but the formino-glutamate assay involve an
oxidoreductase. This key group of enzymes is widely distributed with com-
mercially available members representing only a fraction of the redox catalysts
available from nature. One premise of this contribution is that these electron
transfer proteins may be more effectively coupled to a transducer by direct
electrochemistry than by the widely propounded indirect methods.

In this short review it is not intended to give a complete guide to biosensors
and biofuel cells, as many excellent works have already been written on the
numerous possible configurations of these devices. It is hoped, however, to
present a commercially aware picture of some of the most important principles
and to draw attention to a few of the exciting recent developments in this rapidly
expanding field (see also Chapter 7).

Indirect and direct systems

Bioelectrochemistry has principally involved the study of either indirect or direct
interactions of biclogical material with an inert electrode. The practical
advantages conferred on an electrochemical system by the biological element
are the ability to operate at ambient temperatures and under mild chemical
conditions, coupled with extraordinary catalytic specificity and high substrate
affinity. While whole organisms, tissue slices and organelles have been exploited
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for their stable wide-ranging activity, the ultimate goal must be to harness the
specific (sometimes even stereospecific) nature of enzymes, membrane recogni-
tion sites and the manipulable properties of the antibody.

Conventional enzymatic analysis involves the determination of the concentra-
tion of either substrates or products of the catalysed reaction or of some coupled
reaction {Appendix A4). Two principal techniques have been used, depending
either on dynamic or end-point measurements. In the former method, a physical
or chemical change is followed continuously for a short period, giving a rapid
result. The initial velocity of the reaction is dependent on enzyme concentration,
activity, substrate affinity and the concentration of non-saturating substrates.
In the second method relatively large amounts of enzyme are used and the reac-
tion 1s allowed to reach equilibrium, rendering the technigues relatively insensi-
tive to physical and chemical conditions affecting enzyme activity. Whereas the
latter technique is favoured for substrate determination, the former may be
applied to inhibitor and activator assays, although care must be taken to control
other conditions that may affect the rate of reactions, especially pH and
temperature. Immobilization of the biocatalyst introduces a further dimension;
most importantly, such heterogeneous systems offer barriers to the free passage
of molecules both to and from the enzyme, either by diffusion limitation or by
some partitioning effect. Many of the advantages (and disadvantages) of the end-
point assay may thus be conferred on the immobilized enzyme system by making
substrate access limiting and measuring the rate of reaction. Enzyme electrodes
generally rely on achieving an appropriate steady state for the required
operational characteristics, by balancing diffusion of substrates and products
against conversion rates {Figure /). Some of the parameters that may be
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Figure 1. Two types of indirect diffusion-limited enzyme electrodes. {a} Reduction in substrate
concentration determined, e.g. oxygen consumption, catalysed by an oxidase, monitored pofaro-
graphically. (b} Product formation determined, e.g. ammonia liberation, catalysed by urease,
monitored with an ion-selective electrode.




92 W. ] AstoN aNnD A. P. . TURNER

manipulated are discussed more fully by Carr and Bowers (1980); the principal
advantage of diffusion-limited enzyme electrodes is stability, but this is achieved
at the expense of increased response times,

The enzyme electrodes shown in Figure [ represent the vast majority of
previously proposed systems, consisting of an enzyme immobilized on a
membrane and placed in the vicinity of a transducer. These sensors may be
considered to be indirect systems because the enzyme-catalysed reaction and
the electrochemical sensor involve two quite discrete reactions. A wide variety
of secondary transducers have been proposed for use in biosensors (Table 1)

Table 1. Some transducers used in indirect enzyme electrodes.

Transducer Species detected

Amperometric electrodes 0,, H,0,, NADH, 1,

Ton-selective electrodes H¥ NH,", NH,;, C0,, 17, CN"~

Field-effect transistors H", H,, NH,

Photomultiplier {in conjunction with fibre  Light emission or chemiluminescence
optics)

Photodiode (in cenjunction with a light-emitting  Light absorption
diode)

Thermistor Heat of reaction

Piezoelectric crystal Mass adsorbed

based on both physical and chemical measurements. The end-product of these
devices is an electric current and yet in many cases the enzyme-catalysed reaction
of interest involves electron transfer (Appendix A) and could theoretically be
coupled directly to an electrode or semi-conductor device. In order to achieve
such direct electron transfer from a redox protein to an elecirode, the electron
acceptor must replace one of the natural redox partners in the biological system.
A variety of possibilities exist for achieving direct interactions (Figure 2), the
most elegant and desirable solution being an electrode surface that resembles
the natural partner. Practical electrodes based on this premise have been difficult
to achieve. The demonstration of rapid and reversible electron transfer between
cytochrome ¢ and a gold electrode modified with 4,4 -bipyridyl (Albery et al,
1981), however, provided the basis for a variety of bioelectrochemical systems,
based on cytochrome ¢ as a redox partner for oxidoreductases. Other
mechanisms shown in Figure 2 illustrate some practical alternatives to the ideal
solution. The principle of using a solution mediator of low molecular weight
to shuttle electrons from biological systems to electrodes has been known for
many years, but has recently been shown to provide the basis for highly sensitive
assays for methanol (Plotkin, Higgins and Hill, 1981; Aston er al., 1983) and
microbial activity (Turner, Ramsay and Higgins, 1983).

The main problems associated with the use of mediators are retention of these
small molecules at the electrode surface and their potential reactivity giving rise
to a source of interference. Immohilization of the mediator, either on the
electrode surface or on the enzyme, solves retention problems (Figure 2). Re-
activity of the mediator, especially with oxygen, remains a more serious problem,
however, necessitating anaerobic conditions for efficient electron transfer from
most mediators to electrodes. Exceptions to this rule are various derivatives
of the organometallic compound, ferrocene, which form the basis of a recently
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Figure 2. Some possible configurations facilitating direct electron transfer from a redox protein
to an electrode.
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patented series of oxygen-insensitive devices (Higgins, Hill and Plotkin, 1983;
Aston et al., 1983)

The advantages of the tightly coupled direct enzyme-based sensor lie in its
simplicity, cheapness, reliability and accuracy. Interferences are restricted to
those electrochemically active substances that reach the electrode surface and
can be minimized by the use of membranes and low working potentials. The
production of an effective biocatalytic electrode, however, finds wider application
than sensors: biofuel cells may also be considered in the two classes of indirect
and direct, The most highly developed indirect biofuel cell reported to date relies
on the microbial production of hydrogen and its subsequent oxidation in a
conventional hydrogen/oxygen fuel celt (Suzuki, Karube and Matsunaga, 1979).
Cells based on direct electrochemistry potentially offer advantages in simplicity
and cost, but limitations imposed by the need to achieve high current densities
may necessitate the use of soluble mediators (Davis er al.,, 1983). The limitation
on current is imposed by the large size of protein molecules {and even larger
size of micro-organisms) which have to interact with the surface of the electrode.
Similar considerations are intrinsic to the successful application of direct electro-
chemistry for chemical synthesis. Biotransformations of particular relevance to
the future of the chemical industry are a variety of alkane, aromatic and steroid
hydroxylations catalysed by external mono-oxygenases (Higgins, Best and
Hammond, 1980). A major problem in the exploitation of these enzymes,
however, is their requirement for reduced cofactors, usually NADH. One
propased sofution imvolves the direct electrochemical reduction of the enzyme
prosthetic group (Higgins and Hill, 1978; 1979). For both chemical and energy
production, however, the overriding factor will be the relative economics of the
proposed processes, with the balance undoubtedly proving more subtle than
the clear case for biosensors.

Indirect biofuel cells

The present state of development of biofuel cells has been excellently discussed
by Wingard, Shaw and Castner (1982). Indirect biofuel cells typically involve
the microbial production of an electroactive species such as hydrogen by
anaerobic fermentation and the subsequent oxidation of the gaseous fuel at the
anode of a conventional hydrogen/oxygen fuel cell (Suzuki er al., 1980a, b):

at the anode
Hy,—2H" + 2e” E°=0V
at the cathode

2H* +2e¢” +1/20,—-H,0 E? =123V
overall
H, + 1/20, - H,0 E® =123V

Whereas the electrochemical conversion may be highly efficient, there are
inevitable losses assoctated with the microbial transformation of the fuel to
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hvdrogen. The microbial component of the system, however, effectively broadens
the range of fuels available to the fuel cell and is particularly suited to the
utilization of dilute aqueous fuels or wastes. Despite recent efforts to achieve
a commercially viable indirect biofuel cell, however, continuous net power
production from such a device remains to be reported. The principal hurdle
to be overcome is the high energy input in the form of stirring, gassing and
temperature control required for the continuous efficient microbial production
of hydrogen. Biochemical processes may also be adapted to sustain the cathodic
reaction; photosynthetic systems from plants and algae may be used to produce
oxygen for a conventional fuel cell (Suzuki er al., 1980a). Alternatively, chloro-
plasts may be coupled directly to an electrode via a mediator to produce
electricity (Pan, Bhardwaj and Gross, 1983).

The concept of a ‘hydrogen economy’ has been widely debated {McAuliffe,
1980; McGown and Bockris, 1980; Beghi, 1981). Such an approach is dependent
upon the economic availability of large quantities of the gas and a suitable means
of handling and transporting it. Hydrogen gas, even when compressed, contains
refatively little energy per unit volume; the ideal storage medium would be a
liquid which would readily release the gas when required. Two compounds meet-
ing these requirements are methanol and formate, both of which provide sub-
strates for microbial production of hydrogen and can be produced cheaply either
from fossil fuels or from vegetable matter {Egorov, Recharshky and Berezin,
1581). Hydrogen may be burnt, providing pollution-free power to generate
electricity, but the efficiency of this process is limited according to the Second
Law of Thermodynamics. The advantage of direct energy conversion was
recognized as early as 1894 (Oswald), with the proposal that fuel oxidation could
be performed at an electrode, effecting the direct conversion of chemical energy
to electric current without heat losses. The hydrogen/oxygen fuel cell is now
relatively well developed, being used in certain situations for domestic power
generation (Daggitt, 1982). Despite intense research effort, however, suitable
inorganic catalytic electrodes for the oxidation of other fuels remain elusive.
One obvious goal 1s the efficient direct electrochemical oxidation of methanol,
avoiding hydrogen as an intermediate.

Experiments performed in the early part of this century first showed that
microbial cultures could develop electrode potentials directly (Potter, 1911). Two
half cells containing glucose were connected by a salt bridge. Addition of yeast
to one side resulted in an observable current. Yudkin (19335) studied the redox
potentials of washed suspensions of a facultative anaerobic, a strict anaerobic
and a strict acrobic bacterium, Although these studies did not involve electron
transfer to an external circuit to derive useful energy, they did show a good
correlation between redox potentials measured at an electrode and those
determined using redox dyes. The potentials developed, however, were attributed
to electromotively active molecules capable of passing through a collodion sac
and not to any direct interaction between the bacteria and the electrode. Interest
in the subject of biofuel cells was revised in the [960s by NASA in the United
States. Work was primarily concerned with microbial cells and fermentation
broths within the anodic compartment (Austin, 1967; Cenek, 1968), but per-
formance was poor when compared with that of inorganic fuel cells (Rourback,
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Scott and Canfield, 1962). A number of patent applications were granted for
biofuel cells both in England and America during the 1960s, including alcoholic
fermentation by yeast {(Hunger and Perry, 1966), hydrocarbon oxidation by
bacteria (Young, 1965), hydrocarbon oxidation by actinomycetes (Davis and
Yarborough, 1967) and methane oxidation by Pseudomonas methanica (Van
Hees, 1965). The latter type of cell was capable of developing a maximum power
density of 2:8 W/cm? at 0-34 volts.

Explanations of the mechanism by which current is generated in this group
of bioelectrochemical fuel cells fall into two categories: one possibility is that
the bioelectrode reaction is achieved through the discharge of organic substrates
irrespective of the presence of bacteria; the other requires active participation
of the biological system in the bioelectrode reaction. It has been shown (Disalvo,
Videla and Arvia, 1979) that the kinetics of the bioelectrode system are due
to two consecutive reactions which occur at the electrode surface. The early
work of Yudkin (1935) has been related to these more recent systems by Videla
and Arvia (1975) who showed that current was still produced in these biofuel
cells when the biologically active material was isolated from the electrode,
although the current was reduced due to ohmic and diffusional effects. While
it is not clear exactly what clectrochemical reactions were responsible for the
currents observed, it is likely that the majority of previously reported glucose-
powered (Wingard, Shaw and Castner, 1982} and hydrocarbon-powered
(Higgins er al., 1980} biofuel cells did not operate by direct electron transfer
from the catalyst to the electrode. It is more likely that changes in dissolved
oxygen concentration (where appropriate) and formation of electroactive
products such as hydrogen and ammonia were responsible for the currents
observed.

Direct biofuel cells

An alternative to electrochemical oxidation of microbial products as a basis
for a biofuel cell is the development of promoted or mediated systems. The
attraction of fuel cells lies in their thermodynamic efficiency with their energy
output being dependent merely on the difference in Gibbs free energy (AG)
between the reactants and the products, with small losses due to entropy effects.
The net release of Gibbs free energy is related to the reversible potential difference
(E) between the two half cells and the number of electrons transferred per mole
of fuel (n) according to:

—AG =nFE

where F = the Faraday Constant.

The use of either mediators or redox proteins as intermediates in the electron
transfer from substrate to electrode effectively reduces the potential difference
between the two half cells, since the redox potential seen by the clectrode is
that of the last component of the chain. The efficiency of electron transfer
(coulomic efficiency) using intermediates, however, can be high (Davis et al., 1983;
Rolier et al., 1983) and they facilitate reasonable current densities otherwise
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hampered by the large size of biological catalysts (especially whole organisms).
The theoretical cutput of a fuel cell is also proportional to the number of
electrons {n) transferred per mole of substrate. Complete biological oxidation
of complex substrates, such as dairy wastes or sewage, involves numerous
enzymatic sieps and is therefore more efficiently carried out by whole organisms
containing an effective package of the correct enzymes. The complete oxidation
of methanol, however, is catalysed by just two enzymes, methanol dehydrogenase
{MDH) and formate dehydrogenase (FDH):

MDH H FDH CO
Methanol-——— Formaldehyde > Formate ——— z
+2HY +2¢-  H:O 4+ 2HY 4 2e” 2H" +2e”

and is probably the most commercially interesting enzyme-based fuel cell
mvestigated to date.

The first clear example of a direct biofuel cell may be attributed to Cohen
{1931) who demonstrated that a current of 2mA at a potential of 35V could
be produced by connecting several bioelectrochemical cells in series. Interest
during the 1960s in the United States was focused on the biofuel cell as a method
of efficient energy production for silent military generators and vehicle power
supplies (Huff and Orth, 1960) and as an implantable power source for cardiac
pacemakers (Drake, 1968). Methylene blue was shown to act as a mediator
for glucose oxidase in a glucose-powered biofuel cell (Davis and Yarbrough,
1962; Scott and Cohn, 1962) and hydrogenase activity was coupled to an anode
using either methylene blue or methyl viologen (Mizuguchi, Suzuki and
Takahashi, 1968). More recently high coulomic efficiencies in the region of 90%/
have been reported using dichloroindophenol with glucose oxidase {Weibel and
Daodge, 1975). The methanol biofuel cell has been developed and studied in our
laboratory (Plotkin, Higgins and Hill, 1981; Turner, Higgins and Hiil, 1982;
Aston et al., 1983; Davis et al., 1983) using the quinoprotein methanol dehydro-
genase (MDH]) principally with phenazine etho-sulphate (PES) or N, N, N, N'-
tetramethyl-p-phenylenediamine {TMPD) as mediator. While PES gave the
largest currents, TMPD-based cells were more stable, yielding a steady current
output decreasing by less than 109 over a 24-hour period of continuous
operation. The basic scheme of the cell is shown in Figure 3. The maximum
current density achieved at a platinum gauze anode was 0-2A/m? geometric
area; power density was 20 mW/m? representing 14 kW/mol catalyst. Various
designs have been tested and cells requiring no power input in the form of gassing
or stirring have been constructed (Turner, Higgins and Hill, 1982; Aston,
unpublished work). Rolier et al. (1983) reported a biofuel cell based on whole
organisms for utilization of lactose wastes, using thionine to mediate electron
transfer from Escherichia coli to the anode and the reduction of ferricyanide
at the cathode. The 20 m] cell vielded approximately (-4 mW for over two weeks
with continuous additions of lactate. While an equivalent-sized MDH fuel cell
ntight be expected to yield 10 mW, whole organisms offer potential advantages
of wide substrate range and stability. A major disadvantage shared by all these
mediated fuel cells is the reactivity of the mediators with oxygen. Substantial
power losses occur if the anode compartment is not kept strictly anaerobic,
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Figure 3. Methanol dehydrogenase-based biofuel cell.

because electrons are passed to oxygen as well as to the electrode (Turner,
Higgins and Hill, 1982). Realistic configurations for power generation without
these losses are difficult to conceive, especially as the cathodic reaction usually
proposed is the reduction of oxygen to water, and proton-permeable membranes
required to separate the anodic and cathodic compartments also allow the dif-
fusion of oxygen {Turner, Higgins and Hill, 1982).

Although ferrocene and its derivatives previously were largely ignored,
presumably because of their apparent insolubility and unexciting optical proper-
ties, they provide an alternative to conventional electron acceptors (Higgins,
Hill and Plotkin, 1983; A. E. G. Cass et al, unpublished work), Preliminary
experiments have shown that these compounds will rapidly accept electrons from
several oxidases and NAD-independent dehydrogenases and undergo reoxida-
tton at carbon electrodes. Moreover, they remain stable in the reduced form
allowing enzyme half cells to be constructed which show no variation in current
output on changing from oxygen-free nitrogen to pure oxygen saturation,
Ferrocene and its insoluble derivatives such as dimethyl ferrocene may be used
to produce modified electrodes for use in immobilized systems, whereas more
soluble ferrocenes, e.g. carboxyferrocene, are of interest in homogencous
configurations.

The cathodic reaction of the fuel celi has also received some attention. Reduc-
tion of molecular oxygen is catalysed by cytochrome oxidase at a gold/bipyridyl
electrode (Hill, Walton and Higgins, 1981):

2e” Cytochrome ¢ Oxidase 1720, +2H"
red
Cytochrome ¢ Oxidase H.O

red
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Laccase also catalysed the reduction of oxygen at an electrode, an effect that
was enhanced by hydroguinone (Mizuguchi, Suzuki and Takahashi, 1966). The
replacement of laccase with an analogous non-biological system, however, such
as ammonium chloride and copper sulphate, was found to be as effective as
the enzyme.

Although the power densities of biofuel cells demonstrated to date are
extremely low compared with their inorganic counterparts, some practical
appiications may be envisaged, The potential of biofuel cells to utilize waste
products such as urine, carbon dioxide and faecal material led to the proposal
that they may be valuable for space programmes, producing electricity, oxygen
and food while removing waste materials. Systems were devised on the basis
of previous work (Sisler, 1962; McNeil, 1969) using both bacteria and aigae.
Bioelectrochemical fuel cells may be of significance for electricity generation in
the Third World where various plant and animal wastes could be converted
directly to small quantities of electricity. Specialized military needs may be met
by, for example, a noiseless battery recharger operating at ambient temperatures
using readily available diesel or methanol/water anti-freeze mixtures as fuels.
The direct conversion of industrial wastes to electricity as part of a detoxification
process may also find some application, one particularly interesting example
being the carben monoxide biofuel cell (Turner, Higgins and Hill, 1982). Tt is
unlikely that biological fuel cells will offer realistic alternatives for general power
transduction, but they can operate under peculiarly mild and dilate chemical
conditions.

Indirect biosensors

The obvious appeal of straightforward and inexpensive measurement of
industrial and clinical biochemicals has led to a rapid expansion of the basic
principle of combining immobilized biclogical material with a secondary
detector { Figure 4). Surprisingly, the bacterial electrode was suggested as late as
1975 (Divies), but its development has since been intensely pursued, particularly
in Japan (Suzuki, Satoh and Karube, 1982). Equally, the range and form of
secondary detectors has expanded, aided particularly by concurrent interest in
ion-selective electrodes and semi-conductor devices. Recent reviews on bio-
sensors (Carr and Bowers, 1980; Kobos, 1980; Wingard, Katzir and Goldstein,
1981; Guilbault, 1980, 1982; Suzuki, Satoh and Karube, 1982; Lowe, Goldfinch
and Lias, 1983; Mosbach, 1983) detail the numerous configurations of biological
catalysts coupled with either potentiometric, amperometric, calorimetric or
photometric transducers that have been reported in the literature. Appendix B
of this chapter shows some examples of these.

Clark and Lyons {1962) coined the term ‘enzyme electrode’ when they
propased that glucose oxidase could be held between two cuprophane mem-
branes at a polarographic oxygen electrode and glucose concentration deter-
mined by measuring the oxygen consumption. Updike and Hicks (1967) reported
a more practical systemm where glucose oxidase was immobilized in a poly-
acrylamide gel over an oxygen electrode and a second electrode containing heat-
inactivated enzymes was introduced to correct for fluctuations in oxygen tension
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Figure 4. Schematic diagram of a typical ion-selective electrode bioseasor.

and interfering substances. When the enzyme was placed in contact with a
biological solution or tissue, glucose and oxygen diffused into the gel layer of
immobilized enzyme. Instability of the Clark electrode, however, was caused
by hydrostatic pressure variations, through loosening of the membranes
{Severinghaus, 1968) and fluctuations in oxygen tension, although the latter may
be overcome by supplying sufficient oxygen. (Rossette, Froment and Thomas,
1979). Oxygen-based sensors have been used industrially to monitor a variety
of oxidase substrates (Karube et al,, 1977, Okada, Karube and Suzuki, 1981;
Karube, Okada and Suzuki, 1982).

Hydrogen peroxide, a product of the enzymatic oxidation of glucose, is itself
electrochemically active and may be measured in as low as picomolar concentra-
tions at an electrode (Sittampalam and Wilson, 1982). Enzyme electrodes based
on this system have been developed for both in vitre (Chua and Tan, 1978) and
in vivo blood glucose analysis (Shichiri et al, 1982). Glucose oxidase from
Aspergillus niger has been shown to contain a glycoprotein structure (Pazur,
Kleppe and Cepure, 1965) conferring resistance to inactivation by sodium
dodecy! sulphate, urea and heating (Nakamura, Hayashi and Koya, 1976), but
the enzyme is rapidly inactivated by hydrogen peroxide (Greenfield, Krittrell and
Laurence, 1975) which must be removed from an enzyme electrode. The intrinsic
dependence of the reaction on oxygen also presents a problem for process control
and in vivo applications, where oxygen tensions may fluctuate. The production
of oxygen by electrolysis has been used to produce an oxygen-stabilized
enzyme electrode for glucose analysis (Enfors, 1981). Electrochemical inter-
ference from substances such as ascorbic acid and drugs can occur (Farrance
and Aldons, 1981; Lidh et al, 1982}, but much of this may be eliminated by
electrode modification such as the incorporation of ascorbate oxidase (Nagy,
Rice and Adams, 1982) used for in vivo electrochemical analysis of cate-
cholamines, or the use of membranes (Newman, 1976; Lobel and Rishpon, 1981).
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Acetyl cellulose membranes, for example, enhance peroxide diffusion under
alkaline conditions and may effectively be used between the enzyme and the
electrode to reduce ascorbate interference. Alternatively, ascorbate may be
assayed concurrently using an enzyme-based ascorbate sensor {Schenic, Miller
and Adams, 1982). Hydrogen peroxide production may be linked to iodide
oxidation (Nanjo, von Strop and Guilbault, 1973), catalysed by molybdate ions
(Malmstadt and Pardue, 1961; Pardue, [963) or a peroxidase enzyme, allowing
the use of an iodine-selective electrode (Llenado and Rechnitz, 1973; Nagy, Rice
and Adams, 1982).

The use of ton-selective electrodes has increased enormously over the last few
years (Fricke, 1980; Freiser, 1980); their mode of operation and basic principles
are well documented (Koryta, 1975; Moody and Thomas, 1975; Gammann, 1977).
They have been applied successfully to physiological monitoring of blood
sodium, potassium, calcium and lithium (Berman, 1974; Meir et al., 1930; Zhukov
et al., 1981). Modification of ion-selective membrane materials (Rechnitz, 1967)
has fed to the use of liquid membrane electrodes for in vivo analysis of chlor-
pheniramine (Fukamachi and Ishibashi, 1978), novocaine (Negoiu, Ionescu and
Cosofret, 1981), sulpha drugs {(Ionescu et al, 1981), naproxinate (Hogue and
Landgraf, 1981), codeine and morphine (Goiha, Hobai and Rozenberg, 1978).
Miniaturization of ion-selective electrodes has enabled research to be directed
towards microscale enzyme electrodes (Brown and Flaming, 1974) which will
provide a valuable tool in medicine, biology and physiological research
(Gammann, 1977). With the exception of the Corning liquid membrane acetyl-
choline clectrode (Baum and Ward, 1971), all biosensors based on ion-selective
electrodes function by the indirect determination of ton formation or utilization.
An example (see Appendix B for further examples) is the urea sensor incorporat-
ing urease (Katz and Rechnitz, 1963; Guilbault and Montalvo, 1970; Guilbault
and Nagy, 1973a; Herman and Rechnitz, 1975). Two products are formed, both
of which may be assayed using an ion-selective electrode.

CO(NH,), + 2H,0 »2NH,* + CO,>"

Ammonium ions may be measured using an ammonium-selective liquid
membrane electrode (Montalve and Guilbault, 1969} and carbonate ions
determined using a carbonate liquid membrane electrode. These two methods
have the disadvantage that they are susceptible to interference caused by other
ions present in biological samples (Katz and Cowans, 1963). This interference
may be overcome by the use of gas-sensitive electrodes and air gap electrodes,
which have been the subject of excellent reviews serving to describe the study,
design and use of gas-sensing electrodes (Bailey and Riley, 1975; Fricke, 1980).
Air gap electrodes introduced in the urease assay were later refined for measure-
ments in both serum and whole blood (Hansen and Rizuiha, 1974), measuring
the ammonia evolved upon exposure to strong alkali. A more rapid and reliable
one-step assay was developed (Guilbault and Tarp, 1974} using immobilized
urease. The other product under acidic conditions, carbon dioxide, may also be
measured using a gas-sensitive electrode (Guilbault and Shu, 1972). These
methods are not affected by ions present in the measuring solution and exhibit
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superb selectivity, although hydrogen ions may affect the equilibrium (Ross,
Riseman and Krueger, 1974).

The enzyme electrode generally offers superior specificity to that given by
sensors based on whole organisms and tissue. Workers in Japan, however, have
shown that a variety of practical devices may be based on immobilized whole
organisms at an oxygen electrode (Suzuki, Satoh and Karube, 1982). Judicious
selection of organisms and membrane configurations has yielded devices that
are sufficiently selective for use in a variety of industrial processes, particularly
for fermentation control. Whole organisms also provide the opportunity to
exploit enzymes that become unstable on purification, for example methane
mono-oxygenase (Higgins, Best and Hammond, 1980).

While the amperometric oxygen electrode and potentiometric ion-selective
electrode have attracted the most attention as secondary transducers for bio-
sensors, considerable effort has been expended on other systems. The technique
of microcalorimetry has been studied in relation to automated analysis for
clinical and process control situations resulting in the development of the enzyme
thermistor (Mosbach, 1983). The ion-selective field effect transistor (ISFET) has
been used in place of traditional probes to detect product formation in enzyme-
based sensors (Janata and Huber, 1980; Danielsson et al., 1983) and miniaturized
optical systems have been devised using light-emitting diodes combined with
photodiodes to detect colorimetric reactions in fransparent films (Lowe, Gold-
finch and Lias, 1983). These developments are indicative of a trend towards the
fusion of biological systems and electronics in an attempt to achieve low-cost
miniaturized sensors. It is questionable, however, whether these relatively com-
plex indirect systems will provide the key to computer-compatible micro-
biosensors.

Direct biosensors

The advantages in simplicity, cost and accuracy of achieving a direct interaction
between biological recognition sites and electronic systems has focused attention
on this area. As in the case of earlier sensors, effort has polarized into potentio-
metric and amperometric approaches, the former involving charge and
capacitance effects with the latter exploiting direct electron transfer.

Yamamoto and Hiroshi (1981) have described immunosensors based on
immobilized antibodies at a platinum electrode. Small potential changes were
observed when the antigen was bound. This type of interaction may be
more sensitively monitored using chemically sensitive field effect transistors
(CHEMFET) with a polarized interface to measure the interfacial charge density
resulting from the immunoechemical reaction (Janata and Huber, 1980). Immunco-
chemically sensitive field effect transistors (IMFET) consist of either antibodies
or antigens covalently attached to an inert hydrophobic layer at the gate of
an FET. The insulated gate FET measures the change in charge resulting from
the formation of the antibody/antigen complex. Considerable effort is being
expended to achieve reliable commercial devices based on this principle, with
some attention also being paid to measuring charge differences associated with
the formation of enzyme/substrate complexes.
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While direct amperometric sensors may be made immunosensitive by protein
binding interfering either with an clectrochemical or a coupled enzymatic
reaction, the most obvious application of this technique is for the assay of whole
organisms, oxidoreductases and their substrates. The output of direct biofuel
cells, both enzyme-based (Turner, Higgins and Hill, 1982) and those based on
whole organisms (Turner, Ramsay and Higgins, 1983), is proportional to the
concentration of the biological catalyst and this can be used as an assay tech-
nique. In place of the fuel cell configuration, a potential may be applied 1o the
biological half cell by means of a defined power source or a potentiostat. Using
a standard reference such as a calomel or silver/silver chloride electrode and
a mediator to facilitate electron transfer to the working elecirode, a sensitive
bioactivity monitor may be constructed (Turner, Ramsay and Higgins, 1983).
Such a technique may be suitable for assessing microbial populations, especially
when rapid methods are required and the sample is coloured or opaque, for
example, fermentation monitoring and microbial contamination of milk or
cutting oils. Of wider application, however, is the use of bioelectrochemical
systems to detect either substrates, inhibitors or activators of the catalyst. Recent
work on the use of the MDH fuel cell to detect methanol contamination in
drinking water (Aston et al., 1983) confirmed the remarkable sensitivity of this
procedure. Using very simple equipment final concentrations of less than
107 ppm methanol were detectable, weli below the limits of routine gas-liquid
chromatography and mass spectrometry.

The performance of the direct enzyme-based sensor may be attributed to the
tight coupling of the redox reaction allowing expression of the enzymes’ high
substrate affinity. Current density is far less critical in this application since it
may be calculated that even a monolayer of enzyme may be expected to yvield
tens of microamperes per square centimetre of electrode, which is well within
the sensitivity of very simple clectronic metering. In addition, there is plenty
of scope for miniaturization of such electrodes. More important to the commer-
cial success of a biosensor is the development of a stable immobilized configura-
tion, which is free from interference. Previous enzyme sensors using redox
compounds of low molecular weight, such as ferricyanide, have suffered from
mediator leakage and oxygen sensitivity, the latter caused by the reaction of
the mediator with molecular oxygen.

There are many suiiable substrates for an oxidoreductase-based sensor, some
of which are detailed in Table I, and others include formaldehyde, explosives,
carbon monoxide, methane, NADH and NADPH. Probably the most widely
beneficial and consequently highly marketable enzyme sensor, however, is for
glucose. Diabetes is one of the commonest chronic diseases and affects about
6% of the adult population of the Western World (WHO, 1980). Associated
complications include heart disease, strokes, amputations and blindness: these
should be reduced by improved control (Albisser and Spencer, 1982). Several
devices may be envisaged that would improve general diabetes management:
cheaper and more reliable instruments for clinical analysis; convenient sub-
cutaneous sensors activating a hypoglycaemia alarm and giving a continuous
read-out; ultimately, a continuous sensor activating a portable insulin pump
as required. Each of these applications possesses specialized problems: longevity
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is paramount for in vivo sensors, but not essential for disposable personalized
testers, whereas a fast response time is critical for sample analysis, vet less
important in continuous sensors, Despite considerable rescarch effort in the area
there 18, as vet, no glucose sensor which has proved to be suitable for in vivo
use. It is hoped, however, that the use of dimethy! ferrocene modified carbon
electrodes will rectify this situation (Aston et al., 1983; Higgins, Hill and Plotkin,
1983). These clectrodes accept electrons from immobilized glucose oxidase or
NAD-independent glucose dehydrogenase, but do not react with oxygen. The
electrode may be operated at low potentials (100 mV-160mV) thus reducing
electrochemical interference from blood components such as ascorbate. Proto-
type etectrodes based on plastic strips with a coat of carbon produce a linear
range of (-1-35mM and have a response time of less than 30s (to 95% of
maximum current),

Exploitation of the range of oxidoreductases that may be coupled to modified
electrodes offers an important industrial opportunity. Not only may the sub-
strates for these enzymes be detected, but inhibiting and activating reactions
may also be monitored. The demands of micro-miniaturization are stimulating
investigation of direct electron fransfer from enzymes and whole organisms to
materials compatible with silicon-based devices; such enzyme-effected transistors
are likely to play a major part in future monitoring and control systems.
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