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Introduction

GENERAL FEATURES OF DNA REPLICATION

DNA replication is a key step in duplication for all organisms and its initiation
process is precisely regulated. Various biochemical and genetic studies on
DNA replication have been done using as model systems phages and plasmids
that are parasitic on Escherichia coli, and much evidence has been accumu-
lated by investigating the duplication of these replicons (McMacken and
Kelly, 1986; Kornberg and Baker, 1991). However, the complete mechanism
of DNA replication is not yet known.

A cis-acting element that ensures replicon identity and is essential for the
initiation of DNA replication is the definition of the replication origin, or ori.
The specificity of replication initiation depends on the structure of the ori,
which interacts with trans-acting factors such as initiator proteins specific for
its replicon, In some replicons, with the aid of in vitro reconstituted systems of
purified replication factors, the molecular mechanisms of the initiation event
have been discovered (Bramhill and Kornberg, 1988a, b; Schnés et al., 1988).
Melting and unwinding of the duplex DNA in the ori region is done by
initiator proteins and DNA helicases in a replicon-specific way. Such unwind-
ing has also been found in the initiation of DNA replication of some
cukaryotic replicons (Dean et al., 1987; Umek and Kowalski, 1990). It may be
that this process is one of the initiation processes common to almost ail the
replicons that replicate via Cairns-type intermediate molecules. On the other
hand, little is known about the mechanism that introduces priming enzymes
onto each template strand and initiates DNA strand synthesis with the
concomitant establishment of the replication forks. It is certain that each

Abbreviations; ColEl, Colicin E1; IHF, integration host factor; Ppna 1. promoter for RNA T;
Prwa . promoter for RNA H; RNase H, ribonuciease H.

Biotechnology and Genelic Engineering Reviews — Vol. 10, December 1992
0264-8725/92/10/209-252 $20.00 + $0.00 © Intercept Ltd. P.O. Box 716, Andover, Hampshire SP101YG. UK

209



210 HIROSHI SAKATI AND TOHRU KOMANO

replicon has a unique mechanism to recruit priming enzymes and replication
mechanisins.

In E. coli, oriC, the origin of chromosome DNA replication, is the site
where the E. coli initiator protein (DnaA protein) specifically binds in the
presence of some essential factors (Bramhill and Kornberg, 1988a; Kornberg,
1988). Through this initial event the initial complex is formed, which is then
transformed into an open complex. In the open complex, complementary
strands of the AT-rich regions are separated from each other. When the
DnaB protein, a helicase, attaches onto a single-strand DNA region, the
contiguous duplex is progressively unwound and the primer RNA synthesis is
directed.

Initiation at the origins of DNA replication of plasmids requires specific
initiator proteins encoded by themselves (Scott, 1984; Kiies and Stahi, 1989).
In some plasmids, duplexes in the origin regions are specifically opened by
binding of the initiator proteins. After the opened areas are extended by
heiicases, the priming enzymes and enzyme complexes should attach onto the
single-strand DNA templates, leading {0 the primer RNA syntheses.

In the E. coli system, three types of specific sequences on the template
DNA have been shown to direct initiation of complementary strand DNA
synthesis. This was shown by research on small single-strand DNA phages
(Kornberg and Baker, 1991). The first type, the primosome assembly site, is
found in bacteriophage $X174. In this case, synthesis of the complementary
strand requires a multi-protein complex, primosome, which contains the F.
coli proteins DnaB, DpaC, i, n, n” and n” in addition to DnaG primase (Masai
and Arai, 1988; Masai, Nomura and Aral, 1990; Masai ef al., 1990; Nurse et
al., 1990; Kornberg and Baker, 1991). The primosome assembles under the
direction of the primosome assembly site, a specific sequence on the viral
strand of @X174. It then moves along the single-strand DNA template in its 5’
to 3’ orientation to direct the synthesis of muitiple primers (Schlomai and
Kornberg, 1980; Arai and Kornberg, 1981). It is believed that the DnaB
protein, which is a DNA helicase, should function in the propulsion of
replication forks, and that the primosome should direct the initiation of
lagging-strand synthesis during replication of double-strand DNA (LeBowitz
and McMacken, 1986; Baker, Funnell and Kornberg, 1987).

The second type of initiation sequence was found in bacteriophage G4. 1t
requires only DnaG primase to synthesize the primer RNA in a defined
region (Boucheé, Rowen and Kornberg, 1978; Rowen and Kornberg, 1978).
The third type was found in the filamentous bacteriophage M13, which
requires only the E. coli RNA polymerase to synthesize the primer RNA at a
unique site (Schneck et al., 1978).

DEFINITICN OF THE SINGLE-STRAND DNA INITIATION SIGNAL

Each phage DNA described above contains a signal nucleotide sequence that
is specificaily recognized by the cognrate enzyme or the enzyme complex and
directs the priming for complementary DNA synthesis on the single-strand
DNA template. This signal sequence is known as a single-strand DNA
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initiation signal, or an ssi signal (Ray et al., 1981; Sakai and Godson, 1985). In
E. coli, a sequence non-specific priming mechanism has also been shown in
vitro (van der Ende, Teerstra and Weisbeek, 1983; van der Ende et af. 1983;
Masai and Arai, 1988), but these non-specific systems are ineffective and
insufficient for the normat level of DNA replication.

PLASMID DNA REPLICATION

Many bacterial plasmids of different incompatibility groups also have ssi
signals in close proximity to the oriVs (Nomura and Ray, 1980; Nomura, Low
and Ray, 1982; Bahk et a/., 1988; Bahk, Sakai and Komano, 1989; Honda et
al., 1989; Nomura et al., 1991; Tanaka et al., 1991). The priming mechanisms
under the direction of the ssi signals of these plasmids include primosome-
dependent mechanisms (Nomura and Ray, 1980; Zipursky and Marians,
1981; Nomura, Low and Ray, 1982), ABC-primosome-dependent mecha-
nisms (Masai, Nomura and Arai, 1990) and plasmid-oriented mechanisms in a
broad host-range plasmid, RSF1010 (Haring and Scherzinger, 1989; Honda et
al., 1989; Scholz er al., 1989). Another broad host-range plasmid, RK2, also
has at least two specific ss¢ signals in the oriT region {Yakobson ef al., 1990).
Although some of these ssi signals are dispensable in vivo, they are essential
for maintenance of wild-type copy numbers of the plasmids (van der Ende,
Teerstra and Weisbeek, 1983). Furthermore, iz vitro studies show that the ssi
signals are also essential for initiation of the synthesis of the DNA strand in
plasmids pBR322 and RI (Minden and Marians, 1985; Masai and Arai, 1988,
1989). Judging by the mode of function and the location of ssi signals in
different plasmids, it is conceivable that these signals contribute to the
specificity of plasmid-directed initiation events and to the establishment of
the replication forks (Masai et al., 1990; Honda er af. 1991).

Replication of IncQ plasmids

STRUCTURAL AND FUNCTIONAL FEATURES OF THE IncQ PLASMID
GENOMES

Broad host-range plasmids of the IncQ group in Escherichia coli are relatively
small and non-self-transmissible. They are mobilizable by co-resident IncP
plasmids (Willetts and Crowther, 1981; Frey et al., 1983). RSF1010, R1162
and R300B are the best studied so far among the IncQ plasmids (Barth, 1979;
Barth, Tobin and Sharpe, 1981; Meyer, Hinds and Brasch, 1982). Although
these three plasmids have been independently isolated from different bacte-
rial hosts, they are almost identical (Barth and Grinter, 1974; Guerry, Van
Embden and Falkow, 1974; Grinter and Barth, 1976; Meyer et al., 1982).
They have high copy numbers of 10~12 or more per chromosome in E. coli
and Pseudormonas aeruginosa (Barth and Grinter, 1974 Guerry, Van Emb-
den and Falkow, 1974; Grinter and Barth, 1976; Meyer et al., 1982; Scholz et
al., 1985; Lewington and Day, 1986). RSF1010 can propagate in nearly all the
Gram-negative bacteria (Frey and Bagdasarian, 1989).
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Genomes of plasmids RSF1010, R1162 and R300B are 8-6-8-7 kb in length
(Barth and Grinter, 1974; Guerry, Van Embden and Falkow, 1974; Brasch
and Meyer, 1986). The complete nucleotide sequence of 8684 bp in length is
determined with RSF1010 (Scholz er al., 1989). The RSF1010 genome can be
roughly divided into three regions (see Figure 1A). In one region are strA and
strB and the sul loci, which determine drug resistance against streptomycin
and sulphonamide, respectively (Anderson and Lewis, 1965a, b; Anderson,
1968; Barth and Grinter, 1974; Smith, Humphreys and Anderson, 1975). In
another region are contained genes essential to replication, repA, rep-
B{repB’'}, and repC, which encode plasmid-specific helicase, primase, and
initiation proteins, respectively (Diaz and Staudenbauer, 1982a; Kim and
Meyver, 1985; Scherzinger et al., 1984; Meyer ef al., 1985; Scholz et al., 1985).
While the RepB and RepB’ proteins are encoded by the same reading frame,
the translation start codon of RepB’ is downsiream from that of RepB. The
5'-terminal portion of repC overlaps with 14 nucleotides of the 3'-terminal
part of repA (Haring and Scherzinger, 1989; Scholz et al., 1989). The third
region contains the cis-acting elements oriV and oriT, which are the origin of
vegetative DNA replication and the origin for conjugative transfer of DNA,
respectively (Nordheim, Hashimoto-Gato and Timmis, 1980; Meyer, Hinds
and Brasch, 1982; Scholz et al., 1985; Brasch and Meyer, 1986; Derbyshire,
Hatfull and Willetts, 1987). In addition to oriT, the three genes mobA, mobB
and mob(C, which encode proteins of unknown functions, are required for the
RSF1010 transfer.

THE CIS-ACTING ELEMENTS IN orfV

The three rep genes, repA, repB’ and repC, and the oriV region, are the
plasmid-specified factors essential for the vegetative DNA replication of
RSF1010 (Diaz and Staudenbauer, 1982a; Scherzinger ef al., 1984; Kim and
Mever, 1985; Mever er al., 1985; Scholz er al., 1985, 1989, Schmidhauser,
Ditta and Helinski, 1988; see Figure 1A). The oriV region of R1162 can be
divided into essential portions, which are adjacent 370 bp and 210 bp Hpall
fragments (Lin and Meyer, 1986; Kim, Lin and Meyer, 1987}, corresponding
to nucleotide positions 2181-2550 and 2561-2772 on the RSF1010 map,
respectively (Scholz ef al., 1989; see Figure 1A). In the 370 bp segment there
are three-and-a-half direct repeats of 20 bp (Meyer et al., 1985; Scholz et al.,
1989); binding of RepC protein to these is essential for the origin function
(Haring er al., 1985; Haring and Scherzinger, 1989). The iterons exert
incompatibility and are involved in plasmid replication (Lin and Meyer, 1986,
1987; Persson and Nordstrom, 1986). Although the nucleotide sequence of
the iteron is homologous with those of IncP plasmids and the other replicons
(Lin and Meyer, 1984; Meyer et al., 1985; Kiies and Stahl, 1989), its
significance in plasmid evolution is not clear. A G+C-rich and an A+T-rich
region flank the iterons in the proximal and distal positions, respectively. It is
strongly suggested that the A-+T-rich region is essential for the initiation of
plasmid DNA replication (Kim and Meyer, 1991). In the 210 bp Hpall
segment is a large inverted repeat. The inverted repeat and the potential
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cruciform structure may be tmportant for replication initiation (Lin and
Meyer, 1987; Schelz et al., 1989). In the large inverted repeat region of
RSF1010 are found two loci, ssiA and ssiB, the two plasmid-specific single-
strand DNA initiation signals (Flonda, Sakai and Komano, 1988; Haring and
Scherzinger, 1989; Zhou and Meyer, 1990; Scherzinger ef al., 1991). Determi-
nants of ssid and ssiB are cis-acting specific nucleotide sequences in the
[I-strand and in the r-strand, respectively, directing the priming of their
complementary strand syntheses in a RepB’ primase-dependent manner
(Haring and Scherzinger, 1989; Honda et al., 1989, 1991). Nucleotide
sequences of the two initiation signals contain highly conserved 40 bp tracts
which comprise inverted repeats. A start-point of the plasmid DNA synthesis
1s mapped in the 3'-flanking region of each inverted repeat (Honda, Sakai and
Komano, 1988; Scholz et al., 1989). The minimal oriV required in vivo and in
vitro for replication initiation of the plasmid in E. coli is the 396 bp segment
(nucleotide positions 2347-2742) (Haring and Scherzinger, 1989; Scholz et al.
1989; Scherzinger et al., 1991).

INITIATION OF THE PLASMID DNA REPLICATION

It has been shown in vive and in vitro that vegetative DNA replication of
plasmids RSF1010 and R1162 is dependent on oriV and three replication
proteins RepA (essentially identical to RepIA of R1162), RepB’ (Repll of
R1162}, and RepC (RepIB of R1162) (Diaz and Staudenbauer, 1982a;
Scherzinger et al., 1984; Kim and Meyer, 1985; Meyer et al., 1985; Scholz et
al., 1985, 1989; Schmidhauser, Ditta and Helinski, 1988; Scherzinger et al.,
1991, see Figure 1A). Vegetative DNA replication of IncQ plasmid initiates at
oriV and proceeds unidirectionally in either direction, or bidirectionally (de
Graff et al., 1978; Scherzinger et al., 1991). Initiation of vegetative DNA
replication depends on the specific binding of RepC protein to the iterons in
oriV (Haring et al., 1985; Haring and Scherzinger, 1989). RepC protein is
31-kDa in its molecular mass, and is active as a dimer (Haring and
Scherzinger, 1989). ReplB protein of R1162 (RepC of RSF1010) causes the
localized melting of DNA at a site within the A+T-rich region in oriV (Kim
and Meyer, 1991). It is also suggested that there is a specific interaction
between ReplB and a site in the A+7T-rich region about 60 bp away from the
iterons, which are the primary binding sites of RepIB (Kim and Meyer, 1991).
RepA protein, which has a molecular mass of 30 kDa as a monomer, is as
hexamer in its active form, and has ATPase activity stimulated by non-
specific single-strand DNA (Bagdasarian et al., 1986; Haring and Scherz-
inger, 1989). RepA acts as a helicase in the unwinding of double-strand DNA
in a reaction requiring ATP hydrolysis (Haring and Scherzinger, 1989). RepA
acts as a helicase in the unwinding of double-strand DNA in a reaction
requiring ATP hydrolysis (Haring and Scherzinger, 1989). RepB’ protein,
which exists as monomers of molecular mass of 36 kDa, has primase activity
on ssiA and ssiB as sole template sequences, directing the priming events for
their complementary strand synthesis (Honda, Sakai and Komano, 1988;
Haring and Scherzinger, 1989; Honda er al., 1989, 1991). Neither the
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double-strand ssiA and ssiB region nor a non-specific single-strand DNA can
be used as a template by this enzyme (Haring and Scherzinger, 1989). It is
strongly suggested that the RepB’ primase is directly responsible for the
initiation of DNA synthesis on both strands of RSF1010, presumably by the
synthesis of DNA primers (Haring and Scherzinger, 1989).

The RSF1010 replication is independent of E. cofi DnaA, DnaB, DnaC
and DnaG proteins, and RNA polymerase, while it is dependent on DNA
polymerase II and DNA gyrase (Scholz et al., 1985; Haring and Scherzinger,
1989; Scherzinger et al., 1991). R1162 can integratively suppress the dnaA46
temperature-sensitive mutation of E. coli (Brasch and Meyer, 1988). It is
conceivable that such plasmid-specified functions described above confer the
broad host-range property upon RSF1010 as a result of independence from
many host replication proteins.

In the process of initiation of RSF1010 replication, the functions of the
three cis-acting elements in oriV, the iterons, ssiA and ssiB, are independent
of each other (Kim, Lin and Meyer, 1987; Lin and Meyer, 1987; Zhou and
Meyer, 1990; Honda er al., 1991, 1992; see Figure I1B). Binding of RepC
protein to the iterons may alter higher structures of the oriV region (Haring
and Scherzinger, 1989), leading to localized unwinding at a site in the
A+T-rich region (Kim and Meyer, 1991). The melted area can serve as an
entry site for RepA helicase followed by extended unwinding of the contigu-
ous double-strand region in one direction away from the iterons until the
nucleotide sequences of ssi4 and ssiB are exposed as single strands (Zhou and
Meyer, 1990; Honda et af., 1991; Scherzinger ef al., 1991). The single-strand
ssiA and ssiB sites are ready for specific recognition and priming of syntheses
of the complementary single strands by RepB’ primase (Honda, Sakai and
Komano, 1988; Haring and Scherzinger, 1989; Honda ef a/., 1989). Forma-
tion of plasmid-specific replisomes during these processes would decide
whether the plasmid replication proceeds unidirectionally or bidirectionally
(Diaz and Staudenbauer, 1982a; Haring et al., 1985; Bagdasarian et al., 1986;
Lin and Meyer, 1986; Scherzinger er al., 1991). It can be assumed that the
plasmid-specific replisome involves RepA, RepB’, and RepC. The bidirec-
tional DNA replication of RSF1010 is significantly interpreted by the
presence in oriV of ssidA and ssiB, each of which contains a start-point of
DNA synthesis in opposite orientations (Lin and Meyer, 1987; Honda, Sakai
and Komano, 1988; Zhou and Meyer, 1990). However, it is not clear yet what
mechanism and which critical stage in the initiation processes are responsible
for making a decision as to whether the RSF1010 replication proceeds
unidirectionally or bidirectionally. With R1162, DNA chain elongation
during the replication initiation starts from two sites, ssiA- and ssiB-analogues
of R1162, and proceeds convergently (Lin and Mever, 1987; Zhou and
Meyer, 1990). One or both of ssid4 and ssiB can be functionally replaced by
primosome assembly sites from a plasmid and bacteriophage (X174, indicat-
ing that they are independent cis-acting elements (Honda et af., 1991). They
can be also functionally replaced by Gd-type ssi signals, which, unlike
primosome assembly sites, direct priming of leading-strand synthesis at a
unique site (Honda ef al., 1992). This suggests that the RSF1010 DNA
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replication proceeds in a strand displacement mode without involvement of
an efficient mechanism of concomitant initiation of lagging-strand synthesis
{(Zhou and Meyer, 1990).

In addition to the above model interpreting the mechanism of replication
initiation of RSF1010, another suggestion involves an important role for the
large inverted repeat in eriV. After the RepC protein specifically binds to the
iterons it may migrate to the large inverted repeat accompanied by the action
of RepA protein, where a protein complex may be formed by assembly of
RepA, RepB' and RepC proteins (Lin and Meyer, 1986). After the recogni-
tion by the protein complex of the cruciform structure in the large inverted
repeat region, or after the protein complex-mediated association of the two
start-points of DNA synthesis by looping the large inverted repeat region,
priming is done by RepB’ followed by initiation of the DNA synthesis with
the replisome (Lin and Meyer, 1987).

CONTROL OF THE PLLASMID REPLICATION

The oriV region of IncQ plasmids contains some elements involved in
regulation of plasmid replication (Lin and Meyer, 1984). When the 20 bp
iterons are cloned in a multi-copy vector, they are incompatible with IncQ
plasmids because of titration of the RepC protein that binds to the iterons
(Meyer ef al., 1985, Persson and Nordstrom, 1986). The intracellular amount
of RepC protein affects the copy number of RSF1010 (Haring et al., 1985;
Frey and Bagdasarian, 1989). The RSF1010 promoter p1 is responsible for
the transcription of repB, repB’, repA and repC, while the promoter p4 is for
repA and repC (Bagdasarian et al., 1986; Scholz et al., 1989; see Figure 1B).
Putative repressors are encoded immediately downstream of promoters pl
and p4, negatively regulating the action of the two promoters (Bagdasarian ef
al., 1986; Frey and Bagdasarian, 1989). Consequently, deletions of the open
reading frames for the putative repressors greatly elevates copy numbers in E.
coli. Recently, the repressor protein for p4, the 7-7 kDa product of gene F,
has been purified, and the gene product is demonstrated to regulate
pa-directed expression of the repAC operon (Maeser ef al., 1990). These
alterations in transcriptional regulation affect the host-range of RSF1010. All
the copy number mutants carrying deletions in the repressor for pl promoter
lose the broad host-range property. They can propagate and stably maintain
themselves in E. coli, but not in Pseudomonas species. The results are directly
caused by the damage to the open reading frame encoding the repressor of
pl. With the copy number mutants carrying deletions in the repressor of p4
promoter, elevation in the copy numbers in Pseudomonas putida is not so
prominent as in E. coli (Frey and Bagdasarian, 1989). The two promoters are
involved in the copy number control, and their physiological roles seem
distinct from each other. Moreover, production of RepC protein, which is a
primary limiting factor of RSF1010 replication (Haring et al., 1985), is
regulated in accordance with repA expression. Messenger RNA of the region
where repA and repC overlap may form a stem-loop structure enclosing the
ribosome binding site and start codon (GUG) of repC. Thus, it is suggested
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Figure 1. (A} Physical maps of plasmid RSF1010. The first A of the nucleotide sequence in the
unique Hpal cleavage site is designated as the nucleotide aumber 1. The map coordinates are
calibrated in kilobase pairs (kb). Thick solid arrows represent transcripts. Thin horizontal arrows
with signs of p1 and p4 represent orientations of transcription under the control of promoters for
the rep operons, pl and p4, respectively. Positions of the promoters are indicated by solid circles.
Thin horizontal arrows labelled ssiA and ssiB represent orientations of the initiation of DNA
chain elongation under the control of ssi signals. Thick open arrows represent the large inverted
repeat. The thick solid arrowheads represent iterons. Open boxes labelled GC and AT represent
the G+C-rich and A+T-rich regions, respectively. Thin vertical arrows represent the action in
trans of RepA, RepB’ and RepC. Solid boxes represent the oriV- and oriT-determinants. The
horizontal bar labelled oriV represents the area of oriV-determinant.
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Figure 1. (B) Schematic representation of the events occurring in the early stages of initiation of
DNA replication in the IncQ plasmids. (1} The dupiex of the oriV region. (2) The RepC protein,
the plasmid-specific initiator protein, binds specifically to the iterons, causing localized unwind-
ing of the duplex in the A+T-rich region. (3) The locally melted region could serve as an entry
site for the RepA protein, the plasmid-encoded heficase, the action of which unwinds the duplex
in the flanking region. (4) As a result of the helicase action, regions of the two ssi signals arc
activated by being cxposed as single strands. The activated ssi signals can be recognized by the
RepB’ protein, the plasmid-specific primase, leading to the priming of syntheses of the two
complementary DNA strands, Chain elongation of the two daughter strands progresses conver-
gently. Solid arrowheads represent iterons. The stippled areas labelled GC and AT represent the
G+C- and A+T-rich regions, respectively. Solid half-arraws labelled ssiA and ssiB represent
determinants of the ssi signals. Thin horizontal arrows represent orientations of the daughter
strand syntheses under the coatrol of the ssi signals, The fetter C in a circle, the letter A in a
trizngle and the letter B’ in a square represent the RepC, RepA and RepB’ proteins,
respectively.
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that, in addition to the transcription regulation, efficient translation of repC
depends on the level of repA expression (Haring and Scherzinger, 1989).
With R1162, the plasmid copy number depends on the amounts of two
proteins encoded by the repl genes (Kim and Meyer, 1985). It has been
demonstrated that expression of the repl genes is negatively regulated by a 75
nucleotide RNA complementary to the rep mRNA (Kim and Meyer, 1986).

CONJUGATIVE TRANSFER TO AND PROPAGATION IN UNCOMMON HOSTS

RSF1010 is not self-transmissible, but is mobilizable by co-resident conjuga-
tive plasmids. The four RSF1010-specified genes nobA, mobB, mobC and
oriT are required for the transfer (Willetts and Crowther, 1981; Frey ef al.,
1983). The two genes mobA and repB are identical to each other (Scholz et
al., 1989). Although mobB overlaps with mobA, it is translated in a reading
frame distinct from that of mobA (Scholz er al., 1989). The oriT region is
localized to an 80-88 bp segment from the 800 bp Haell fragment of
RSF1010, containing the relaxation nick site and an inverted repeat probably
involved in recognition and/or nicking by the mobilization proteins. The
nucleotide sequence of oriT is homologous with those of plasmids ColE1 and
RK2 (Nordheim, Hashimoto-Goto and Timmis, 1980; Derbyshire, Hatfull
and Willetts, 1987). Moreover, it is suggested that oriT is involved in
site-specific cross-over and ligation of the transferred plasmid strand (Meyer,
1989; Barlett, Erickson and Meyer, 1990). The oriT region of R1162 is
localized to a 38 bp segment that contains an inverted repeat. The segment is
involved in mobilization and conjugation-dependent recombination {Brasch
and Meyer, 1986, 1987).

The host-range of IncQ plasmids extends beyond purple bacteria to
cyanobacterium (Schmidhauser, Ditta and Helinski, 1988; Powell, Mergeay
and Christofi, 1989). An IncQ plasmid can be conjugatively transferred to
cyanobacterium from E. coli, and stably maintained as an autonomously
replicating multicopy plasmid without structural alterations (Kreps et al.,
1996). RSF1010 can be conjugatively transferred from E. coli to Gram-
positive bacteria Streptomyces lividans and Mycobacterium smegmatis. The
plasmid is stably maintained in these bacterial cells (Gormley and Davies,
1991), Moreover, the mob and oriT functions of RSF1010 can mediate the
plasmid transfer from Agrobacterium into plant cells (Buchanan-Wollaston,
Passiatore and Cannon, 1987).

Replication of IncP plasmids

STRUCTURAL AND FUNCTIONAL FEATURES OF THE IncPa PLASMID
GENOME

Broad host-range plasmids belonging to IncP in Escherichia coli are self-
transmissible, and can be divided into two major subgroups, IncP« and IncPf
(Villarroel et al., 1983; Yakobson and Guiney, 1983; Chikami et al., 1985;
Lanka et al., 1985; Smith and Thomas, 1987, 1989; Thomas and Smith, 1987).
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The IncPa plasmids RK2 and RP4 have been extensively studied. The
plasmids RK2 and RP4, and other IncPo plasmids, RP1, R18 and R68, are
indistinguishable from one another (Burkardt, Riess and Pihler, 1979;
Currier and Morgan, 1981; Stockes, Moore and Krishnapillai, 1981).

The genome DNA of plasmid RK2 of 60 kb in length {Lanka, Lurz and
Fiirste, 1983; Thomas et al., 1984; see Figure 2). Its copy number is five to
seven per chromosome in E. coli, and three in Pseudomonas (Grinter, 1984;
Itoh et al., 1984). Determinants for resistance against ampicillin, kanamycin,
and tetracycline are on the plasmid genome. Moreover, there is a cryptic
resistance determinant against tellurite (Hedges and Jacob, 1974; Waters et
al., 1983; Pansegrau et al., 1987). The inc and cop loci are involved in
incompatibility and copy number control (Meyer, Hinds and Brasch, 1982;
Thomas et al., 1984; Thomas, 1986). The kil genes are determinants of the
inhibition of host functions, with lethal effects on the host bacterial cells
(Bechhofer and Figurski, 1983; Smith and Thomas, 1983; Smith, Shingler and
Thomas, 1984; Young, Burlage and Figurski, 1987; Thomas, 1988; Gon-
charoff er al., 1991). The kor genes suppress the effects of kil genes (Young,
Bechhofer and Figurski, 1984; Bechhofer ef al., 1986; Young, Burlage and
Figurski, 1987). The trfA genes encode trans-acting factors essential for the
initiation of vegetative DNA replication of RK2 (Figurski and Helinski, 1979;
Pohlman and Figurski, 1983; Thomas and Hussain, 1984). The gene products
of irfB, as well as that of korB, repress the expression of #rfA (Tardif and
Grant, 1983; Thomas and Hussain, 1984; Young, Bechhofer and Figurski,
1984; Bechhofer et al., 1986; Thomas, 1986; Young, Burlage and Figurski,
1987}. The oriV region contains the origin of vegetative DNA replication of
RK2Z (Meyer and Helinski, 1977; Firshein and Caro, 1984; Thomas et al.,
1984). Genes involved in the conjugative transfer of IncPw plasmids belong to
the three blocks of transfer loci, Tral, Tra2 and Tra3 (Figurski er al., 1976;
Barth, Grinter and Bradley, 1978). The ori7 region is a proposed origin of
DNA transfer. The plasmid-specific primase is encoded by pri. The fiwA and
fiwB loci are determinants of fertility inhibition of IncW plasmids (Gon-
charoff et al., 1991; Yusoff and Stanisich, 1984).

CIS-ACTING ELEMENTS FOR VEGETATIVE DNA REPLICATION: THE ORIGIN
FOR VEGETATIVE DNA REPLICATION (orV)

Although two regions on the RK2 genome, oriV and #fA, are essential for
the plasmid replication (Thomas, 1981), regulator genes are necessary for
stable maintenance of the plasmid (Schwab, Saurugger and Lafferty, 1983;
Schmidhauser and Helinski, 1983; see Figure 2). Unidirectional DNA replica-
tion is initiated at oriV, which is between the coordinates of 12 and 13 kb, and
proceeds counterclockwise on the RK2 physical map (Meyer and Helinski,
1977; Firshein and Caro, 1984; Thomas et al., 1984; Pinkney and Thomas,
1987). The DNA segment required in cis for the initiation of DNA replication
is contained in a 750 bp Haell fragment (Figurski and Helinski, 197%9; Thomas
et al., 1979). This origin is further reduced in size to the 617 bp oriV region
required for the replication in Pseudomonas species (Schmidhauser and
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Figure 2. Physical maps of the IncPa plasmids. The map coordinates in kb are calibrated from
the unique EcoR[ site. Bold horizontal arrows represent transcripts. P76 and P62 indicate
putative polypeptides encoded in the oriV region. The bold arrow labelied ‘replication’
represents the orientation of DNA replication. Thin vertical arrows represent repressive action in
trans of the genes responsible for the plasmid maintenance and propagation. Thin vertical arrows
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labelled AT and GC represent A+T- and G+C-rich regions, respectively. Horizontal bars
labelled oriV, minimal oriV, copA/incA and copB/incA represent areas of determinants for oriV,

minimal oriV, copAlincA and copBlincB, respectively.
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Helinski, 1985). Eight 17 bp iterons {(repeats) in the oriV region are divided
into two clusters containing five and three iterons, which are about 120 bp
apart from each other (Stalker, Thomas and Helinski, 1981; Smith and
Thomas, 1985). Nucleotide sequences of these iterons are highly conserved
and in a single orientation. The presence of direct repeats in replication
origins is a characteristic structural feature seen in both narrow host-range
and broad host-range plasmids of Gram-negative bacteria. Between the two
clusters are two DnaA box homologous sequences (Stalker, Thomas and
Helinski, 1981; Gayio, Turjman and Bastia, 1987). Moreover, in each
terminal part of the 617 bp oriV region there is a DnaA box homologous
sequence (Pinkney et af., 1988). A Pribnow box is present between the two
central DnaA box (Stalker, Thomas and Helinski, 1981; Stalker, Kolter and
Helinski, 1982). An IHF binding site-like sequence (a binding site for the
integration host factor containing a highly AT-rich region, cf. Figure 5) is
found in the central region of oriV (Stalker, Thomas and Helinski, 1981;
Stalker, Kolter and Helinski, 1982; Kiies and Stahl, 1989}. A 49 bp A+T-rich
region, which is flanked by a 67 bp G+C-rich tract, contains the right-most
DnaA box (Smith and Thomas, 1985; Gaylo, Turjman and Bastia, 1987).

Some elements in oriV are non-essential, depending on the species of the
host bacteria. The 617 bp oriV region for the replication in Pseudomonas
species is further reduced in size to the 393 bp Hpall fragment, a variant
oriV, as a minimal cis-acting DNA region required for the initiation of RK2
DNA replication in E. coli (Stalker, Thomas and Helinski, 1981; Thomas,
Stalker and Helinski, 1981; Schmidhauser, Filutowicz and Helinski, 1983;
Cross, Warne and Thomas, 1986; see Figure 2). This minimal oriV lacks the
cluster of three iterons. The plasmid DNA replication dependent on the
minimal o7V results in higher copy numbers than usual (Thomas et al., 1984).
This is because the minimal oriV lacks targets for the cop functions acting in
trans. Dependency of the RK2 replication in E. coli on DnaA has been
confirmed both in vivo and in virre (Gaylo, Turjman and Bastia, 1987,
Pinkney et ai., 1988). Although disruption of the DnaA box in the A+T-rich
region abolishes the plasmid replication, binding of DnaA protein at this site
may not be essential for the replication (Gaylo, Turjman and Bastia, 1987).

Two ORFs in the oriV region encode two putative polypeptides, P62 and a
part of P76 (Thomas et al., 1984; see Figure 2). In the region upstream from
the ORF encoding P76, there are a Shine-Dalgarno sequence and the two
functional sequences conserved in prokaryotic promoters, —10 sequence and
~35 sequence. These regulatory elements are outside the 750 bp Haell
segment. The -35 sequence overlaps with an extra 17 bp iteron outside the
oriV region, and is thought to play a regulatory role. P76 may be associated
with the cop B function.

INITIATION OF VEGETATIVE DNA REPLICATION OF RK2

Action in trans of the initiation protein TrfA on oriV is essential for RK2
DNA replication (Figurski and Helinski, 1979; Thomas, 1981; Shingler and
Thomas, 1984a; see Figure 2). Essential forms of the #rfA products are
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different according to the species of host bacteria {Kornacki, West and
Firshein, 1984; Shingler and Thomas, 1984a, b; Smith and Thomas, 1984;
Durland and Helinski, 1987). Transposon integration into the #fA gene and
its promoter results in inhibition of the RK2 replication in E. cofi, while
replication of the plasmid derivatives in Acinetobacter calcoaceticus, Rhizo-
bium meliloti and Pseudomonas species is not affected (Cowan and Krish-
napillai, 1982; Krishnapillai, 1986; Krishnapillai et al., 1987). Moreover,
some #fA mutants of RK2 have temperature sensitivity of the plasmid
replication in E. cofi, but not in Pseudomonas aeruginosa or Rhizobium
meliloti (Hooykaas, Dulk-Ras and Schilperoort, 1982; Tsuda, Harayama and
lino, 1984; Thomas and Smith, 1987). The other temperature-sensitive
mutations introduced into #rfA result in distinct types of alteration in the
plasmid propagation (Valla et al., 1991).

An operon containing frfA consists of irfA/kilD (Figure 2) and is desig-
nated the #rfA operon. The #fA operon encodes three distinct polypeptides.
One of these is a regulatory protein, KilD (Smith and Thomas, 1983); the
other two are TrfA-43 (43 kDDa) and TrfA-32 (32 kDa), which are products of
the same reading frame (Kornacki, West and Firshein, 1984; Shingler and
Thomas, 1984a, b; Smith and Thomas, 1984; Durland and Helinski, 1987).
The transiation start codon of TrfA-32 is downstream from that of TrfA-43.
The in-frame overlapping of the #rfA gene is important for copy number
control, the broad host-range property, and stability in various bacterial hosts
(Fang and Helinski, 1991), and expression of the #fA operon is negatively
regulated by korA, korB, korF and incC in the urfB operon (Tardif and
Grant, 1983; Smith and Thomas, 1984; Young, Bechhofer and Figurski, 1984;
Bechhofer et al., 1986; Thomas, 1986; Thomas and Smith, 1986; Kornacki,
Balderes and Figurski, 1987; Theophilus and Thomas, 1987; Young, Burlage
and Figurski, 1987; Ayres et al., 1991). IntraceHular levels of the four kil
determinants (KilA, KilB, KilC, and KilD) are also regulated by kor (Young,
Bechhofer and Figurski, 1984; Bechhofer et al., 1986; Young, Burlage and
Figurski, 1987). The broad host-range property of RK2 is achieved by the
controlled expression of the 74 operon through the regulation network
(kil-kor regulon) which consists of the five kor determinants (KorA, KorB,
KorC, KorE and KorF) and the four &i/ determinants (KilA, KilB, KilC and
KilD) (Figurski et al., 1982; Bechhofer and Figurski, 1983; Smith and
Thomas, 1983; Smith, Shingler and Thomas, 1984; Young, Burlage and
Figurski, 1987; Thomas, 1988; see Figure 2). Modification or deletion of these
regulator genes causes instability of the plasmid or changes in the host range
(Thomas, Hussain and Smith, 1982; Thomas, 1983; Barth er al., 1984;
Schmidhauser and Helinski, 1985; Schreiner ef al., 1985; Theophilus er al.,
1985). TrfA-32 is essential for the RK2 replication in E. coli, Pseudomonas
putida, R. meliloti, Agrobacterium tumefaciens and Azotobacter vinelandii
(Kornacki, West and Firshein, 1984; Shingler and Thomas, 1984a; Durland
and Helinski, 1987). In P. aeruginosa TrfA-43 is also essential for plasmid
replication (Durland and Helinski, 1987). As sugpested from the fact that
amino acid sequences of TrfA-43 and TrfA-32 are homologous with those of
double-stranded DNA binding protein, the two proteins specifically bind to
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the 17 bp iterons in oriV (Smith, Shingler and Thomas, 1984; Krishnapillai,
1986; Durland and Helinski, 1987; Smith and Thomas, 1987; Pinkney ef al.,
1988; Perri, Helinski and Toukdarian, 1991). As with the other plasmid
replicons, a complex consisting of TrfA-43, TrfA-32 and replication proteins
of the host bacterium is thought to bind to the oriV region, forming a
replisome. However, it is not clear whether all the replisomes constructed for
the RK2 replication in various Gram-negative bacteria are equivalent to one
another. It is quite probable that distinct replisomes are formed depending on
the species of the host bacteria, as suggested by the findings that TrfA-43 is
essential for the RK2 replication in P. geruginosa and that the DNA region
necessary for functional oriV's varies according ta the species of host bacteria
{Shingler and Thomas, 1989).

In E. coli, DnaA protein, DnaB protein, DraG primase, DNA gyrase, and
DNA polymerase Il are essential for the DNA replication of RK2, while
DNA polymerase I is not essential (Thomas, Meyer and Helinski, 1980;
Thomas, Stalker and Helinski, 1981; Gaylo, Turjman and Bastia, 1987;
Pinkney et al., 1988; Kostyal e al., 1989). Binding of E. coli DnaA protein to
the oriV region of RK2 is observed in vivo and in virro (Gaylo, Turjman and
Bastia, 1987; Pinkney et al., 1988). In vitro studies suggest that there are two
distinct mechanisms for the initiation of RK2 DNA replication. One is
dependent on the E. coli RNA polymerase, and the other independent of the
enzyme (Firshein er al., 1982; Firshein and Caro, 1984; Kornacki and
Firshein, 1986; Pinkney er al., 1987; Thomas and Smith, 1987). During
initiation of replication, simultaneous transcription of the genes of #7f4 and
trfB operons may be necessary for DNA replication {Firshein e af., 1982;
Kornacki and Firshein, 1986).

CONTROL OF COPY NUMBER

The intracellular copy number of the RK2 plasmid is regulated by the level of
expression of trfA (Durland ef al., 1990). The incC gene, which represses the
expression of irfA, consequently has a negative effect on the copy numbers
(Thomas and Helinski, 1989; see Figure 2). Some mutations in the rfA gene
increase the copy number of the plasmid (Durland er al., 1990). Since the
expression of trfA is negatively regulated by KorB, mini-RK2 plasmids
retaining korB have copy numbers equivalent to that of RK2, while copy
numbers of those lacking korB are elevated to 10-11 (Thomas and Hussain,
1984). When the level of #fA expression is elevated under the control of a
KorB-independent promoter, the repression by KorB is overcome and the
plasmid copy numbers increase (Schreiner er al., 1985). Under the physiolog-
ical conditions in which the intracelular concentration of TrfA is not a
limiting factor, the plasmid replication is regulated by copAfincA and
copBlincB loci flanking the minimal oriV region. The copAlincA and
copBiincB loci contain a 17 bp iteron and the cluster of three 17 bp iterons,
respectively (Figure 2). Upon removal of these two elements, the plasmid
copy number rises to 35-40 (Thomas et al., 1984). It is supposed that titration
of TrfA is not the sole function of copA and copB (Thomas and Hussain,
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1984). Moreover, another copy number control mechanism is suggested,
which is functional through origin coupling mediated by the TrfA protein
bound to the iterons in oriV (Kittel and Helinski, 1991}.

DNA SYNTHESIS AND ITS REGULATION IN CONJUGATIVE TRANSFER OF
THE IncPa PLLASMIDS

Plasmids of the IncP group mediate efficient DNA transfer between almost
ali the Gram-negative species (Guiney and Lanka, 1989). The conjugation
system of RK2/RP4 belongs to IncPw«. Three regions, Tral, Tra2 and Tra3,
identified on the plasmid genomes, are essential to the conjugative transfer
(Figurski et al., 1976; Barth and Grinter, 1977; Barth, Grinter and Bradley,
1978; Barth, 1979; Guiney and Yakobson, 1983; Lanka, Lurz and Fiirste,
1983; Ubben and Schmitt, 1986; Guiney, Deiss and Simnad, 1988; Fiirste er
al., 1989; Pansegrau et al., 1990; see Figure 2). The origin of transfer, oriT, is
included in a 250 bp segment that is at one end of Tral (Guiney and Helinski,
1979; Guiney, Deiss and Simnad, 1988). The oriT region contains character-
istic 9 bp inverted repeats, partial destruction of which results in loss of the
transfer function (Guiney and Yakobson, 1983; Guiney, 1984), With the
plasmid RP4, the process of conjugative transfer is initiated by formation at
oriT of a protein complex (relaxosome) involving the plasmid-encoded
proteins TraH, Tral, and Tral, followed by cleavage of the DNA strand to be
transferred (Barth, 1979; Guiney, Deiss and Simnad, 1988; Firste er al.,
1989; Pansegrau et al., 1990). The cleavage occurs at the unique site (nic) in
the oriT region, and transfer proceeds counterclockwise on the RK2 map
(Grinter, 1981; Al-Doori, Watson and Scaife, 1982). The presence of the nic
site and the inverted repeat in the oriT region is essential for these initiating
events to be done (Guiney and Helinski, 1979; Guiney and Yakobson, 1983;
Guiney, Deiss and Simnad, 1988).

The RK2 plasmid-specified primase is identified as one of the gene
products essential for effective DNA transfer {Boulnois and Wilkins, 1979;
Lanka eral., 1979, 1984; Lanka and Barth, 1981). In both the complementary
DNA strands of the oriT region there are some nucleotide sequences
specifically recognized by the plasmid-encoded primase. The nucleotide
sequences direct the priming of their complementary strand syntheses
(Yakobson et al., 1990). These observations suggest that the initiation of
DNA syntheses is mediated by the plasmid-encoded primase in the donor and
the recipient cells during the process of conjugal transfer of plasmid RK2. A
nucleotide sequence in the RK2 oriT region is highly homologous with those
in both the border junctions of the T-DNA of Agrobacterium tumefaciens
tumour-inducing plasmids (Waters er al., 1991). This suggests a relationship
between conjugative transfer of the plasmid DNA with the IncP« system and
T-DNA transfer to plants.
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Structural feature of the replication origin region of Colicin E1 (ColE1) DNA
and requirements of host factors

ColEl is a narrow host-range Escherichia coli plasmid having a double-
stranded circular structure and a molecular size of 6-6 kb, and replicates from
a replication origin (ori) region unidirectionally (Bolivar ef al., 1977; Tomi-
zawa, Ohmori and Bird, 1977). In vive and in virro studies of replication of
ColE1 DNA show that E. coli factors, ribonuclease H (RNase H), DNA
polymerase I, DNA gyrase, and topoisomerase are required (Tomizawa,
Ohmori and Bird, 1977, Donoghue and Sharp, 1978; Itoh and Tomizawa,
1980; Hillenbrand and Staudenbauer, 1982; Minden and Marians, 1985).
Figure 3 shows the structural feature of origin region of ColEl. Two
promoters are found upstream of the origin: one (Pgya ) is 555 bp
upstream, and the other (Prya 1) is on the opposite strand at the 445 bp
upstream from the origin. The first promoter is for the transcription of RNA
It or precursor of primer RNA, and the second one is for RNA I or a
regulator RNA, which participates the regulation of initiation of ColE1 DNA
replication by forming an RNA II-RNA 1 hybrid (Morita and Oka, 1979; Itoh
and Tomizawa, 1980).

An n’ recognition site, which is known to form a preprimosome (Kornberg
and Baker, 1991), is found 150 nucleotides downstream from the replication
origin (Zipursky and Marians, 1980; Béldicke et al., 1981; Nomura, Low and
Ray, 1982; Masai and Arai, 1988). The DnaA box is also found adjacent to
the replication origin (Fuller, Funnell and Kornberg, 1984; Seufert and
Messer, 1987; Seufert ef al., 1988). Replication of ColEl DNA can start in
vivo (Kogoma, 1984; Ogawa and Okazaki, 1984; Naito and Uchida, 1986)
and in vitro (Casgupta, Masukata and Tomizawa, 1987; Masukata, Dasgupta
and Tomizawa, 1987) in the absence of RNase H and DNA polymerase 1.

SYNTHESIS OF PRIMER RNA IN INITIATION OF ColE] DNA REPLICATION

Transcription of RNA 11 starts 555 bp upstream from the replication origin
and ends heterogeneously about 240 bp downstream. The RNA transcript is
nearly 700 bp long (Itoh and Tomizawa, 1980; Tomizawa ef al., 1981:
Tomizawa and Masukata, 1987). This RNA transcript is called a precursor of
primer RNA, or RNA II. The 3'-ends of approximately half of the nascent
RNA 11 transcripts form a persistent DNA-RNA hybrid with template DNA
near the replication origin (Itoh and Tomizawa, 1980; Selzer and Tomizawa,
1982; see Figure 3A(1)). In RNA 1l forming a persistent hybrid, the region
about 265 nucleotide upstream of the replication origin can also form a
persistent hybrid with the template DNA. This process is called coupling
(Tomizawa and Itoh, 1982), and is dependent on the secondary structure of
the 5-end of RNA II (Masukata and Tomizawa, 1984, 1986; Wong and
Polisky, 1985). The 5’-end of the transcribed RNA II molecule is released
sequentially from the template DNA to form a unique secondary structure
(Masukata and Tomizawa, 1984; see Figure 3A(2) and Figure 3B). The
RNA 11 transcripts hybridized with template DNA (the coupled RNA II-
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Figure 3. (B) Schematic iftustration of the stem-loop structures of wild-type primer RNA
(RNA I} of plasmid CofEl and its inactive form. (1) The stem-loop structure of wild-type
RNA II, which is the active form of RNA II for the initiation of DNA synthesis. {2) The inactive
form of RNA I isolated from a mutant (pri7), which cannot make hybridization with DNA
(pairing). (3) The RNA I-RNA II hybrid (pairing), which is inactive for initiation of DNA
synthesis (Masukata and Tomizawa, 1986; Dasgupta, Masukata and Tomizawa, 1987).
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DNA hybrid) are cleaved by RNase H at the ori and the downstream region
of the replication origin to form a 555 bp mature RNA primer (Inoue and
Uchida, 1991; see Figure 3A(3)). DNA synthesis by DNA polymerase I starts
by adding deoxynucleotides to the 3" OH ends of the primer RNA unidirec-
tionally (Figure 3A(4)). The primer RNA-DNA hybrid is formed only when
the nascent RNA II transcripts are present; no hybrid formation (coupling) is
observed when RNA 1II is added exogenously (Masukata and Tomizawa,
19903.

Initiation of lagging-strand synthesis for pBR322 replication in vitro is
dependent on the primosomal protein 1 encoded by dnal (Masal and Arai,
1688). Early replicative intermediates with the newly synthesized leading
strand immediately downstream of the replication origin accumulate in
products synthesized in extracts from a dnaT strain that lacks primosomal
protein 1, or in wild-type extracts with anti-protein 1 antibody. An n’ site on
the lagging strand is required for efficient replication of pBR322 DNA
replication in vitro.

ColE1-type plasmids, including pBR322, do not require DnaA protein for
replication (Hansen and Yarmolinsky, 1986; Kline er a/., 1986), but their rate
of replication decreases in a host with a thermosensitive dnaA allele after a
shift to the non-permissive temperature. These plasmids have at least one,
and perhaps two, DnaA binding sites in the replication origin region. One
site, 90 bp downstream of the origin of ColEl and pBR322, is required for in
vitro replication of pBR322 in the presence of DnaA protein and all
primosome components except protein i. If protein i is included in the in vitro
reaction mixture, DnaA protein is no longer required, but stimulates replica-
tion indirectly (Seufert and Messer, 1987; Ma and Campbell, 1988; Chiang,
Xu and Bremer, 1991).

REGULATION OF INITIATIGN OF ColEl DNA REPLICATION BY RNAI

Initiation of ColE1l DNA is mainly regulated by antisense RNA, or RNA 1
{Tomizawa, 1986). Synthesis of RNA I, consisting of 108 nucleotides, is
initiated from the promoter for RNA 1 (Prya ) 445 bp upstream from the
replication origin, proceeds in the opposite direction to RNA 11, and ends a
few bases before RNA II starts (Tomizawa, 1990; see Figure 3A(1)). The
inhibition of hybrid formation of RNA II with DNA occurs by hybridization
of RNA I with a complementary sequence in RNA II (Lacatena and
Cesareni, 1981; Tomizawa and Ttoh, 1981; Tomizawa ef al., 1981; Masukata
and Tomizawa, 1986; see Figure 3A(3')). Transcription of RNA 1 occurs
more often than that of RNA II, because the promoter activity of the former,
Prna 1» 18 stronger than that of the latter, Pgua 1y (Lin-Chao and Bremer,
1987). Therefore a higher concentration of RNA 1is present in vive (Brenner
and Tomizawa, 1991).

The hybridization (pairing) of RNA T and RNA 11 is dependent on the
presence of the 5" end of RNA I (Dooley, Tamm and Polisky, 1985;
Tomizawa, 1986; Fitzwater ef al., 1988). When the 5’ end of RNAT is
removed by RNase E, inhibition activity is reduced; that is replication of
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ColEl is stimulated (Tomcsanji and Apirion, 1985; Helmer-Citterich er al.,
1988). In an E. coli relA mutant, the level of RNA 1 seems to be regulated by
interaction of complementary sequences of tRNAs, as the concentration of
uncharged tRNAs increases in the cells (Hecker, Schroeter and Mach, 1986,
Yavachev and Ivanov, 1988). The RNA 1 transcript has a tRNA-like confor-
mation such as a clover-leaf structure composed of three stem-loops and a 5’
single-stranded tail of nine nucleotides (Morita and Qka, 1979; Tamm and
Polisky, 1985; Yavachev and Ivanov, 1988). Similar palindrome structures (1,
II and HI in Figure 3B) are formed at the 5'-proximal region of the primer
RNA transcript shortly after the start of the RNA II synthesis (Wong and
Polisky, 1985; Tomizawa, 1986). The RNA I-RNA II hybrid is formed by
interaction between specific bases of homologous single-stranded foops in
RNA I and RNA II molecules (Lacatena and Cesareni, 1983; Tomizawa,
1986). This interaction brings together the single-stranded 5'-end of RNA I
and its complementary RNA II sequence. The process of binding of RNA 1
to RNA Il is a sequence of reactions producing a series of progressively more
stable intermediates leading to the final product {Tomizawa, 1990).

HIGHER STRUCTURE OF PRIMER RNA (RNA II)

Palindrome structures of primer RNA or RNA 1T are shown (Figure 3B), and
the secondary structure of the wild-type RNA II is compared to that of
mutant {pri7) RNA 11, which has no primer activity (Masukata and Tomi-
zawa, 1986, see Figure 3B(2)). The essential difference between the two
RNAs is that in the wild-type RNA II the structures III and V are absent,
while in the mutant RNA II structure IV is absent, and structures I and V
are formed instead. When RNA [ is paired with the wild-type RNA 11, the
structure IV of RNA II cannot be formed (Figure 3B(3)). Pairing of RNA I
to the binding region (5'-terminal region) of wild-type RNA II results in an
alteration of the structures IV and VI (and probably VI{ and VIII) to form
structure V (Figure 3B8(2,3)). Thus, the structures VI and VII of wild-type
RNA 1I play a role in hybridization with template DNA, and those I, 1 and
IV (Figure 3B(1)) are not necessary.

The pairing of RNA T to RNA II and the inhibitory effect of RNA 1 are
influenced by structural variations depending on the nascent primer transcript
(Wong and Polisky, 1985; Ohmori, Murakami and Nagata, 1987). Growing
RNA 11 transcripts of 110 to 360 nucleotides are sensitive to the inhibitory
action of RNA I. Longer transcripts also interact with RNA I but the
inhibition with it is not effective. As noted above, the structure IV of RNA I
is altered by the hybridization with RNA I, but the secondary structures of
the downstream region of RNA II are stable (Masukata and Tomizawa,
1986).

PROTEIN FACTOR ENHANCING RNA I-RNA Il HYBRID FORMATION

Pairing of RNA I and RNA II is enhanced by a small protein dimer Rom
(RNA of inhibition modulator) or Rop (repressor of primer) (Cesareni et al.
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1984; Lacatena et al., 1984; Tomizawa and Som, 1984; Tomizawa, 1986). The
Rom protein is encoded downstream from the replication origin of ColE}
DNA (Som and Tomizawa, 1983). The deletion of the non-essential rom gene
as well as overproduction of Rom protein affects the plasmid copy number
and incompatibility (Dooley, Tamm and Polisky, 1985; Nugent, Smith and
Tacon, 1986). Rom protein enhances RNA I-RNA II binding, which
depends on the length of the RNA II transcript. RNA I longer than 135
nucleotides binds strongly to RNAII in the presence of Rom protein
(Perelson and Brendel, 1989). The binding starts with interaction between
loops of RNA I and RNA I, which are fragments complementary to each
other (Eguchi and Tomizawa, 1990). The target site of Rom protein is the
stem-loop I of RNA I, where the structure III of RNA II hybridizes
(Cesareni et al., 1984; Dooley and Polisky, 1987; Eguchi and Tomizawa,
1990). Rom protein enhances complex formation by decreasing the rate of
dissociation of the complex. Rom protein interacts with structures I, IT and I'V
(Figure 3B(1)) of the RNA II transcript. The efficiencies of binding of Rom
protein with RNA I and RNA II are similar (Helmer-Citterich ez al., 1988).
The monomer of Rom protein consists of two a-helices, and the dimer forms
an c-helix dipole by using a coiled-coil protein architecture (Banner, Kok-
kinidis and Tsernoglou, 1987; Castagnoli er al., 1989). Owing to its symmetric
structure, the dimer may function as an adaptor between RNA I and
RNA 1L

Replication of plasmid R1 (R100)

STRUCTURAL FEATURE OF THE REPLICATION ORIGIN REGION OF Rl
GENOME

Plasmid R1 is a conjugative resistant low copy number Incll plasmid, has a
molecular size of 9-0 kb, and is related to plasmid R100 or to the F factor of
Escherichia coli. All genes required for replication and copy number control
are within a 2-5 kb region (Nordstrém, Molin and Light, 1984; Rownd ez al.,
1985). Three replication functions, copA, copB and repA, are encoded on the
basic replicon of the R1 plasmid, and the R1 replication also relies on E. coli
replication functions. The copy number of one or two per cell is determined
by the availability of the RepA protein, which is rate-limiting for replication.
The synthesis of this initiator protein is negatively controlled at both the
transcriptional and post-transcriptional levels. RepA mRNAs are formed
from two promoters, CopB promoter (Peops) and RepA promoter (Py.,)
(Figure 4A). The CopB RNA is constitutively transcribed. Its upstream
region encodes the transcriptional repressor CopB, which shuts off the repA
promoter almost completely. The main control system that is used to measure
the concentration of the plasmid R1, and to adjust the replication frequency
accordingly, acts post-transcriptionally (Light and Molin, 1983; Womble et
al., 1984). The key element is a small, unstable, untranslated RNA (CopA)
which forms an RNA duplex with its complementary region in the RepA
mRNA; the target for CopA binding (CopT} is upstream of the RepA coding
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sequence. The kinetics of formation of the RNA duplex determines the copy
number of the plasmid R1 (Givskov et al., 1987; Perrson, Wagner and
Nordstrom, 1988).

The formation of an RNA duplex leads to a decrease in the ability of the
RepA mRNA to promote the synthesis of RepA protein. Computer simula-
tion studies of RNA secondary structures indicate that the ribosome binding
site of the RepA message is single-stranded in the free mRNA, but double-
stranded (and therefore inaccessible fo initiating ribosomes) when the
upstream RNA duplex has been formed (Rownd et af., 1985). However, in
vitro studies have not provided any supportive evidence (Ohman and
Wagner, 1989).

INITIATION OF REPLICATION OF PLASMID Rl

R1 plasmid replicates through cairns-type intermediates and replication
proceeds unindirectionally (Diaz and Staudenbauer, 1982b; Ohtsubo et af.,

(A}
RepA mRNA - P
CopB mRNA Ion-
<—— CopA RNA me——g- [N A synthesis
DNA
A A A A
£ copB FrepA PoopA oriR
(B}
CopB mRNA T oL o _ = inhibiton
{1 3 s C?i?:rg;)cm 0 binding o PrepA 2 T of Rop RAA
regulation of
FAnscriplion (2 Reph mRNA - 2> RepA proteia + replisomes  Z5p  DINA synthesis
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&) o RPAMREA = = inhibition of DNA synthesis
Coph RNA

Figure 4. (A) Schematic illustration of the replication origin of R1 plasmid showing the
structural features of the 2-5 kb segment of the R1 plasmid oriR region and the upstream flanking
region of the oriR. The closed triangle represents the oriR, where DNA synthesis starts. The
thick horizontal arrows show the direction of DNA synthesis. Thin horizontal arrows labelled
with open triangles indicate the directions of transcription of CopA RNA, CopB mRNA and
RepA mRNA, respectively. Ppa, Poon and P, are promoters for CopA RNA, CopB
mRNA and RepA mRNA, respectively.

(B) Regulation of transcription. (1) The CopB protein, the repressor, binds to the promoter of
RepA (F,,.,) to inhibit RepA mRNA synthesis. Conscquently, initiation of DNA. synthesis is
inhibited. {2) The RepA protein together with host replisome results in initiation of DNA
syathesis. (3) CopA RNA hybridizes with the CopT region of RepA mRNA. This RepA
mRNA-CopA RNA hybrid cannot be used as a primer for initiation of DMNA synthesis (Persson,
Wagner and Nordstrom, 1988; Blomberg, Wagner and Nordstrém, 1990; Berzal-Herranz,
Wagner and Diaz-Orejas, 1991).
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1977). The replication origin of R1 plasmid is in a 188 bp sequence that is
designated as oriR (Masai et al., 1983). Replication of R1 plasmid starts about
400 bp downstream of oriR, proceeds unidirectionally in vitro (Masai and
Aral, 1989), and depends on the plasmid-encoded RepA protein and host
DnaA protein, both of which bind to sequences within oriR (Masai and Arai,
1987). E. coli DnaB, DnaC, DnaG and SSB proteins are also required for the
plasmid R1 replication in vitro (Masai and Arai, 1987). It is possible that
binding of RepA and DnaA proteins to oriR generates a conformational
change of the oriR. This conformational change may allow the loading of the
replisome, or the binding of the DnaB protein (helicase). Continuous
leading-strand synthesis starts some 380 bp downstream of oriR. When a
418 base single-stranded DNA from position 1778 to 2195, derived from the
leading-strand template, is used for the in vitro DNA template, the chimeric
single-stranded DNA requires the single-strand DNA binding protein, pri-
mase, and DNA polymerase Il holoenzyme. Furthermore, the priming
occurs at a site identical to leading-strand initiation. These results suggest that
leading-strand synthesis is primed by primase alone. Lagging-strand synthesis
1s specifically ended (at position 1515 or 1516) within oriR, preventing further
leftward fork movement {Masai and Arai, 1989).

Plasmid R100, an R10related plasmid belonging to IncFII, has a replication
origin region in a 284 bp fragment, which replicates unidirectionally as
indicated for the R1 plasmid (Miyazaki ef al., 1988).

REGUILATION OF INITIATION OF PLASMID R1 REPLICATION

The replication frequency of plasmid R1 is set by the availability of the
rate-limiting protein RepA (Nordstrom, 1990). The expression of the repA
gene, which is essential for replication of the R1 plasmid, is negatively
controlled by an antisense RNA, CopA RNA (the copA gene transcript
consisting of 91 nucleotides), which forms a duplex with the 5'-leader region
of the RepA mRNA, the CopT RNA region (Berzal-Herranz, Wagner and
Diaz-Orejas, 1991; see Figure 4B). The copA gene is contained within the
DNA sequence coding for the RepA mRNA but has opposite polarity.
Initially, the two molecules interact at their respective single-stranded loops.
This contact is transient and facilitates initiation of hybridization at the 5'-end
of CopA RNA and CopT RNA of plasmid R1 (Berzal-Herranz, Wagner and
Diaz-Orejas, 1991). Binding between CopA RNA and CopT RNA proceeds
in at least two steps, each of which has different requirements with respect to
the structure and sequence of the RNAs involved. The rate of formation of
the transient complex is rate limiting for the overall pairing reaction between
CopA RNA and CopT RNA, both in vitro and in vive. The initial transient
interaction involves one stem-loop in each molecule. Compiete duplex
formation probably starts by base pairing between the single-stranded region
located 5’ to the recognition loop in CopA, and its complementary region in
CopT RNA. The binding reaction starts by an interaction between the
single-stranded 5'-end of target RNA and its complementary sequence
located in the loop domain of the antisense RNA in the insertion sequence
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[S10 of the composite transposon Tnl@ (Kittle ef al., 1989). However, in this
case the site of initial interaction appears to be the same as the site at which
stable duplex formation starts, and it is not known whether a transient
complex is formed.

In plasmid R1, CopT RNA adopts a target stem-loop structure that permits
CopA RNA to bind (Dong, Womble and Rowd, 1987). This binding affects
the folding of the elongating CopT RNA such that the RepA SD region and
the GUG start codon are sequestered. CopT RNA escaping the binding of
CopA RNA is predicted to (a) refold into a CopA RNA-resistant conforma-
tion, and (b) have the ribosome binding region accessible in single-stranded
loops. In vitro studies of the folding of CopA RNA shows that two loops of
CopA RNA have their correspondence in CopT RNA and no major
structural changes are found downstream of the duplex when CopA RNA is
bound to its target RNA during transcription. Furthermore, a CopA/CopT
RNA binding study indicates that the control region does not undergo drastic
refolding (Ohman and Wagner, 1989; Perrson, Wagner and Nordstrém,
1988}, in contrast to the case shown in plasmid NR1/R100 {Dong, Wombie
and Rownd, 1987).

A new regulatory mechanism has been postulated for plasmid pT181,
which has a replication control region very similar to that of the IncFII
plasmids (Novick er al., 1989). In this case, the antisense RNA causes
transcriptional attenuation, thereby preventing the synthesis of the RepC
protein. The duplex between CopA RNA and CopT RNA is shown to be
cleaved specifically by RNase IiI in vivo (Blomberg, Wagner and Nordstrom,
1990). Cleavage by RNase IIT seems to be a key event in the copy number
control system of plasmid R1.

Regulation of replication is also affected by a protein, the product of the
copB gene, that binds to the promoter of repA4 gene and represses its
transcription (Figure 4B). Since the constitutively synthesized CopB is
present at saturation levels, transcription from the repA promoter is normally
completely repressed. Thus supplying additional copies of the copB gene on a
high copy number vector has no effect on the repA miniplasmid copy rumber,
hence the copB gene is not involved in IncFII incompatibility. The copB
functions of plasmids R1, R100 and R6-5 have been compared (Nordstrdm
and Nordstrom, 1985), and it was found that deletion of the copB gene
resulted in a 3-5-fold increase in the copy number of R100 and an eight-fold
increase in the copy number of R1; these deletion mutants could be
complemented only by homologous and not heterologous CopB. However,
when the copB gene was left intact, R100 and R1 both had the same
stringently controlled copy number. Thus, although there are two structurally
different forms of the CopB protein, they show an analogous function in the
RepA replication system. These alternate forms of the copB gene are
therefore alleles, and will be referred to as copBI (the R1 allelic form) and
copBII (the R100 and R6-5 allelic form). A RepA-like replication system,
Repl, in the IncFI plasmid ColV2-K94 or its kanamycin resistant derivative,
has been identified (Weber, Mitra and Palchaudhuri, 1984). This replicon has
been found to be structurally and functionally homologous to the RepA
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replicon of R1, but differences in the nucleotide sequence of the copA4 gene
have caused a loss of IncFII incompatibility in Repl (Weber and Palchaud-
huri, 1986). The copB open reading frame of Repl may code for a protein
essential for normal copy number control of pNS12. This copB mutant has an
approximately 10-fold increase in copy number. The CopB-phenotype of
ColV2-K94 could be complemented in #rans by the copB gene of co-resident
IncFII plasmids such as R1 and RS538, but not R100, suggesting that
ColV2-K94 and R1 or R538 contain the same copB allele (Banerjee, Weber
and Palchaudhuri, 1990).

Replication of pSCI101 DNA

STRUCTURAL FEATURE OF THE REPLICATION ORIGIN REGION OF pSC101
GENOME

Plasmid pSCI01 is a low copy number R plasmid (formerly R6-5 or Tc6-5)
and has a molecular size of 9-26 kb {Bernardi and Bernardi, 1984; Scott,
1984; Kiies and Stahl, 1989; see Figure 54). pSC101 DNA starts replication at
the replication origin region unidirectionally (Yamaguchi and Yamaguchi,
1984a, b), and this region consists of 250 bp. For the pSC101 DNA replica-
tion a frans-acting initiation protein (37-5 kDa), RepA, is required (Church-
ward, Linder and Caro, 1983; Vocke and Bastia, 1983b; Armstrong et al.,
1984). The replication origin region contains a DnaA box, two 13-mer repeats
(the same sequence found in oriC of Escherichia coli), and an 84% A+T-rich
region that contains a binding site for the integration host factor (IHF)
(Gamas et al., 1986). Three 18 bp direct repeats, which are the binding sites
for the RepA protein (Yamaguchi described Rep) encoded by the plasmid
pSCI01, are adjacent to the A+T-rich region (Armstrong er al., 1984;
Yamaguchi and Yamaguchi, 1984a). Three RepA protein binding sites are
also found in front of the repA gene, which is the opposite side of the origin
region (Vocke and Bastia, 1983a; Linder er al, 1985; Yamaguchi and
Masamune, 1985).

INITIATION OF REPLICATION OF pSC101 DNA

An initiator protein, RepA, binds to the three direct repeats in the replication
origin region (Vocke and Bastia, 1983b; Vocke and Bastia, 1985; Yamaguchi
and Masamune, 1985). This binding would be the start of a replisome
formation (Funnell, Baker and Kornberg, 1987, Bramhill and Kornberg,
1988a), as it is considered that the RepA protein directs the formation of a
complex with host proteins necessary for the imitiation event of DNA
replication. The host DnaA protein is essential for initiation of pSC101 DNA
replication {Felton and Wright, 1979; Frey, Chandler and Caro, 1979;
Hasunuma and Sekiguchi, 1979) as well as that of E. coli DNA (Fuller,
Funnell and Kornberg, 1984; Messer et al., 1991). The initiator protein,
DnaA, interacts specifically with a 9 bp consensus sequence, the DnaA box,
in oriC of the E. coli chromosome. This causes the local unwinding of an
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Figure 5. (A} Schematic illustration of the replication otigin of plasmid pSC10¢1. Thick
horizontal open arrow represents the direction of DNA synthesis. Thin horizontal bars labelled
ori and inc represent minimum origin and incompatibility, respectively. An open box labelled
dnaA represents the DnaA protein binding sequence. THF represents the integration host factor
binding sequence. The horizontal broken line labelled *AT-rich’ represents an 84% A-+T stretch.
Thick closed arrows and thick hatched arrows with numbers are three direct repeat and
additional repeat sequences, respectively. Thin horizontal arrows fabelled IR-1 and TR-2 are the
sequences with dyad-symmetry. A thin horizontal bar labeHed P, is the putative promoter of
the repA gene. The open box labelled rep represents the structural gene of the repA protein
{Yamaguchi and Masamune, 1985),

{B) Autoregulation of initiation of plasmid pSCI101 DNA replication. (1) Binding of the RepA
pratein to the three direct repeat sequences results in replication initiation (positive regulation),
white binding of the RepA protein to the other repeat sequences reduces the frequency of
initiation (negative regulation). (2) Binding of the IHF protein to the IHF sequences causes
bending of the ori region, which enables the assembly of the protein factors, DnaA, DnaB and
DnaC, essential for initiation of DNA synthesis (Linder ez af. 1985; Yamaguchi and Masamune,
1985).

A+T-rich region, which allows the binding of DnaG primase (Messer, 1987;
Seufert and Messer, 1987; Gille and Messer, 1991}).

The replication origin region of pSC101 DNA contains an AT-rich region
which alters the DNA structure by bending (Koo, Wu and Crothers, 1987;
Stenzel, Pastel and Bastia, 1987; Tan and Harvey, 1987). This bending is
enhanced by binding of the IHF (Stenzel, Pastel and Bastia, 1987), which is
an essential host factor in pSC101 DNA replication (Gamas er al., 1986).
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Therefore, DnaA and RepA proteins bound in corresponding recognition
sites with respect to the origin region may be brought close enough to interact
with each other to form a DNA-protein complex (Figure 58). In this complex
are assembled replisome components such as DnaB and DnaC proteins.
These proteins are essential for pSC101 DNA repiication (Frey, Chandler
and Caro, 1984; Hasunuma and Sekiguchi, 1979). Bending at replication
origins and the formation of DNA-protein complexes are also known in E.
coli oriC, bacteriophage A, and plasmid R6K, with unwinding of the double-
stranded DNA (Dodson et al., 1985; Mukherjee, Patel and Bastia, 1985;
Echols, 1986; Zahn and Blattner, 1987; Bramhill and Kornberg, 1988a; Gille
etal., 1991).

The three tandem repeats of the 13-mer in the oriC region of E. coli near a
DnaA box are the sites where the opening of the duplex is initiated. The
DnaB, a helicase, assembled at the DnaA box, recognizes the unwound DNA
region and moves in both directions along the DNA helix to separate the two
strands {Bramhill and Kornberg, 1988a). In the replication origin region of
pSC101 the same 13-mer repeat is found near the DnaA box. The unwinding
by DnaB of the ori region from the 13-mer sequence might occur before the
synthesis of primer RNA. It may be that for the synthesis of primer RNA,
RNA polymerase is not used, because the promoter that has been found is
oriented only in the opposite direction to replication (Churchward, Linder
and Caro, 1983; Funnell, Baker and Kornberg, 1987). On the other hand,
sequences homologous to the DnaG binding site of bacteriophage G4 (Sakai,
Komano and -Godson, 1985, 1987; Sakai ef al., 19%8; Hiasa, Sakai and
Komano, 1989; Hiasa et al., 1989a, b, 1990) are found in both DNA strands
{Churchward, Linder and Caro, 1983; Yamaguchi and Yamaguchi, 1984a).
As 1t is reported that maintenance of plasmid pSCI01 requires the host
primase (Ely and Wright, 1985), it might be used for primer RNA synthesis in
both leading-strand and lagging-strand syntheses.

REGULATION OF INITIATION OF pSCli1 DNA

The RepA protein plays a positive role in the initiation of DNA synthesis by
binding to the three direct repeats of the replication origin region. This allows
the formation of a replisome in co-operation with the DnaA protein (Vocke
and Bastia, 1985; Yamaguchi and Masamune, 1985; Figure 5B). The RepA
protein has a function in the regulation of the transcription of the rep4 gene,
that is, initiation of pSC101 DNA replication is regulated by the intracellular
concentration of RepA protein. The repA protein exists as a dimer and binds
preferentially to two nearly dyad-symmetric sequences overlapping the
promoter of the rep gene (Linder ef al., 1985; Vocke and Bastia, 1985;
Yamaguchi and Masamune, 1985). The replication origin of the pSC101
contains direct repeat sequences similar to the dyad-symmetric sequences,
but one order of magnitude higher concentration of the RepA protein is
required to bind to the origin repeats (Yamaguchi and Yamaguchi, 1984b).
The RepA protein competes with RNA polymerase for the repA promoter
sequence in dyad-symmetric sequences, and inhibits the transcription of the
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repA gene. The repA gene is thus autoregulated by the RepA protein. The
binding of RepA protein to the promoter precedes that to the direct repeat in
the replication origin region; the concentration of RepA protein may be
maintained at a critical level to keep the correct plasmid copy number
(Sugiura ez al., 1990; Yamaguchi and Masamune, 1985). A protein factor that
promotes binding of purified RepA to the direct repeat sequence is found in
the E. coli extract (Sugiura ef al., 1990). In the presence of the factor, DNA
fragments containing the direct repeat sequence can form a specific
DNA-protein complex by the addition of low concentrations of the RepA
protein. In contrast, the DNA containing an inverted repeat sequence in the
promoter region loses its binding activity for the RepA protein upon
incubation with the factor. The extensively purified factor is identified as
exonuclease III, and this enzyme action is necessary for binding of RepA
protein to the direct-repeat region of DNA. This binding of RepA protein to
duplex DNA treated with exonuclease 111 is direct-repeat specific (Fueki and
Yamaguchi, 1991a, b). Since the RepA protein cannot bind to the single-
stranded direct-repeat sequence, partial single-stranded regions around the
direct-repeat sequence are required for the binding of RepA protein (Vocke
and Bastia, 1983b).

E. coli mutants defective in exonuclease I1II permit the replication of
pSC101 (Vocke and Bastia, 1985). It is unlikely that creating the single-
stranded region downstream of the direct-repeat sequences is necessary for
plasmid replication, rather the structure produced by exonuclease III in vitro
resembles the one required for binding of the RepA protein in vivo. Such a
structure might be found by unwinding of the downstream region of the
direct-repeat sequences.
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