Dr Tasos Avgoustidis
(Notes based on Dr A. Moss’ lectures)

Lecture10: Interacting Dirac Field -
Feynman Diagrams




QFT

Nucleon-Anti-Nucleon Scattering

« ynp — Y : Initial and final state contains a nucleon-anti-
nucleon pair i) =% T(p1)c® T(p2)|0) , [f) =" T(a1)c™ T(q2)|0)

« Contribution to S-matrix at O(g?)

(—ig)?
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* As in bosonic case only term which contributes in time-
ordered product is

() P()d (y) Y(y) - A% (z —y)

« Have to be careful with spinor indices - calculation is
quite tedious (try it!)
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QFT Feynman Rules

« Draw an external line for each particle in the initial and

final state (as before will choose dotted lines for mesons, solid
lines for nucleons)

« Add an arrow to nucleons to denote charge (incoming

arrow for % in initial state) /

* Join lines by trivalent vertices  ---------
« Associate spinors with external fermlons N
- For incoming nucleon u°(k)
- For outgoing nucleon «° (k)
- For incoming anti-nucleon v° (k)
- For outgoing anti-nucleon v° (k)



QFT Feynman Rules

- For each vertex (—ig)(2m)*s* (Z kz) where momenta
are into vertex ‘

* For each internal line integrate the propagator
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/ d*k 0 d*k i(y*k, + M)
(2m)* k2 — m? + ie (2m)* k2 — M2 + e

* Nucleon propagator is now a 4x4 matrix
e Spinor indices are contracted at each vertex
« Add minus signs for statistics



QFT Nucleon-Anti-Nucleon Scattering
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» Define amplitude by (f|S — 1]i) = i.A(27)*6" (kr — k1)
A= (—ig) [[ 2 (p) - u (p)][a™ (a2) v ()] [5° (a) - u (p)][0” 2<p2>-v82<q2>]]

s —m2 1 ie t —m? + 3
t=(p1—q)’ = (P2 — @)’ u=(p1—q)° = (p2—q1)°
s=(p1+p2)’ = (@1 + @)’

* If m > 2M the s-channel term can again diverge.

However, the meson is unstable for this mass .



QFT Nucleon-Anti-Nucleon Scattering

* The minus signs can be a little tricky to get right

Safest thing to do is to go back to the calculation of the S-
matrix element using Wick’s theorem

For the s-channel of nucleon-anti-nucleon scattering this
IS given (very) schematically by

(f| b - |i) = (0|cb : Beubab! vel = bTcT|0)
= +(0|cbb' ¢t [ou] [av]ebb'c|0) = +[ou][av]

* The t-channel termis
(f| :papapap : i) = (0|cb : Deve' abl ub : bTcT|0)
= +(0|cbc b [ov][au]ebbc¢T0) = —[ov][au]



QFT Nucleon Scattering
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o [ 187 (a1) - u™ (p1)][u* (q2) - w2 (P2)]  [4%(q2) - u"™ (p1)][@* (qu) - urz(pz)]]

A= (=ig) [ t—m2+}< a u—m2+><
* Notice relative minus sign

(cf. scalar Yukawa theory result in lecture 6)



QFT Nucleon-Meson Scattering

P — ¢ U S

pP1,"1 —— q — q2 —

A = (—ig)? [177"2 (p2) [v- (p1 —q1) + M]u" (p1) 02 (p2) [y (p1 — q2) + M]u™ (pl)}

t—M2—|—>< i u—M2—|—>?<

* Here exchange particle is nucleon rather than meson

* Final states are mesons: no relative minus sign

(cf. scalar Yukawa theory result in lecture 6)



The photon field

o and QED

- In this course we have not quantised the vector field A,
whose excitations are photons (quantisation proceeds in a
similar way, but there are new subtleties)

 lIts coupling to matter is determined by symmetry:
demand that the global U(1) symmetry of our fermion
Lagrangian survives for spacetime-dependent parameter

Find that this can be maintained if we change our
==3 partial derivative to a covariant derivative, linear in a
vector field that is subject to gauge transformations

e Studied in the QED course



QFT Glimpse at vector field quantisation |

« Canonical quantisation of vector field is subtle due to gauge
Invariance (easier to perform functional quantisation)

» Consider Maxwell equations 8MF“” — ()
P, = 0,4, — 0,A, O Fluy = 0
and note:
- No time derivative in A
- Gauge invariance A,(x) — A, (z) + 0\ ()

» EXxpect 4-2 degrees of freedom (2 polarisations for photons)

* However, it's quite subtle to obtain in quantum theory:
- In Coulomb gauge, subtlety is in modified Poisson brackets
due to constraint. D.o.f. manifest but no Lorentz invariance.

- Let’s have a quick look at quantisation in Lorentz gauge.
Subtlety is in how to impose the gauge to identify d.o.f. 10



QFT Glimpse at vector field quantisation |

Work in Lorentz gauge 0, A" =0
were e.0.m. reads 0,0" A" =0

Cheat by modifying action as: .

, 1
L=—-F, F" — 5(8,“4“)2

. 4
ve e.o.m.
giving the above e.0 (Note wrong sign kinetic term for A")

Quantise and impose gauge condition later

This leads to 4 polarlsatlon ( ) that can be
chosen such that: -~ 77

(1 timelike + 3 spacelike)

11



QFT Glimpse at vector field quantisation |

« For momentum p x (1,0,0,1) choose:
e’ =(1,0,0,0)" e? =(0,0,1,0)"

el =(0,1,0,00" € =1(0,0,0,1)"

Physical polarisations are 51,52. The others must

somehow decouple.

* |n fact, there is a serious problem with the timelike
polarisation gl

Commutation relations
[a®(p),a* (q)] = —n™ (27)* 6 (p — q)
Notice - sign for k = A = 0, so the state

a’"(q)|0) has negative norm!

« At this point impose Lorentz gauge condition. "



QFT Glimpse at vector field quantisation |

But how to impose Lorentz gauge? It appears problematic:
» Cannot impose as an operator equation 9, A" =0
(It's too strong: it violates the commutation relatlon for A, 7 )

- Cannot impose on physical states as 0, A"|¥) = 0
(Too strong: not even satisfied by the vacuum state!)

» Solution (Gupta-Bleuler) is to impose weaker condition on
physical states: aﬂAﬂ\m _0

(+ sign refers to the +ve freq part of A,,)
Implies (a*(p) —a’(p))|¢) =0

 The unwanted timelike and longitudinal states combine into

a null state of zero norm that decouples from the theory!
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QFT Take home message

- Developed picture in which particles arise naturally
from perturbing quantum fields.

- QFT is not a theory, but a framework for constructing
theories (that are local, causal and Lorentz invariant)

- However, it does have a handful of generic predictions:
« There are 2 types of particles: bosons and fermions

« All particles have their anti-particle
« Couplings run with energy scale

(renormalisation, not covered in this course)

* Forces are of the Yukawa/Coulomb type
(take non-relativistic limit of propagator and interpret as a potential in non-rel QM)
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QFT Outlook

In this course we have not covered:

Quantization of vector field & QED (see QED course)

Path Integral Formulation of QFT

Renormalization

Non-abelian Gauge Theories

Related courses: QED & the Standard Model
Higgs Boson Physics
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