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Recent Constraints from Supernovae, Cosmic 
Microwave Background Anisotropy (WMAP) and Large-
scale Structure (Baryon Acoustic Oscillations, SDSS) 

Sullivan etal 2011 
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•  Probe dark energy through the history of the expansion rate: 
	

	

	

•  and the growth of large-scale structure: 

	

 
•  Weak Lensing cosmic shear    Distances+growth                                                    
•  Supernovae                              Distances 
•  Baryon Acoustic Oscillations    Distances and H(z) 
•  Cluster counting                        Distances+growth 
•  Redshift Distortions                   Growth 

What can we probe? 
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Require both to disentangle Dark Energy from Modified Gravity 



Excellent astronomical site in Chilean Andes: 
good seeing: ~0.75” median for site  
high, dry: high percentage of clear, photometric nights 
 
Late 2003: NOAO Announcement of Opportunity for new 
facility instrument on the Blanco  
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Blanco Telescope 

Blanco 4-meter Telescope  
at Cerro Tololo 
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The Dark Energy Survey 
•  Survey project using 4 

complementary techniques: 
         I. Cluster Counts 
      II. Weak Lensing 
      III. Large-scale Structure 
      IV. Supernovae 

•    Two multiband imaging surveys: 
       5000 deg2 grizY to 24th mag 
       30 deg2 repeat griz (SNe) 

•    New 3 deg2 FOV camera 
    on the Blanco 4m telescope 
       Survey 2013-2018 (525 nights) 
        Facility instrument for astronomy  
        community (DES 30% time) 
         
       
                  

www.darkenergysurvey.org 

DECam on the Blanco 



DES Collaboration 

Fermilab, UIUC/NCSA, University of Chicago, 
LBNL, NOAO, University of Michigan, University 
of Pennsylvania, Argonne National Laboratory, 
Ohio State University, Santa-Cruz/SLAC/Stanford 
Consortium, Texas A&M 

200+ scientists 

Brazil Consortium 

UK Consortium: 
UCL, Cambridge, Edinburgh, 
Nottingham, Portsmouth, Sussex 

Spain Consortium: 
CIEMAT, IEEC, IFAE 

CTIO 

Ludwig-Maximilians Universität LMU 
ETH Zurich 

Funding from DOE, NSF, foreign 
funding agencies, and DES  
institutions 
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Project Structure & Timeline 

•  NOAO Blanco Announcement of Opportunity 2003 
•  R&D, optical corrector elements 
•  Camera construction 2008-11 
•  New Prime Focus Cage with corrector installed May 2012 
•  Imager installalled August 2012 
•  First light with DECam on telescope: Sept. 12, 2012  
•  Commissioning: August-October 2012 
•  DES Science Verification: November 2012-Feb. 2013 (raw data public) 
•  Survey operations begin: Sept. 2013 (105-night seasons Sept-Feb) 
•  Community observing with DECam since Dec. 2012  

•  3 Construction Projects: 
•  DECam (led by Fermilab; DOE support) 
•  Data Management System (NCSA-led; NSF support) 
•  CTIO Facilities Improvement Project (NSF/NOAO) 
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Dark Energy Camera 

Hexapod: 
optical 
alignment 

Optical  
Corrector  
Lenses 

CCD 
Readout 

Filters &  
Shutter 

Mechanical Interface of 
DECam Project to the Blanco 
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Dark Energy Camera 

Hexapod: 
optical 
alignment 

Optical  
Corrector  
Lenses 

CCD 
Readout 

Filters &  
Shutter 

Mechanical Interface of 
DECam Project to the Blanco 

DECam mounted on  
Telescope Simulator  
at Fermilab in early 2011 
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DECam CCDs 
•  62 2kx4k fully depleted CCDs: 520 Megapixels, 250 

micron thick, 15 micron (0.264”) pixel size 
•  12 2kx2k guide and focus chips 
•  Excellent red sensitivity 
•  Developed by LBNL, packaged and tested at FNAL 
•  Total 570 Megapixels 
 

DECam / Mosaic II QE comparison
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DECam CCDs 
•  62 2kx4k fully depleted CCDs: 520 Megapixels, 250 

micron thick, 15 micron (0.264”) pixel size 
•  12 2kx2k guide and focus chips 
•  Excellent red sensitivity 
 
 

DECam / Mosaic II QE comparison
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Asahi filters 
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Filters 

C4 

Filters & 
Shutter 

 
• 600 mm clear aperture, tight 
uniformity constraints, excellent 
throughput. 
• Fabrication completed by Asahi 
within months of the tsunami in 
Japan.  
 

i-filter 

r-filter 



570-Mpix 
DECam 
imager 
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Optics 

 

C4 

Filters & 
Shutter 

 
•  Field of view:  2.2o diameter  
•  Good image quality across FOV 
•  Optical elements aligned at UCL 

S. Kent (FNAL) 

Focal plane 



 

C1 Lens 
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New Cage Installed early May DECam Prime Focus Cage Installed 

early May 2012 
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 Synergy with South Pole Telescope 

DES survey area encompasses SPT Sunyaev-Zel’dovich Cluster Survey"

DES footprint: 5000 sq deg 
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 Synergy with South Pole Telescope 

DES survey area encompasses SPT Sunyaev-Zel’dovich Cluster Survey"
SZ flux correlates with cluster halo mass with ~10% scatter"

SPT survey  
Area:  
  2500  
  sq deg 

DES footprint: 5000 sq deg 
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Photometric Redshifts 
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• Measure relative flux in   
   multiple filters (colors) 
 
• Estimate individual galaxy   
   redshifts with accuracy  
   σ(z) < 0.1 (~0.02 for clusters) 
 
• Precision is sufficient  
   for Dark Energy probes,   
   provided error distributions  
   well measured. 
 
•  Challenge: spectroscopic  
   training & validation sets to   
   flux limit of imaging survey    
   (24th mag DES, 25.5 LSST) 

Elliptical galaxy spectrum 
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DES griz DES 
 
10σ Limiting Magnitudes 
  g  24.6 
  r  24.1 
  i  24.0 
  z  23.8 
  Y          21.6 
 
+2% photometric calibration 
error added in quadrature 
 
Spectroscopic training sets 
comparable to DES depth exist, 
but not complete 

Galaxy Photo-z Simulations 

+VHS*  DES griZY  
+VHS JHKs on 
ESO VISTA 4-m 
reduces photo-z  
errors for z>1 

*Vista Hemisphere Survey  
(ESO Public Survey) 

J   20.3 
H  19.4 
Ks 18.3   
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Observer 

Dark matter halos 
Background  

sources 

•  Spatially coherent shear pattern, ~1% distortion 
•  Radial distances depend on expansion history of Universe 
•  Foreground mass distribution depends on growth of structure 

1 Weak Lensing: Cosmic Shear 
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Becker, 
Kravtsov, 
etal 

Weak Lensing Mass and Shear 
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• Cosmic Shear Angular 
Power Spectrum in  
Photo-z Slices 

• Shapes of ~200 million 
well-resolved galaxies,  
〈z〉 = 0.7 

• Challenges: 
photo-z’s, intrinsic 
alignments, PSF anisotropy,  
shear calibration, nonlinear
+baryon P(k) effects 
 
• Extra info in bispectrum & 
galaxy-shear: robust  

  Weak Lensing Tomography 

Statistical errors 
shown 

Huterer etal 

Expect neff~10/arcmin2 for median 0.9” PSF 



Testing your theory with WL 
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Compute the 3D lensing power spectrum   
<(Φ+Ψ)(Φ+Ψ)> 
 
as a function of cosmological and any new 
parameters 
 
In many theories including LCDM this can be 
directly related to the matter power spectrum.  
But not necessarily, so don’t use blindly. 



Aside: The Great 3 Challenge 
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Do you think you can measure the shapes of galaxies? 

Prove it at the Great-3 challenge 
http://great3challenge.info/ 



31 

2 Supernova Hubble Diagram 

Kessler et al 2009 



32 

2 Supernova Hubble Diagram 

Kessler et al 2009 

DES Simulation: 
~4000 well-measured  
SN Ia light curves 

Bernstein, etal 
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Photometric SN Cosmology 
•  Hubble diagram 

of SDSS SNe Ia: 
spectroscopic 
plus those 
classified 
photometrically 
that have host-
galaxy redshifts  

•  DES will have 
host redshifts, 
plus SN spectra 
for a subsample 

 Campbell, etal 



Testing your theory with SN 
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Compute the redshift-luminosity distance relation 
dL(z) 
 
as a function of cosmological and any new 
parameters.  Error bars are theory dependent!  
Don’t just blindly use the published covariance 
matrices!  See March. 
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III. Large-scale Structure 
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LSS observables 

Galaxy P3D(k,z) 
 
Galaxy Cl(zbin) 
 

BAO position 
 
Shape 
 



37 

BOSS 
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Correlation function 



Baryon Acoustic Oscillations 
•  Each initial overdensity (in dark matter & 

gas) is an overpressure that launches a 
spherical sound wave. 

•  This wave travels outwards at  
57% of the speed of light. 

•  Pressure-providing photons decouple at 
recombination.  CMB travels to us from 
these spheres. 

•  Sound speed plummets.  Wave stalls at 
a radius of 150 Mpc. 

•  Overdensity in shell (gas) and in the 
original center (DM) both seed the 
formation of galaxies.  Preferred 
separation of 150 Mpc. 

Eisenstein 



A Statistical Signal	

n  The Universe is a super-position 

of these shells.	

n  The shell is weaker than 

displayed.	

n  Hence, you do not expect to see 

bullseyes in the galaxy 
distribution.	


n  Instead, we get a 1% bump in the 
correlation function.	
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Photometric BAO 

Fosalba & Gaztanaga 

Galaxy angular  
power spectrum 
in photo-z bins 
(relative to model 
without BAO) 
 
Photometric 
surveys provide 
angular measure 
 
Radial modes 
require 
spectroscopy 
(DESI) 
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Slide from  
E. Gaztanaga 
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BOSS 
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Issues with LSS P(k): 
NON-LINEARITY 

•  Major effect is galaxy “diffusion”  
–  Reconstruction approaches for BAO 
–  Modify galaxy positions by estimating 

 motion 
•  Modelling approaches 

–  Replicating simulations 
–  Halofit & descendants – fitting functions with 

cosmology 
–  2nd order and higher approaches 
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Issues with LSS P(k): 
BIAS 

•  ρg ≠ ρm ≠ ρhalo 

•  Linear on large scales  

•  HOD modelling 
–  P(N|M) for central red galaxies and satellite blue 
–  From correlation function within/between halos 
–  See Zheng et al 04 for good intro 

•  What would people find persuasive? 
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Testing your theory with LSS 

•  BAO: Compute dA(z) for the specified 
redshifts 

•  P(k)/Cl: Compute matter power 
spectrum, run numerical simulations to 
get bias and non-linear power 
emulator(!) 
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4. Clusters 

 
 

Volume           Growth 

Number of clusters above mass threshold 

Dark Energy  
equation of state 

€ 

dN(z)
dzdΩ

=
dV
dz dΩ

n z( )

 
• Clusters are proxies for massive 
halos and can be identified 
optically to redshifts z>1 

•  Galaxy colors provide 
photometric redshift estimates for 
each cluster 
 
•  Challenge: determine mass-
observable relation p(O|M,z) with 
sufficient precision 
 

Mohr	


€ 

d2N
dzdΩ

=
r2(z)
H(z)

f (O,z)dO p(O |M,z) dn(z)
dM∫∫ dM



PASCOS – Sept. 10, 2006 
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Cluster Mass Estimates 	


4 Techniques for Cluster Mass Estimation: 
•  Optical galaxy concentration 
•  Weak Lensing  
•  Sunyaev-Zel’dovich effect (SZE) 
•  X-ray  

•  Cross-compare these techniques to 
reduce systematic errors	


•  Additional cross-checks:  
       shape of mass function; cluster   
       correlations 



PASCOS – Sept. 10, 2006 
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SZE vs. Cluster Mass: Progress toward 
Realistic Simulations	


Motl, etal 
Integrated SZE flux decrement depends only on cluster 
mass: insensitive to details of gas dynamics/galaxy 
formation in the cluster core          robust scaling relations	


Nagai 
SZ

E 
flu

x 

• Adiabatic	

∆ Cooling+Star	

   Formation	


SZ
E 

O
bs

er
va

bl
e 

Kravtsov 

small (~10%)  
scatter 
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Testing your theory with Clusters 

•  You need P(k,z) and dV/dz 
•  Then get σ(M,z) from integral(s) of P 
•  Then procedure in Sahlen et al to 

compare with observations – not easy. 
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Combined Probes 
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Combined probes examples 
CMB+DES 

Galaxy map	

Shear map	

Tangential shear	


X	
 CMB Lensing	

Temperature	

SZ	
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Combined probes examples 
(Galaxy)-(Galaxy Lensing) 

•  Any correlation between galaxy positions 
and shears 

•  “Do galaxies point at other galaxies?” 
•  DES Focus Seljak & Yu 

– Select F/G galaxies → Pg(k) 
– Stack lensing around them galaxies → Pm(k) 

•  Find out bias for these galaxies! 



F/G ���
Galaxies	
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Combined Probes 
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Sullivan etal 2011 
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COMBINED PROBES 

For late-time structure probes adding  
log-likelihoods is no longer good enough 

 
Golden age of parameter estimation seems 

to be over 
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COMBINED PROBES 

•  Model consistency 
– Bias model, fiducial cosmo, … ? 
– Was data calibrated to LCDM? 

•  Theory covariance 
– Not as easy as CMB! 
– Emulation required 
– See Eifler et al 

•  Noise! 
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COMBINED PROBES 

•  Some of these problems are 
hard because they must be 

•  But some should be easy 
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COMBINED PROBES 

•  Advocating for plug-and-play cosmology 

•  Developing CosmoSIS w/ Fermilab  
– cross-language framework for parameter 

estimation 
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•  Multiple methods can go in 
each box 

 
•  Should be easy to switch 

between them 

•  Make inputs/outputs clear 

•  With modular structure 
outputs are explicit 

•  Trivial to experiment with 
samplers & approximations 

CosmoSIS 
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CosmoSIS examples 

•  Bias from mis-
estimated intrinsic 
alignments 

•  Effect of marginalizing 
shape errors 



DECam 1x1deg	

grizY co-add 
image of SPT 	

cluster	

z=0.32	

	

	

~50,000 galaxies 
in this image	



