
OR I G I NA L ART I C L E

Efficient sampling for geostatistical surveys

Alexandre M.J.-C. Wadoux1 | Benjamin P. Marchant2 | Richard M. Lark3

1Soil Geography and Landscape group,
Wageningen University & Research, Wageningen,
The Netherlands
2Environmental Science Centre, British Geological
Survey, Keyworth, UK
3School of Biosciences, University of Nottingham,
Sutton Bonington, UK

Correspondence
Alexandre M.J-C. Wadoux, Soil Geography and
Landscape group, Wageningen University &
Research, Droevendaalsesteeg 4, 6708 PB
Wageningen, Netherlands.
Email: alexandre.wadoux@wur.nl

Funding information
European Union’s Seventh Framework Programme
for research, technological development and
demonstration, Grant/Award Number: 607000

A geostatistical survey for soil requires rational choices regarding the sampling
strategy. If the variogram of the property of interest is known then it is possible to
optimize the sampling scheme such that an objective function related to the survey
error is minimized. However, the variogram is rarely known prior to sampling.
Instead it must be approximated by using either a variogram estimated from a
reconnaissance survey or a variogram estimated for the same soil property in simi-
lar conditions. For this reason, spatial coverage schemes are often preferred,
because they rely on the simple dispersion of sampling units as uniformly as possi-
ble, and are similar to those produced by minimizing the kriging variance. If extra
sampling locations are added close to those in a spatial coverage scheme then the
scheme might be broadly similar to one produced by minimizing the total error
(i.e. kriging variance plus the prediction error due to uncertainty in the covariance
parameters). We consider the relative merits of these different sampling approaches
by comparing their mean total error for different specified random functions. Our
results showed the considerable benefit of adding close-pairs to a spatial coverage
scheme, and that optimizing with respect to the total error generally gave a small
further advantage. When we consider the example of sampling for geostatistical
survey of clay content of the soil, an optimized scheme based on the average of
previously reported clay variograms was fairly robust compared to the spatial cov-
erage plus close-pairs scheme. We conclude that the direct optimization of spatial
surveys was only rarely worthwhile. For most cases, it is best to apply a spatial
coverage scheme with a proportion of additional sampling locations to provide
some closely spaced pairs. Furthermore, our results indicated that the number of
observations required for an effective geostatistical survey depend on the vario-
gram parameters.
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• We compared spatial coverage and spatial coverage plus a subset of 10%
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• Using a scheme in which 10% of the sampling units are taken at short

distances is a robust strategy.
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1 | INTRODUCTION

When mapping a continuous soil variable, geostatistical pre-
dictions at unobserved locations are made from a limited set
of sampling units, called a sample. The spatial locations of
those units, i.e. the sampling scheme, has a key role in
determining the cost of the survey and the quality of the pre-
dictions. Often, limited resources are available and one must
adopt efficient strategies for the soil sample collection.

Several solutions have been proposed to select additional
sampling sites optimally using ordinary kriging, a basic tech-
nique in geostatistics. These often require prior knowledge
about the correlation function (i.e. variogram) of the target
property. For example, Van Groenigen, Siderius, and Stein
(1999) proposed spatial simulated annealing (SSA) to opti-
mize the sampling scheme so as to minimize the spatially
averaged kriging variance as the objective function. This
method leads to a space-filling distribution of observations,
which are placed more or less evenly over the area of inter-
est. A similar scheme can be obtained by the spatial cover-
age method described in Royle and Nychka (1998). They
proposed a general geometric, space-filling criterion and
published a point-swapping algorithm in S-plus to minimize
this criterion. Brus, Spätjens, and De Gruijter (1999) pro-
posed the mean of the squared shortest distance (MSSD) as
a geometric minimization criterion, so that it can be mini-
mized by the fast k-means algorithm. Later this was imple-
mented in the R language by Walvoort, Brus, and De
Gruijter (2010).

One advantage of coverage schemes is that they do not
depend on the variogram of the soil property to be sampled.
Coverage schemes are created by minimizing a criterion that
is simply a function of the distance between sampling loca-
tions. Brus, De Gruijter, and Van Groenigen (2007) showed
that using a spatial coverage scheme led to only marginally
larger mean ordinary kriging variances (MKV) than schemes
where this quantity was minimized directly. The authors
endorsed early geostatistical practice in soil science where
sampling units were located on a regular grid (Yfantis, Flat-
man, & Behar, 1987).

However, regularly-spaced sampling schemes are inade-
quate to model the short-range variation of the soil property,
which is critical for geostatistical analyses (Starks, 1986). A
practical solution, as suggested for instance by De Gruijter,
Brus, Bierkens, & Knotters (2006, pp. 166-168), is to sup-
plement the spatial coverage sample by a few additional
units, located at short distances from the existing units.
Recently, Lark and Marchant (2018) demonstrated that
including such a short-distance subset markedly decreased
the uncertainty of the kriging prediction for little additional
effort in field data collection. Over a contrasting set of ran-
dom variables, the authors proposed a simple rule that about
10% of the total sample size should be devoted to short-
distance units.

Using a more formal expression of the total error in a
geostatistical survey, Marchant and Lark (2007) optimized a
sampling scheme by minimization of the sum of error contri-
butions from the kriging variance and the effects of uncer-
tainty in the variogram estimate. We refer to this objective
function as the total error. The authors showed that the con-
figuration of the optimized scheme varied according to the
variogram, which was unknown prior to sampling, and used
a Bayesian framework to account for a set of plausible
values of variogram parameters. A similar approach was
applied by Zhu and Stein (2006) for redesigning an air moni-
toring network. The authors noted that estimates of the var-
iogram parameters were uncertain. They approximated the
error covariance matrix of the parameters by the inverse of
the Fisher information matrix, and used a Taylor series
approximation of its effect on the prediction variance to
account for it in their sampling objective function. For both
studies, the resulting optimized schemes closely resembled
the spatial coverage scheme with a small number of close-
pairs of locations included, which are useful for estimating
the spatial correlation over short distances. They showed that
the number of close-pair locations depended largely on the
variogram parameter values, and especially the variogram
distance parameter.

However, the optimization procedure using a formal cri-
terion for minimization of the total error is complex and time
consuming. The formula for the total prediction error
depends on the variogram and therefore it cannot be calcu-
lated exactly prior to sampling. Instead it must be approxi-
mated by using either a variogram estimated from a
reconnaissance survey or a variogram estimated for the same
soil property in similar conditions. Schemes based on
approximate variograms are likely to be suboptimal. In such
cases, spatial coverage sampling schemes (possibly with
additional close-pairs) offer a viable and relatively simple
alternative to plan a soil survey with little or no prior
information.

Surveyors must also consider the number of sampling
units that are required to produce effective geostatistical pre-
dictions. The sample must be sufficient to estimate an accu-
rate variogram function. Kerry and Oliver (2007) noted that
it is generally accepted that 100 units are required to pro-
duce a reliable method of moments estimate of the vario-
gram. This advice stems from a study of simulated random
functions conducted by Webster and Oliver (1992). Kerry
and Oliver (2007) subsampled four field-scale surveys of
clay content and determined that a reliable residual maxi-
mum likelihood (REML) estimate of the variogram could be
attained with fewer than 50 sampling units.

In summary, the sampling scheme affects the uncertainty
in the variogram parameters, which can have an impact on
the prediction error variance. Supplementing a spatial cover-
age sample by a simple rule of thumb reduces the prediction
error variance, but the overall distribution of sample points
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in a scheme can be optimized, although this is laborious and
requires some prior information. Whether a practical sam-
pling strategy is markedly better when based on optimization
rather than the simple rule remains an open question, and
past work has not compared the approaches directly. That is
what we address here.

In this research we examined empirically the difference
between spatial coverage sampling schemes (sc), spatial cov-
erage schemes supplemented with close-pairs of points (sc+)
and schemes optimized to reduce the total error. We com-
pared these schemes with respect to the sample size required
to obtain comparable results. Our objective was to show
whether formal optimization is generally worthwhile, given
the computational demands and the challenges of specifying
prior values of variance parameters, and whether spatial cov-
erage sampling with supplementary points is a robust practi-
cal strategy.

In our first scenario we minimized this error for a known
hypothetical variogram and a given sample size. Then we
determined the size of a spatial coverage scheme that would
be required to achieve the same total prediction error. Simi-
larly, we considered the size of a spatial coverage scheme
plus 10% close-pairs that would also achieve the same total
prediction error.

In addition to the spatial arrangement of sampling units
we also considered the minimum number of units that were
required to produce useful geostatistical predictions. For
sample sizes larger than this minimum sample size the ordi-
nary kriging predictor outperformed the simple random sam-
ple mean as a predictor of the values at points. For sample

sizes smaller than this minimum there was no benefit from a
geostatistical approach for mapping. We assumed that a
geostatistical survey should, as a basic minimum require-
ment, ensure that local spatial predictions have an average
prediction error variance that is smaller than the prediction
error variance of the regional mean, estimated by design-
based sampling. Webster and Lark (2013) discussed how the
design-based mean can be treated statistically as a point pre-
diction. We assumed that this design-based survey was the
same size as the geostatistical survey, that the sampling units
were selected according to a simple random scheme and that
the corresponding design-based estimate of the mean was
used as the prediction at each location.

In our second scenario we considered a geostatistical sur-
vey of soil clay content and the effect of using the average
variogram of a set presented by Paterson, McBratney, Min-
asny, and Pringle (2018) as a basis for a sampling scheme.
We minimized the total prediction error variance given a
sample size based on the average variogram and then
repeated the tests conducted in the first scenario to find the
size of the sc and sc+ schemes that would be required to
achieve the same total error as the optimized scheme for
each of the clay variograms.

2 | MATERIALS AND METHODS

2.1 | Formulation of the objective function

Using the ordinary kriging formulation, we consider the situ-
ation in which the soil property (which is assumed to be a
realization of a random function Z) has been measured at
n locations si i=1,…,n;si 2Að Þ. The measurements z(si) are
treated as realizations of Z(si) and prediction is done for Z at
unobserved locations s0, with a known covariance parameter
vector θ. Stacking the z(si) in a vector z and changing to
matrix notation yields the ordinary kriging prediction equa-
tion (Webster & Oliver, 2007):

~Z s0jθð Þ = λ>z, ð1Þ

where λ> is the vector of kriging weights, obtained from the
kriging equation:

λ = A− 1d, ð2Þ

where ψ is the Lagrange multiplier introduced to allow mini-
mization of the kriging variance subject to the constraint that
the n weights λ1, λ2,# # #,λn sum to one. The covariance
between the ith and jth locations is denoted by C(si − sj| θ).
The term C(si − si) is the sill variance (a priori variance).
Note that while A needs to be derived (and inverted) once if
all observations are used for prediction at every target site,
d must be computed for every prediction location s0.

From Equations (1) and (3), the expected squared error
of the prediction is given by:

σ2OK s0ð Þ = var Z s0ð Þ− ~Z s0jθð Þ
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In addition to the squared error of the prediction, March-
ant and Lark (2007) and Zhu and Stein (2006) considered
the effect of uncertainty in the estimated spatial model (var-
iogram) parameters by a Taylor series approximation:

E τ2 s0ð Þ
# $

=
Xq

i = 1

Xq

j = 1

cov θi, θj
! " ∂λ>

∂θi
C

∂λ
∂θj

, ð5Þ

where cov(θi, θj) is the covariance between the ith
and jth parameters. This requires the variogram parameters
θi(i, j = 1,…, q) to be known so that Equation (5) can be
approximated prior to sampling. The n-vector of partial
derivatives of the kriging weights with respect to the ith vari-

ance parameter is denoted by ∂λ>
∂θi

and can be obtained by
(Marchant & Lark, 2007):

∂λ
∂θi

= A− 1 ∂d
∂θi

−
∂A
∂θi

A− 1d
% &

: ð6Þ

The covariance between the variogram parameters can
be approximated using the inverse of the Fisher information
matrix F (Kitanidis, 1987):

cov θi, θj
! "

≈F− 1 θi, θj
! "

=
1
2
Tr C− 1 ∂C

∂θi
C− 1 ∂C

∂θj

' (% &− 1

,

ð7Þ

where Tr[#] denotes the trace of the matrix. The total error at
locations s0, σ2P s0ð Þ is given by the sum of the squared pre-
diction error σ2OK s0ð Þ and the spatial model parameter uncer-
tainty E[τ2(s0)]:

σ2P s0ð Þ = σ2OK s0ð Þ + E τ2 s0ð Þ
# $

, ð8Þ

where subscript P stands for parameter. This can be aggre-
gated to obtain a spatial average:

σ2P =
1
A

ð

s2A
σ2OK sð Þ+E τ2 sð Þ

# $! "
ds: ð9Þ

In practice, the integral !σ2P is numerically approximated by a
discrete summation over a spatial grid.

2.2 | Optimization of the sampling schemes

We start with an initial random set of sampling locations of
size N, lying within the boundaries of study area A. We
assume that Z(si) is a stationary isotropic normally distrib-
uted random field, characterized by a constant mean and
fitted correlation function ρ(h) (h is the spatial lag or separa-
tion distance). The aim is to find the optimal sampling
scheme, which minimizes the objective function
(Equation (9)), given the parameters of ρ(h). Many algo-
rithms have been developed for solving optimization prob-
lems. We use simulated annealing (Kirkpatrick, Gelatt, and
Vecchi (1983)), extended for spatial optimization by Van
Groenigen et al. (1999) for generating sequences of new
possible schemes. A new sampling scheme is created by

randomly shifting a randomly selected unit within the study
area. This generates a new candidate scheme for which the
objective function can be evaluated with Equation (9), and
compared with that of the previous scheme. The new candi-
date scheme is accepted if it has a smaller value of the objec-
tive function than the previous one. If the new scheme has a
larger value of the objective function then it is accepted or
rejected at random; the probability of acceptance is given by
(Wadoux, Brus, Rico-Ramirez, & Heuvelink, 2017):

P acceptð Þ = exp
!σ2P oldð Þ− !σ2P newð Þ

α

% &
, ð10Þ

where the control parameter α is a temperature parameter.
The temperature is kept constant during a set of perturba-
tions, called a chain, after which it is decreased to a value of
β × α for β < 1. In this way, the risk of the optimizer
becoming trapped in a local but not a global minimum is
reduced. We used the implementation provided by the R
package spsann (Samuel-Rosa, 2017) through the optimU-
SER function. The initial temperature α was set to
3 with a cooling parameter β of 0.9. These were chosen so
that P(accept) is close to 1 in the first chain and generally
zero at the final chain. The maximum number of chains is
set to 200, so that the total number of iterations is N × 200.
The process stops if the determined number of iterations
(N × 200) is reached or if the criterion remains constant for
ten chains. The candidate locations are the centre of cells of
a square grid.

2.3 | Scenario 1

The first scenario considers the case where the variogram is
known. We characterize the spatial correlation ρ by the sec-
ond parametrization of the isotropic Matérn model (Matérn,
1986) given by Stein (2006, p. 31):

ρ hð Þ= 1
2ν−1Γ νð Þ

2ν
1
2h
a

 !ν

Kν
2ν

1
2h
a

 !

, ð11Þ

where h is the separation distance, Kν is the modified Bessel
function of the second kind of order ν (see Abramowitz &
Stegun, 1972, pp. 374-379) and Γ is the gamma function.
The correlation function ρ(h) has parameters a and ν. Param-
eter a is the distance parameter, which indicates how fast the
correlation decays with increasing h and ν is the smoothness
parameter. Stein (2006) noted that ν is the critical parameter
in the Matérn correlation model. The larger is ν, the
smoother is Z. We chose a Matérn model for its flexibility in
modelling the spatial covariance with a small number of
parameters (Minasny & McBratney, 2005).

For the first scenario, we generated a square area of
100 m × 100 m. Spatial coverage schemes of size N = 60,
61, … , 200 are derived by discretization of the area into
N geographical strata using the stratify method from the R
package spcosa (Walvoort et al., 2010). The spatial
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coverage units are taken in the centroid of the strata, which
is equivalent to minimizing the mean squared shortest dis-
tance between a location in the region and the nearest sam-
pling location. In addition, we also generated samples of size
N = 60, 61, … , 200 in which the sampling locations were
distributed according to a spatial coverage scheme, with a
subset of 10% of units positioned at an arbitrary distance that
was short relative to the spacing between neighbouring
points in the basic spatial coverage survey. This arbitrary
short distance was set to 2 m because of a mean spacing
between neighbouring locations in the sc scheme of 6.6 m
for N = 60 and 12.5 m for N = 200. These close-pair units
were selected by simple random sampling without replace-
ment in a randomly chosen direction from 0–360 degrees.
We repeated the selection of close-pairs several times to
determine the sampling variation in total variance. Since the
latter was small, we did not pursue this any further because
this confirmed the very tight confidence intervals in the Lark
and Marchant (2018) study. We considered different sets of
variogram parameter values, all of which had a total sill vari-
ance of one. Four values of ν were tested: ν = 0.5 (equiva-
lent to the exponential variogram), ν = 0.2 (rougher than the
exponential), ν = 1.1 and ν = 2 (smoother than the

exponential). These four ν values were combined with each
of three distance parameter: a = 10, 20 and 30, and three
ratios of the nugget (c0) to total sill variance (c0 + c1 = 1)
for strong (c0 = 0), moderate (c0 = 1/3) and weak
(c0 = 2/3) spatial dependence. Note that we use the nugget
to sill ratio to characterize the spatial dependence of a model
with known parameters, but this should not be done when
comparing empirical variograms because the magnitude of
the nugget variance is likely to depend in part on the sam-
pling scheme. Each of the 4 × 3 × 3 = 36 scenarios were
optimized for a fixed sample size N = 90 in the way
described in the previous section. To speed up computations
the criterion was evaluated at 34 × 34 locations on a regular
square grid of spacing 3 m.

In this scenario we compared for each variogram the size
of the sc and sc+ samples required to attain the same value
of the objective function as the optimized scheme of
90 units.

We also compared the average total prediction variance
that resulted from the geostatistical survey of each random
function with the prediction variance that would result from
using an estimate of the simple random sample of the field
mean as a predictor of the value at points. If the design-

FIGURE 1 Optimized 90-unit schemes for different variogram parameters and ν = 0.2
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based survey consists of N locations selected by simple ran-
dom sampling this prediction variance is equal to (Brus, De
Gruijter, & Breeuwsma (1992, Eq.7)):

!σ2DB = σ2 1 +
1
N

% &
, ð12Þ

where σ2 is the dispersion variance (the variance of the
variable within the study area) and the σ2/N term reflects
the uncertainty in estimating the field-scale mean of the
property of interest with simple random sampling (Brus &
De Gruijter, 1993). Instead of the spatial variance (disper-
sion variance) for a single realization, we used the model
expectation of the dispersion variance in Equation (12), so
that the model expectation of the spatial mean of the
design-based estimation error variance at points was also
obtained. For each set of variogram parameters, we deter-
mined the smallest sample size of a geostatistical survey
which led to the average total prediction variance being
less than this design-based prediction variance. We deter-
mined the dispersion variance for each random function
from the average variance of 1000 lower-upper (LU)-
simulations of the function at 2000 random locations
across the study area.

2.4 | Scenario 2

The second scenario considered a survey of soil clay content
where no field-specific information about the variogram was
available. In such a circumstance, McBratney and Pringle
(1999) suggested that the average of previously published
soil clay variograms should provide useful information for
assessing soil sampling schemes.

Here we used data from a published study on field-
scale variability of soil variograms. We used a compilation
of soil clay variograms, provided by Paterson et al. (2018).
They were gathered from the existing literature, based on
untransformed data and physical measurements. We con-
verted the exponential, spherical and linear clay variograms
to a Matérn model (Equation 11) by re-estimating their
parameters using a least squares approach. In this way, we
compared surveys using variograms with the same number
of estimated parameters. From the set of Matérn clay var-
iograms, we derived an average experimental variogram as
in McBratney and Pringle (1999). Each variogram for soil
clay was evaluated at a set of closely-spaced lag intervals.
Each value of semivariance was transformed to its fourth
root. The average value of the fourth root of the variogram

FIGURE 2 Optimized 90-unit schemes for different variogram parameters and ν = 0.5
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was computed at each lag interval over all the clay vario-
grams and the resulting values were back-transformed to
their fourth power. The fourth root is used to give a nor-
mally distributed variable even when the underlying vari-
able includes extreme values (Cressie & Hawkins, 1980).
Finally, a Matérn correlation function (Equation 11) was
fitted by non-linear least squares to the average experimen-
tal variogram. The estimated Matérn correlation function
was similar to an exponential variogram (ν = 0.5) with a
nugget variance c0 = 2.6, a partial sill c1 = 8.0 and a dis-
tance parameter a = 44.1 m (effective range is about
85 m). We then optimized the distribution of 90 sample
units within a 500 m × 500 m region, using the mean total
prediction error variance, Equation (9), as the objective
function specifying the parameters of the average vario-
gram. The objective function was evaluated at a centred
square grid of 25 × 25 points with a spacing of 20 m. We
then found, for the random function with parameters esti-
mated for each clay variogram, the value of the objective
function achieved by optimizing sample schemes of size
N = 60, 61, … , 200, and the corresponding number of
observations in an sc and an sc+ scheme required to match

the value of the objective function achievable by optimiza-
tion with the average clay variogram.

3 | RESULTS

3.1 | Scenario 1

Figures 1–4 show 90-unit sampling schemes optimized to
minimize the expected total error with different values of the
nugget to sill ratio, different distance parameters a and
smoothness parameters of 0.2, 0.5, 1.1 and 2, respectively.
In all schemes, the sampling locations are generally evenly
dispersed over the area with some close-pair units. When the
nugget to sill ratio increases (larger c0), the number of close-
pairs tends to increase substantially. The pattern for larger
values of the distance parameter a is reversed. The larger is
a, the smaller are the transects of close-pairs. When
c0 = 2/3, c1 = 1/3 and a = 10 the sample size seems insuf-
ficient to cover the whole area. This might indicate that for
this variogram and study area, 90 units were insufficient to
both estimate the variogram and predict the soil property

FIGURE 3 Optimized 90-unit schemes for different variogram parameters and ν = 1.1
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across the region. All values of ν tested had comparable pat-
terns for the optimized schemes.

Figures 5–8 show the values of the objective function for
each variogram type for the sc or sc+ schemes compared to
the values of the objective function from the optimized
90-unit sample scheme. The values of objective function for
the sc schemes show a rougher pattern than those of the
objective function for the sc+ schemes. The sc schemes per-
formed poorly in most cases. The poor performance was less
pronounced for large values of a when ν was 1.1 or 2. In
such cases, sc schemes were only slightly worse than the
optimized schemes. The sc+ schemes always performed
slightly worse than the optimized schemes. With increasing
nugget to sill ratio, the sc+ schemes needed an increasing
number of additional units to reach the same value for the
objective function as the optimized sample scheme. This
was valid for all values of ν tested.

For each set of variogram parameters, Table 1 reports the
number of additional samples necessary when using the sc+
scheme to reach the objective function of the optimized
90-unit scheme. Overall, the sc+ scheme needs at least 8 and
a maximum of 59 additional units to achieve the objective

function of the optimized 90-unit scheme. As mentioned pre-
viously, there is a clear trend associated with the nugget to
sill ratio. The larger is the ratio, the larger is the number of
additional units in the sc+ scheme. This effect was slightly
diminished for increasing values of a.

Figure 9 shows the objective function for the sc and sc+
schemes for the case where the smoothness parameter
ν = 0.5 was either fixed (known) or estimated (with uncer-
tainty) with parameters c0 = 0, c1 = 1 and a = 20. When
the smoothness was estimated there was a marked difference
between the total error variance for the sc and sc+ schemes
when there were fewer than about 200 sample points in total.
With larger sample sizes (above 220) the difference became
negligible. When the smoothness is known (equivalent to
assuming an exponential variogram), there were still minor
differences between the sc and sc+ scheme objective func-
tions but they rapidly converged to the same values (from
about 120 units).

Table 2 shows the minimum sample size required for the
expected total variance to be smaller than the estimation var-
iance of the target property that would result from a design-
based survey of the same size. The sc+ schemes needed on

FIGURE 4 Optimized 90-unit schemes for different variogram parameters and ν = 2
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FIGURE 5 Value of objective function for sc+ (black dots), sc (grey dots) and optimized (red triangle) schemes. The spacing between the two vertical lines
indicates the number of extra units required for sc+ to achieve an optimized objective function value for ν = 0.2

FIGURE 6 Value of objective function for sc+ (black dots), sc (grey dots) and optimized (red triangle) schemes. The spacing between the two vertical lines
indicates the number of extra units required for sc+ to achieve an optimized objective function value for ν = 0.5
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FIGURE 7 Value of objective function for sc+ (black dots), sc (grey dots) and optimized (red triangle) schemes. The spacing between the two vertical lines
indicates the number of extra units required for sc+ to achieve an optimized objective function value for ν = 1.1

FIGURE 8 Value of objective function for sc+ (black dots), sc (grey dots) and optimized (red triangle) schemes. The spacing between the two vertical lines
indicates the number of extra units required for sc+ to achieve an optimized objective function value for ν = 2
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average fewer units than the sc schemes. There is a clear
association between an increase in the required sample size,
increase in the nugget to sill ratio and decrease in the
smoothness and distance parameters. When compared to the
effective range of the target property (i.e. the distance at
which the spatially correlated portion of the variogram
attains 95% of the sill), the minimum number of units
increased with decreasing values of the effective range. The
dispersion variance (denoted σ2 in Table 2) increased with
larger values of the nugget to sill ratio and larger values of
the distance parameter.

3.2 | Scenario 2

Figure 10 shows an example of sc and sc+, as well as the
optimized 90-unit scheme obtained by minimization of the
expected total error using the average soil clay variogram.
The optimized scheme had sampling units dispersed evenly
over the area with a number of close-pair units. The number
of close-pair units seems slightly larger than that of the sc+
scheme. While the sc+ and optimized scheme share some
similarity in the pattern of sampling locations, the sc scheme
is very different from the optimized scheme.

This is confirmed by Figure 11 which shows values of
the objective function for sc+, sc and optimized schemes
using the average clay variogram. The sc scheme performed
poorly until about 200 units. In contrast, the sc+ had objec-
tive function values closer to that of the optimized scheme.
Twenty-two additional locations were required for the sc+
scheme to reach the objective function of the optimized
scheme, which was achieved with a total of 11 close-pairs in
the sc+ scheme (out of 112).

Figure 12 shows the standardized soil clay variograms
and the average variogram. First, the average variogram was
used to compute the optimized scheme. Second, we found
the sample size for the sc+ scheme for each separate clay
variogram to achieve the total variance of the optimized
scheme. Overall, the optimized scheme was fairly robust
with contrasting standardized soil clay variograms because it
gave about the same total variance for most of the individual
variograms as for the average variogram. Figure 12 shows

that a large number of additional units were needed (>100)
when large sill values of the variogram were reached in a
short distance. In addition, fewer units were needed (< −5)
when the total sill was reached at large distances. For similar
values of the distance parameter, more units were needed for
larger values of the nugget variance, e.g. weaker spatial
dependence at short distances (see for example the two clay
variograms with similar distance parameters but different
nugget values).

4 | DISCUSSION

For all optimized schemes, there was a number of close-pair
units. This shows that sampling units at short distances had a
critical effect on decreasing the total expected error (which
encompasses uncertainty in the variogram parameters and
kriging variance). The number of close-pair units increased
according to the nugget to sill ratio and to a lesser extent rel-
ative to the distance parameter. This was an expected result,
because a random variable with a small spatial correlation
distance and large nugget to sill ratio had to be sampled at a
large number of short-distance locations to ensure minimiza-
tion of uncertainty in both variogram parameters and predic-
tion error variances (Marchant & Lark, 2007). This explains
why sc schemes performed poorly in all cases. The sc
schemes lacked close-pair units to estimate the spatial corre-
lation over short distances which have a large effect on total
expected error. Sampling schemes containing a subset of
10% as close-pairs (suggested by Lark and Marchant (2018))
provide a robust strategy to ensure a reasonably small total
expected error. In the case of a small distance parameter or
large nugget to sill ratio, 10% of close-pairs does not provide
sufficient information and it is better to either increase the
ratio of units taken at short distances or to use an optimized
scheme.

The test presented in Figure 9 suggests that the impor-
tance of close pairs is reduced if the smoothness parameter is
assumed to be known. In practice, however, this was not the
case. Assuming a particular smoothness value (e.g. 0.5 for
the exponential variogram) for a regularly sampled soil prop-
erty led to a substantial proportion of the uncertainty being
disregarded. This choice was somewhat subjective because it
was related to the decision of the modeller and the range of
possibilities we allowed in our model. We point out that
close pairs are not only important when the nugget to sill
ratio is large (Table 1) and the range of spatial correlation
(3 × a if ν = 0.5) is small relative to the size of the study
area (Table 2), but also when one needs to estimate the addi-
tional Matérn model parameter ν (Figure 9).

Results from our second scenario showed that the opti-
mized scheme based on the average variogram was fairly
robust for contrasting soil clay variograms. For several var-
iograms, an sc+ scheme outperformed the optimized scheme.
This was an unexpected result at first sight. The reason is

TABLE 1 Additional number of sampling units in the spatial coverage
supplemented with close-pairs of points schemes (sc+) required to achieve
the same objective function as that of the optimized 90-unit survey

c0 c1 a ν = 0.2 ν = 0.5 ν = 1.1 ν = 2

0 1 10 8 8 9 8

1/3 2/3 10 20 10 7 5

2/3 1/3 10 59 34 24 19

0 1 20 2 6 8 11

1/3 2/3 20 8 3 4 8

2/3 1/3 20 25 16 18 23

0 1 30 2 6 11 16

1/3 2/3 30 10 5 11 15

2/3 1/3 30 25 25 11 20
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that the sampling scheme was optimized for the average var-
iogram, and can therefore be suboptimal for an individual
variogram. The results of the second scenario suggested that
databases of variogram parameters (e.g. the one of Paterson
et al. (2018)) can be used to derive an average variogram,
and that the latter can be used to guide sampling
(McBratney & Pringle, 1999) or to predict a soil property
from fewer units than usually required for estimating vario-
gram parameters (Kerry & Oliver, 2004). An average vario-
gram could also provide prior information for expert or
Bayesian elicitation of the variogram (Cui, Stein, &
Myers, 1995).

In our two scenarios, close-pair units were taken at a
fixed distance from one of the spatial coverage units. There
might be room for further research on how these close-pair
units should be selected. For example, in several optimized
schemes, transects of several units can be seen. Further tests
on our scenario 1 (not shown) suggested that selecting close-
pairs in a cluster might reduce substantially the number of
additional units needed with an increasing nugget to sill
ratio. Such a scheme would, however, rely heavily on the

assumption of stationarity (i.e. that the short-scale variation
in the cluster indicates the short-scale variation across the
study area). Our results here were for ordinary kriging in
which the local mean of the variable was assumed to be con-
stant. Sampling to support universal kriging (to model a
non-stationary mean) or to support kriging with external drift
(to model dependence of the mean on covariates) introduces
other considerations, specifically estimation of the fixed
effects parameters in the model. This requires further work.
We speculate that the supplemented spatial coverage
schemes that we have shown to be efficient for ordinary kri-
ging would also be efficient for universal kriging, in that the
spatial coverage points would ensure reliable estimation of
trend parameters, and the close-pairs would similarly ensure
that the variance parameters are estimated precisely.

For the optimized schemes in scenario 1, derived from a
variogram with a small distance parameter and large nugget
to sill ratio, the sample size seems too small compared to the
size of the study area. Table 2 shows that this is indeed the
case for several variogram types, and especially if the units
are based on a spatial coverage scheme. This can lead to

(a) (b)

FIGURE 9 Value of objective function for sc+ scheme (black dots) and sc scheme (grey dots) for c0 = 0, c1 = 1, a = 20 and ν = 0.5. In (a) the smoothness
parameter is to be estimated while in (b) it is assumed to be known

TABLE 2 Minimum number of units required for the expected total prediction error variance to be smaller than the estimation variance of the target property
that would result from a design-based survey of the same size. The dispersion variance is derived by averaging the variance of 1000 simulations using the
lower-upper (LU) decomposition (Davis, 1987). The simulations are realized using 2000 units, selected by simple random sampling. In addition, the effective
ranges of the different variogram types, denoted r, are reported

c0 c1 a

ν = 0.2 ν = 0.5 ν = 1.1 ν = 2

σ2 r sc sc+ σ2 r sc sc+ σ2 r sc sc+ σ2 r sc sc+
0 1 10 0.97 22 >200 75 0.98 21 164 61 0.97 20 104 54 0.98 19 95 49

1/3 2/3 10 0.98 22 >200 79 0.99 21 >200 52 0.98 20 128 67 0.98 19 109 72

2/3 1/3 10 0.99 22 >200 >200 0.99 21 >200 83 0.99 20 >200 79 0.99 19 158 72

0 1 20 0.93 45 95 28 0.93 42 84 20 0.93 40 54 20 0.92 38 42 24

1/3 2/3 20 0.95 45 >200 77 0.95 42 95 24 0.94 40 62 24 0.94 38 48 20

2/3 1/3 20 0.98 45 195 145 0.98 42 124 66 0.97 40 163 65 0.97 38 163 >200

0 1 30 0.88 67 104 20 0.87 64 54 22 0.83 60 31 11 0.85 57 24 13

1/3 2/3 30 0.91 67 77 23 0.90 64 62 16 0.91 60 48 16 0.87 57 45 15

2/3 1/3 30 0.96 67 >200 136 0.95 64 92 147 0.94 60 72 27 0.93 57 73 46
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situations where the expected total variance is larger than the
total sill variance. In such circumstances adding close-paired
observations might resolve the problem of parameter estima-
tion, but the overall sampling scheme remains inadequate for
the task of spatial mapping because the spacing between
neighbouring observations in the spatial coverage scheme is
not sufficiently small relative to the range of spatial depen-
dence. If one kriges from a grid with spacing larger than the
range, then the prediction error variance is equal to the sill
variance plus the Lagrange parameter, which is equivalent to
the second term for the prediction variance of the spatial
mean as a point predictor in Equation (12). This points us to
the fact that, in these circumstances, where we cannot afford
a grid with spacing that is small relative to the range, spatial
prediction by kriging is not an option. In these circumstances
point prediction might, in the worst case, be the regional
mean of the variable, estimated by design-based sampling
and with a prediction error variance computed from Equa-
tion (12). It might be possible to do better by estimating

mean values within subregions of the area of interest such as
soil map units (Webster & Beckett, 1968), again by design-
based sampling, or by undertaking design-based sampling to
estimate parameters of a predictive relation between the soil
property of interest and covariates such as data from remote
sensors. We hope that this clarifies why we refer to
design-based estimation in the paper. It is not the case that
design-based sampling does not provide a basis for spatial
prediction. Design-based simply refers to the sampling
scheme (probability sampling) and the basis for estimation
from the data. The resulting design-based mean (for a region
or subregion) may then be treated as a spatial prediction, as
discussed by Webster and Lark (2013).

Table 2 also shows that for large value of smoothness
(ν = 1.1 or 2) and small nugget to sill ratios, the minimum
number of units needed to make geostatistical analysis more
accurate than a design-based estimate, on average, is surpris-
ingly small. This can be explained by the relatively large
values of the effective range (r = 60 and r = 57) for the

Spatial coverage(a) Spatial coverage +10 %(b) Optimized(c)
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FIGURE 10 Example of 90-unit sc scheme (a), sc+ scheme (b) and optimized scheme for the average soil clay variogram (c)

0

200

400

100 150 200

O
bj

ec
tiv

e 
fu

nc
tio

n

7

8

9

10

11

12

70 80 90 100 110 120

Number of units

(a) (b)

FIGURE 11 Values of objective function for sc+ scheme (black dots) and sc scheme (grey dots) and optimized scheme (the red triangle). The spacing
between the two vertical lines in (b) indicates the extra units required for sc+ to achieve an objective function value from the optimized scheme for the soil
clay average variogram

WADOUX ET AL. 987



case study (square of 100 m × 100 m); most sampling units
were within the range of spatial correlation. However, for
random functions with larger nugget to sill ratios, the
design-based survey was more accurate even when the sur-
vey consisted of more than 200 units. Thus, the number of
units required to estimate the variogram from a geostatistical
survey depended on the degree of spatial correlation of the
target property. We acknowledge that these total prediction
variances are based upon a Taylor series approximation to
the true variances.

5 | CONCLUSIONS

From the results and discussion we draw the following
conclusions.

• The sc schemes performed poorly in almost all cases
because of the lack of information at short distance to
estimate the variogram parameters.

• Uncertainty of the sc scheme was mainly characterized
by uncertainty of the smoothness parameter. Perfor-
mance of the sc scheme can therefore be greatly
improved by assuming that the smoothness is known, for
example with an exponential variogram. However, in
practice we have no justification for making such an
assumption.

• The benefit of using an optimized scheme over an sc+
scheme was clear but still generally modest. In addition,
the optimization required the variogram parameters to be
known.

• The benefit of using an optimized scheme over an sc+
scheme became more important with an increasing nug-
get to sill ratio (weaker spatial dependence). In this case,
geostatistical survey was unlikely to be effective.

• For a random variable with zero nugget and a large range
of spatial correlation fewer than 15 observations were
required to obtain average total prediction variances that
were smaller than the prediction variance of the design-

based estimate of the regional mean, treated as a point
prediction at each location. However, 200 observations
of a random variable with a substantial nugget effect
were insufficient to meet the same criterion.

• When the scale of spatial variation of the soil property
was not known, using an average variogram for optimiz-
ing the sampling scheme is a robust strategy.

• Overall, the tests conducted showed that there was little
evidence of large benefits from optimizing sampling
schemes. Therefore, it is better in most cases to use a
spatial coverage scheme supplemented by a subset of
close-pair units unless prior knowledge of the variogram
is available (e.g. reconnaissance survey).
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