

Advances in metre traceability for Industrial Process Control

Dr Chris Jones (christopher.jones@npl.co.uk) Dimensional metrology

MetMap 2019: Integrated Metrology for Precision Manufacturing 22 - 23 January 2019, Knowledge Transfer Centre Advanced Manufacturing Research Centre, Sheffield, UK

Reminder – measurement traceability

 "property of a measurement result whereby the result can be related to a reference through a documented unbroken chain of calibrations, each contributing to the measurement uncertainty" [VIM: <u>https://jcgm.bipm.org/vim/en/2.41.html]</u>

From a calibration perspective:

 measuring equipment should be tested against a standard of higher accuracy (and so on up the chain).

From a industrial user's perspective:

 The further you are from the relevant SI unit, the larger your uncertainties are likely to be

Traceability is a useful qualifier for post-production quality control reporting for products, but what about for process control?

How is traceability relevant to process control?

Traceability can be a source of information and process improvements.

A good handle on traceability (and the associated good metrology practice) allows you to:

National Physical Laboratory

the process

- 1. objectively quantify performance of instrumentation and measurement procedures
- 2. prioritise your metrology investments based on expected return

(and once you're happy your metrology is fit for purpose:)

3. objectively compare inspection data over time and between instruments

... to achieve small but consistent improvements that keep a volume process competitive.

The cost of measurement uncertainty ... or the value of managing it

Airbus A350 XWB wing

Compensation for refractive index and turbulence effects in large factories

1000 kg extra metal in a large aeroplane!

(not just Airbus – industry-wide problem!)

Image courtesy of Airbus – partnered in LUMINAR to solve this problem

. . .:

NPL OPTIMUM – 3D coordinate measurement system

Prioritising metrology investment – an example

environmental monitoring for refractive index compensation

Displacement interferometer: 1 fringe = $\lambda/2 \approx 0.3 \mu m$

But $\lambda = \lambda_{vac}/n$ where the refractive index n = 1.000 2XX XXXUncompensated \rightarrow wrong distances! (parts in 10⁵)

Refractivity $(n-1)_{tph} = K_{\lambda}D_{tph}$ (Edlen and others)

- a dispersion term (λ)
- an air density term \rightarrow measure temperature, pressure, humidity

Prioritising metrology investment – an example

environmental monitoring for refractive index compensation

Uncertainties from high-accuracy sensors used in dimensional applications

Parameter	Sensor	Typical cost (including calibration)	Best standard uncertainty in application	Influence on refractive index (meast. uncertainty, in general terms)	Added value for process control loop
Equations	-	-	1 · 10 ⁻⁸	1.0 · 10 ⁻⁸	
Pressure	Vibrating Si barometer	£3,000	0.05 hPa	1.4 · 10 ⁻⁸	
Temperature	Platinum resistance thermometer, AC bridge	£7,000	0.05 °C	-4.6 · 10 ⁻⁸	
Humidity	Chilled mirror dewpoint meter	£3,000	0.7 %RH	0.7 · 10 ⁻⁸	
CO ₂	IR absorption in cell	£1,000	50 ppm	0.7 · 10 ⁻⁸ ∎	
TOTAL	[summed in quadrature]	£14,000	/	5 · 10 ⁻⁸	
MetMap 2019, AMRC, Sheffield UK		s column generalises to neasurement uncertain	contribution		

Objective comparison of data

Traceability is essential to objectively compare/exploit measurement data:

- between instruments lab to line, or between candidates
 - how do you validate inspection data from a fast, reduced resolution inline sensor against your lab-build defect model, without calibrating sensor metrological characteristics?
- over the history of a process
 - how do you know if your process is changing over time if you don't have a stable reference?
- across a supply chain
 - E.g. defect maps on R2R products
- Obvious link between measurement traceability and data traceability/provenance
 - Digital calibration certificates, data storage formats (X3P, etc), metadata

Case study: traceability for process control

How to achieve much faster 3D inspection?

- Choose faster, better spec sensors
- Measure each item more efficiently
- Reduce the proportion of items inspected
- ...while minimising loss of meaningful inspection capability

Screen-printed electrodes on a-Si PV wafers Our solution for measurement throughput

Jones CW and O'Connor D 2018 Meas. Sci. Technol. **9** 074004

MetMap 2019, AMRC, Sheffield UK

Form anticipation – for sensor range optimisation

NPL hybrid 2D/3D metrology platform

- 640 Megapixels per second 2D (8000 pixels covering 180 mm width)
- 360 kilopixels per second 3D (180 pixels covering 1 mm width)
- Room for other sensors e.g. functional mapping

MetMap 2019, AMRC, Sheffield UK

Jones CW and O'Connor D 2018 Meas. Sci. Technol. **9** 074004 Stacked two-axis system for lateral sample fixture motion

NPL hybrid 2D/3D metrology platform Traceability

- XY stage encoder scales
 Calibrated Zygo HeNe laser (ad hoc comparison)
- Vision system
 bespoke adjustment and calibration artefact
- 3D topography sensors (form and feature) Areal standard

illumination, mirror

Jones CW and O'Connor D 2018 Meas. Sci. Technol. **9** 074004 Stacked two-axis system for lateral sample fixture motion

Hosted development on hybrid metrology platform Optical encoder system for precision steering of gratinginstrument substrates

Sub-micrometre position measurement ability!

MetMap 2019, AMRC, Sheffield UK

NPL hybrid 2D/3D metrology platform Traceability

- XY stage encoder scales
 Calibrated Zygo HeNe laser (ad hoc comparison)
- Vision system

bespoke adjustment and calibration artefact

 3D topography sensors (form and feature) Areal standard

Jones CW and O'Connor D 2018 Meas. Sci. Technol. **9** 074004

MetMap 2019, AMRC, Sheffield UK

To be presented at Lamdamap 2019 Nimishakavi, Jones, Giusca

Stacked two-axis system for lateral sample fixture motion

Faster 3D: Reduce the proportion of items inspected

- Understand the rate of process deterioration \rightarrow reduce the frequency of measurement
 - Exploit data history traceable data archive e.g. via supply chain
 - Temporarily divert proportion for slower, more comprehensive inspection

Traceability for process control models

The production engineer's challenge

inspection measurand (or function)

•

•

•

•

•

Traceability for process control models

The production engineer's challenge

Traceability for process control models

The production engineer's challenge

MetMap 2019, AMRC, Sheffield UK

Summary: traceability allows you to:

- Evaluate/qualify the links/correlation (homework)
 - Efficient, traceable lab operations, with big data support (enable comparison to in-process data)
- Recognise the finite performance of your metrology kit
 - Artefacts calibration of MCs
- Direct your investment in better sensors
 - Traceability for confidence in specifications and objectivity in acceptance testing
- Improve your process and your competitiveness!

Department for Business, Energy & Industrial Strategy

FUNDED BY BEIS

Thanks for listening!

Contact me for more info: cwj@npl.co.uk

The National Physical Laboratory is operated by NPL Management Ltd, a wholly-owned company of the Department for Business, Energy and Industrial Strategy (BEIS).

BONUS SLIDES!

MetMap 2019, AMRC, Sheffield UK

For interest: EUCOM (new European metrology project)

Overview:

- Methods currently in use for determining task specific measurement uncertainties on CMM either involve making time consuming comparison measurements (ISO 15530-3) or using one of the many software applications that enable Monte Carlo simulations to be performed as described in ISO 15530-4.
- Identified within Europe that there is a need to develop simplified and validated methods for predicting the uncertainty of task-specific coordinate measurements in industry as well as a need to developing traceable methods that improve the validity of existing methods.

Partners include INRIM (coordinator), IK4 Tekniker, Metrosert, NMIJ-AIST, NPL, CMI, DTI, PTB, TUBITAK, ATH, UNIPD, GUM.

For interest: EUCOM (new European metrology project)

Objectives:

- To develop traceable and standardised methods for evaluating the uncertainty of coordinate measurement a posteriori using type A evaluation.
- To develop a simplified and validated method for predicting the uncertainty of coordinate measurements a priori using type B evaluation (i.e., expert judgement).
- To demonstrate the validity of existing methods and those from objectives 1 and 2 in industrial conditions and evaluate their consistency and accuracy against the Guide to the Expression of Uncertainty in Measurement (GUM) and its supplements.
- To contribute to revisions of EN ISO 15530 and EN ISO 14253-2 by providing the necessary data, methods, guidelines and recommendations, in a form that can be incorporated into the standards at the earliest opportunity.
- For more information see: <u>http://eucom-empir.eu/</u>

3D sensor calibration – NPL Areal Standard

MetMap 2019, AMRC, Sheffield UK

3D sensor calibration – NPL Areal Standard

Areal height map

Confocal intensity map

3D sensor calibration – NPL Areal Standard

SI redefinition

- Change in SI unit definitions for robustness and security
- Units defined in term of what appear to be universal and fundamental constants of nature
- Major changes for K and kg (both relevant to precision engineering)
- No practical change for industrial metrology
- Comes into force 20 May 2019: World Metrology Day

SI redefinition Kilogram redefinition using Kibble balance

SI redefinition Metre 'redefinition' – conceptual only

"the speed of light in vacuum *c* is exactly 299 792 458 m/s"

metre defined

"the unperturbed ground state hyperfine transition frequency of the caesium 133 atom $\Delta \nu_{CS}$ is 9 192 631 770 Hz"