

## Sensor development – State-of-the-art review

Dr Claudiu L Giusca Surface Engineering and Precision Institute (SEPi)

22<sup>nd</sup> January 2019

MetMap 22 - 23 January 2019 AMRC Sheffield, UK

www.cranfield.ac.uk

## **Overview**

- Introduction
- Dimensional metrology tools
- Non-dimensional sensing
- Future requirements

## Cranfield Manufacturing

## **Surface Engineering and Precision Institute**

We envision a UK manufacturing sector with world abundant *Engineering for life* products for extreme service.

<u>Advanced Functional Coatings</u> supported by the National High Temperature Surface Engineering Centre, Sol-Gel Centre and Nanotechnology Labs.

<u>Precision Device Manufacturing</u>: Cranfield Nano, specialising in creating new forms of materials for detectors, sensors, biosensors, and actuators,

<u>In-Process Metrology:</u> metrology applied as closely as possible to the point of manufacture supported by world-class Precision and ultra precision engineering laboratories









### A bit of context – Taniguchi's chart



Goel S et al (2015) Int. J. Mach. Tools Manuf. 88 131-164



## Achievable surface quality

|   |                                             | nano-machining                                  | micro-machining                               | macro-machining                               |  |
|---|---------------------------------------------|-------------------------------------------------|-----------------------------------------------|-----------------------------------------------|--|
|   | size of machined area                       | $1-10^{5} \mu m^{2}$                            | 1–10 <sup>5</sup> mm <sup>2</sup>             | $1-10^5  \text{cm}^2$                         |  |
|   | volume removal in one machining step        | from $10^{-3}$ to $10^2\mu\text{m}^3$           | from $10^{-3}$ to $10^2$ mm <sup>3</sup>      | from $10^{-3}$ to $10^2\text{cm}^3$           |  |
| < | material removal rate                       | from $10^{-5}$ to $1\mu\text{m}^3\text{s}^{-1}$ | from $10^{-5}$ to $1\text{mm}^3\text{s}^{-1}$ | from $10^{-5}$ to $1\text{cm}^3\text{s}^{-1}$ |  |
|   | relative figure error                       | from $10^{-5}$ to $10^{-3}$                     | from $10^{-7}$ to $10^{-5}$                   | from $10^{-5}$ to $10^{-3}$                   |  |
|   | surface roughness ( <i>S</i> <sub>a</sub> ) | 1–10 <sup>2</sup> Å                             | 1–10 <sup>2</sup> nm                          | from $10^{-1}$ to $10 \mu$ m                  |  |

Brinksmeier E and Preuss W (2012) Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 370 3973-3992.



Schmitt RH et al. (2016) CIRP Annals 65 643-665

Franceschini F et al. in Distributed Large-Scale Dimensional Metrology Springer (2011)



#### Available with contact and noncontact probes

Weckenmann A et al.(2004) *CIRP Annals* **53** 657–684 Weckenmann A et al. (2006) Meas Sci Technol **17** 504-509

#### Large CMM-s (5 m)

**7 μm + L/250 μm** Schmitt RH *et al.* (2016) CIRP Annals **65** 643-665

#### Micro CMM-s

probe errors in excess of 50 nm

Thalmann R et al. (2016) Appl. Sci. 6 150



Norman J (2019) PhD Thesis



#### Laser Tracker

Lau K *et al.* (1986) *Prec. Eng.* **8** 3-8 Muralikrishnan B (2016) *Prec. Eng.* **44** 13-28  $[0.3^2 + (0.4 \times 10^{-3} L)^2]^{1/2} \mu m$ Umetsu K (2005) *Meas. Sci. Technol.* **16** 2466-2472

#### Laser Tracers

0.2 μm + 0.3 μm/m (*k*=2) Hughes EB *et al.* (2000) CIRP Annals **41** 391-394

# FSI (Frequency Scanning Interferometry)

#### 40 $\mu m$ in 10 m $\times$ 5 m $\times$ 2.5 m

Dale J et al. (2014) Opt. Exp. 22 24869-24893

Other techniques are less accurate: Coherent laser radars Laser line scanners Photogrammetry Schmitt RH *et al.* (2016) CIRP Annals **65** 643-665

#### Various form measurement interferometric configurations are able to achieve sub-nanometre measurement repeatability.

Wyant JC (2018) Proc. SPIE 10749 107490P

Issues with Lateral Dynamic Range v measurable slope (Loughborough talk)



Savio E et al. (2007) CIRP Annals 56 643-665



Hansen HN et al. (2006) CIRP Annals 55 721-743



## Surface texture (ISO25178 standards)





Rosen S et al. (2011) Surf. Topogr.: Metrol. Prop. 2 014005



## **On-machine sensors**

Mostly developed for two reasons:

- Tool positioning and alignment
- Error compensation

Added benefits:

- QA/QC
- Process monitoring
  - Various interferometric techniques
  - Photogrammetry
  - Fringe projection
  - 3D microscopes (ST)
  - Optical and contact probes
  - Laser trackers
  - AFMs



Nomura T et al. (1992) Prec Eng 14 155-159



Gao W et al. (2013) CIRP Annals 62 523-526



#### Multi-Sensor Data Fusion Geometrical



Weckenmann A et al. (2009) CIRP Ann. 58 701-721



Ulhman E et al. (2016) CIRP Annals 65 549-572



# Sensor application versus level of precision and control parameters



control parameters

Lee DE *et al.* in *Condition Monitoring and Control for Intelligent Manufacturing* Wang L and Gao RX Springer, London (2006), 33-54



Teti R et al. (2010) CIRP Annals 59 717-739



| Sensor type    | Range           | Resolution | Max. BW  | Accuracy  |
|----------------|-----------------|------------|----------|-----------|
| Metal foil     | 10-500 μm       | 23 nm      | 1-10 kHz | 1% FSR    |
| Piezoresistive | 1-500 µm        | 0.49 nm    | >100 kHz | 1% FSR    |
| Capacitive     | 10 µm to 10 mm  | 2.4 nm     | 100 kHz  | 0.1% FSR  |
| Electrothermal | 10 µm to 1 mm   | 10 nm      | 10 kHz   | 1% FSR    |
| Eddy current   | 100 µm to 80 mm | 1 nm       | 40 kHz   | 0.1% FSR  |
| LVDT           | 0.5-500 mm      | 5 nm       | 1 kHz    | 0.25% FSR |
| Interferometer | Meters          | 0.49 nm    | >100 kHz | 1 ppm FSR |
| Encoder        | Meters          | 6 nm       | >100 kHz | 5 ppm FSR |

Flaming AJ (2010) Sens Actua A-Phys 190 106-126





Teti R et al. (2010) CIRP Annals 59 717-739



Kishawy et al. (2018) Int J Adv Manuf Technol **93** (5–8) 2275–2287



## **Temperature measurement**

#### **Machine tools**





Mayr J *et al.* (2012) *CIRP Annals* **61** 771-791

|                         | RTD                | Thermo-<br>couple | Dynamic<br>Thermo-<br>couple | Single-Color<br>Pyrometer | Two-Color<br>Pyrometer  | Thermo-<br>physical |
|-------------------------|--------------------|-------------------|------------------------------|---------------------------|-------------------------|---------------------|
| Temperature Range       | Metal<br>Melting   | 0°C-<br>3000°C    | Work<br>Melting              | 20°C-<br>5000°C+          | 0°C-5000°C+             | T <sub>trans</sub>  |
| Spatial Resolution      | 500 μm             | >500 μm<br>*10 μm | Interface<br>Average         | 5 μm (T<br>dependent)     | 20 µm                   | 100µm               |
| Time Resolution         | 2 ms               | 100 ms            | -                            | ms to μs                  | ms to μs                | Poor                |
| Ease of set up          | Easy               | Easy              | Easy                         | Difficult                 | Difficult               | Easy-<br>Medium     |
| Dominant<br>Uncertainty | Material<br>Damage | Junctions         | Junction<br>Control          | Emissivity                | Gray Body<br>Assumption |                     |
| Cost                    | Low-<br>Medium     | Low               | Low                          | Medium-<br>High           | Medium                  | Low                 |



#### **Point of contact**



Goel S et al. (2012) Wear 284-285 65-72



Goel S et al. (2016) Acta Mat 105 464-478



# Reduce the cost of metrology at the end point.



Susto et al (2015) Comp Op Res 53 328-337



### Must have:

- Low cost
- Wide dynamic range
- Fast
- Cooperative
- Include non-dimensional (Temperature, Stress, Strain, Acoustic Emission, Force etc)
- Able to measure at the point of machining



## www.cranfield.ac.uk

## T: +44 (0)1234 750111

- 🕎 @cranfielduni
- - @cranfielduni
- 仔 /cranfielduni