MetMap

22-23 January 2019

Vision Inspection Advantages of Mounting Optical Probes on Five Axis Measurement Systems

Ian McLean

Principal Engineer

Renishaw, Edinburgh

REVO

- 5 Axis CMM Metrology
- Multi-sensor Technologies

REVO Vision Probe (RVP)

- Capabilities
- Lenses
- 3D Measurement by Projection
- 3D Measurement by Triangulation
- Inspection Techniques
- Application Examples

REVO 5 Axis CMM Metrology

REVO – 5 Axis CMM Metrology

Traditional 3 Axis CMM Heads:

- Enable probe orientation to feature
- Most heads orient to discrete angles
 - Typically to distinct index angles
 - PHS2 can operate at any angle
- Angular positioning is very repeatable
- Calibration typically required at each orientation used
 - PH10M-iQ PLUS has inferred calibration with certain probes
- Measurement with 3 axis motion
 - o Head angles remain locked/fixed

REVO – 5 Axis CMM Metrology

REVO 5 Axis Head:

- Enables probe orientation to feature
- Orients to any angle
- Angular positioning is very accurate
- Single calibration for all angles (most probes)
- Measurement with 5 axis motion
 - Head more dynamic than CMM
 - Measure while head angles are changing
 - 10 x inspection speed increase possible

REVO Multi-sensor Technologies

REVO – Multi-sensor Technologies

REVO System

- REVO Head
- Probe
- Holder/Stylus or Lens

REVO – Multi-sensor Technologies

REVO Sensor Technologies

• Tactile (RSP2, etc)

• Surface Finish (SFP2)

• Vision (RVP)

RVP Capabilities

RVP - Capabilities

Vision Inspection Applications

- Small features
 - Inaccessible to tactile probes
- Features in sheet metal
 - Thin surface area may be difficult to probe
- Delicate parts
 - Contact could damage part
 - Tactile probing might deform part

RVP - Capabilities

Traditional Vision System

- Typically camera aimed straight down
 - Suitable for flat sheet metal parts
- On 3 axis heads, discrete angles are possible
 - Features ideally at discrete (indexing) angles
 - Calibration required for each head angle used

RVP System

- Orientation to any angle
 - Suitable for any 3D part including shaped sheet metal
 - Feature can be at any angle
 - Only one calibration required, not one per head angle

RVP Lenses

RVP Lenses

Features

- o Interchangeable
- o Built-in Illumination
- Fixed Focus
- VM10
 - Field of view: 50 x 40 mm
 - Resolution: 40 μm*
- VM11
 - Field of view: 12.5 x 10 mm
 - Resolution: 20 μm*
- * Measurement performance is to sub resolution accuracy

Telecentric Lens

- Size invariant with distance to feature
- Commonly used in vision metrology
- Assumes camera and feature are aligned

1. Capture image of feature

Telecentric Lens

- Size invariant with distance to feature
- Commonly used in metrology
- Assumes camera and feature are aligned
 Good measurement

2. Process image to get feature

Telecentric Lens

- Size invariant with distance to feature
- Commonly used in metrology
- Assumes camera and feature are aligned
- Does not work if camera and feature are misaligned

1. Capture image of feature

Telecentric Lens

- Size invariant with distance to feature
- Commonly used in metrology
- Assumes camera and feature are aligned
- Does not work if camera and feature are misaligned

Poor measurement

2. Process image to get feature

Non-telecentric Lens

- Size/position varies with distance to feature
- Distance to feature needed anyway to get 3D points
- So size/position can be determined
- Works when camera and feature are aligned

1. Capture image of feature

Non-telecentric Lens

- Size/position varies with distance to feature
- Distance to feature needed anyway to get 3D points
- So size/position can be determined
- Works when camera and feature are aligned
 Good measurement

2. Process image to get feature

Non-telecentric Lens

- Size/position varies with distance to feature
- Distance to feature needed anyway to get 3D points
- So size/position can be determined
- Works when camera and feature are aligned
- Works when camera and feature are mis-aligned

1. Capture image of feature

Non-telecentric Lens

- Size/position varies with distance to feature
- Distance to feature needed anyway to get 3D points
- So size/position can be determined
- Works when camera and feature are aligned
- Works when camera and feature are mis-aligned
 Good measurement

2. Process image to get feature

RVP Lens Types

- Currently all RVP lenses are non-telecentric
 - Increased tolerance to part variability
 - Improves deep feature measurement reliability
 - Typically part surface measurement made using using REVO multi-sensor probes
- Future RVP lens may be telecentric
 - Specific application requirement
 - RVP's lenses are interchangeable

3D Edge Points Found by Projection

- Camera image is 2D
- Edge points are 3D
- How do we find 3D edge points?

3D Edge Points Found by Projection

- Camera image is 2D
- Edge points are 3D
- How do we find 3D edge points?
- If feature edge is on an accessible surface:
 - **Use Projection Method**

Projection Method

- Find 3D points by projecting images onto pre-measured surface
- Fast typically feature extracted from 1 image

1. Measure projection surface (normally with a tactile probe)

Projection Method

- Find 3D points by projecting images onto pre-measured surface
- Fast typically feature extracted from 1 image

2. Capture image of feature

Projection Method

- Find 3D points by projecting images onto pre-measured surface
- Fast typically feature extracted from 1 image

3. Process image and project onto surface to determine feature

3D Edge Points Found by Triangulation

- Camera image is 2D
- Edge points are 3D
- How do we find 3D edge points?

3D Edge Points Found by Triangulation

- Camera image is 2D
- Edge points are 3D
- How do we find 3D edge points?
- If feature edge is not on an accessible surface:
 - Feature edge is mid hole
 - Surface is inaccessible

Use Triangulation Method

• Patented by Renishaw

1. Capture first image of feature

Triangulation Method

 Find 3D points by triangulating rays from two images

2. Capture second image of feature

Triangulation Method

 Find 3D points by triangulating rays from two images

3. Two images of feature can be used for processing

Triangulation Method

 Find 3D points by triangulating rays from two images

4. Process by identifying feature edge in each image

Triangulation Method

 Find 3D points by triangulating rays from two images

5. Triangulate common points on feature edge in each image

Triangulation Method

 Find 3D points by triangulating rays from two images

6. Use common points to determine feature

RVP Inspection Techniques

RVP – Inspection Techniques

Edge Location

- Back & mid shown already
- Front also possible
- Front and back
 - Arcs from one image
 - Combine arcs for front and back edges

RVP – Inspection Techniques

Lighting

- Backlight shown already
 - Preferred technique
- Frontlight also possible
 - Lighting in lens modules
 - Front and/or back edge inspection

RVP – Inspection Techniques

Edge Profiling

- Using triangulation method
- Profile
 - Take image pairs at tangent to edge
 - Process to get points along tangent
 - Repeat for all required angles around edge
 - Combine to get complete edge description
- Works on large and small radii edges

RVP Application Examples

RVP – Application Examples

Combustor

- Cooling Hole
 - Too small for tactile probe access
 - Thin sheet metal part
 - 5 axis vision measurement required
 - Measure using Projection Method
- Port Hole
 - Thin sheet metal part
 - o 5 axis vision measurement option
 - Measure using Projection Method

RVP – Application Examples

Nozzle Guide Vane

- Cooling Hole
 - Too small for tactile probe access
 - 5 axis vision measurement required
 - Edge not at accessible surface
 - Measure using Triangulation Method
- Aerofoil Edge Profile
 - o 5 axis vision measurement option
 - Profile using Triangulation Method

End

Thank You

