Optical coherence tomography for nondestructive testing and imaging applications

Ivan Zorin

22.01.2019

General information

REsearch **CE**nter for **N**on-**D**estructive **T**esting

RECENDT: located at JKU in Science Park 2

Altenberger Straße 69, 4040 Linz Tel.: +43(0)732/2468-4600 e-mail: <u>office@recendt.at</u> Web: <u>http://www.recendt.at</u>

Verbindungstrakt

Hörsaalgebäude

Hochschulfondsgebäude

Juridicum

Hörsaaltrakt

Bibliothek

TN-Turm

Kopfgebäude

Mikroelektronik

Uni-Center (Mensa)

Schloss

Forsthaus

Research topics and groups

- Laserultrasound
- Photoacoustic
- Infrared-spectroscopy
- Terahertz technology
- Optical coherence tomography

Expertise

 Quality control and quality assurance for batch production and production control

contactless control by laser, ultrasound, infrared etc.

 Non-destructive testing of materials, contactless analysis and material characterization

for carbon fiber, composites, metals, etc.

Prototype construction for contactless sensors

"From the idea to a marketable product": by integration of optics, electronics, μ -processor technology, software (from basic research to a prototype)

 Technology- and project management / special projects
 Sensor development for various areas of application and processes (researchand client-specific-projects)

Optical Coherence tomography for non-destructive testing

OCT Principle

Axial Resolution:

$$l_{c} = \frac{2 \ln 2}{\pi n} \cdot \frac{\lambda_{0}^{2}}{\Delta \lambda} \approx$$
$$\approx 0.44 \cdot \frac{\lambda_{0}^{2}}{\Delta \lambda}$$

Lateral Resolution:

$$\omega_0 \approx \frac{4\lambda_0}{\pi} \cdot \frac{f}{d} \propto \frac{\lambda_0}{\mathrm{NA}}$$

Probing depth: $b = 2z_r = 2 \frac{\pi \omega_0^2}{\lambda_0}$

 λ_0 – center wavelength $\Delta\lambda$ – spectral bandwidth n – refractive index

OCT in General

Fourier domain OCT

Image formation

OCT Scans examples

Tape Commercial Thorlabs System

Sub2mu system at RECENDT

Polarization sensitive OCT

Micro-crystallites in turbid materials Extruded polypropylene with internal defects (micro-crystallites)

Seite 12 © RECENDT 2019 Ivan Zorin

Ultra High Resolution OCT System

Semi-automated thickness measurement of wall-layer-thickness

- Plastic bottle, three layer structure: PP / EVOH / PP
- At-line setup for easy measurement at 16 points
- New bottle geometries possible
- Colours: transparent and red Challenges: Straight orward mechanical se and co ckness extraction out fr alignment **automatic** her colours not tested

Research projects

MORSPEC Main Idea

https://www.teachengineering.org/lessons/view/csu_polymer_lesson01

SRS+OCT

Key parameters:Covered spectral range: $1493 - 2018 \text{ cm}^{-1}$ Spectral resolution $\approx 4 \text{ cm}^{-1}$ Lateral resolution $\approx 10 \ \mu m$ Acquisition time $\approx 2.5 \ \mu s$ persingle spectrum

Higher depth penetration because of NIR excitation

MID IR OCT

Mid-infrared Fourier-domain optical coherence tomography with a pyroelectric linear array

Ivan Zorin, Rong Su, Andrii Prylepa, Jakob Kilgus, Markus Brandstetter, and Bettina Heise

Optical scheme and spectral range

Lateral resolution: 35 um Axial resolution: 50 um

- High power
- High brightness
- Spatial coherence

Enhanced Penetration depth has been achieved

THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION'S HORIZON 2020 RESEARCH AND INNOVATION PROGRAMME UNDER GRANT AGREEMENT NO. 722380

EXPRESS

OSA

MID IR OCT

High potential for new types of materials: ceramics, polymers, paints etc.

MIR OCT Spectroscopy modality

Diffraction limited Hyperspectral microscopy

SCL ... Supercontinuum Laser FPFS ... Fabry-Pérot Filterspectrometer PM ... Parabolic Mirror BS ... Beamsplitter

- CH ... Chopper
- RO ... Reflective Objective

Dried blood smear on microscopic glass slide

Thank you!

- RECENDT GmbH
 - Ivan Zorin: ivan.zorin@recendt.at
 - Head of OCT:
 Dipl.-Phys. Dr. Bettina Heise
 Bettina.Heise@recendt.at
 +43 / 732 / 2468-4666
 - <u>www.recendt.at</u>
 - A 4040 Linz, Altenberger Straße 69, Science Park 2

MIR OCT

