Synthetic aperture interferometry: Highresolution optical measurement over an exceptionally large field of view

Prof. Jeremy Coupland

Wolfson School of Mechanical, Electrical and Manufacturing Engineering

Introduction

Aim: To emulate Coherence Scanning Interferometry (CSI) over a large area

Plane wave illumination/observation pairs

The illumination wave vectors are restricted

- Wave vectors must pass through the objective lens (or condenser)
- For a mono-chromatic system wave vectors must lie on Ewald sphere

.. and the observation wave vectors are restricted

- Wave vectors must pass through the objective lens
- For a mono-chromatic light wave vectors must lie on Ewald sphere

Mono-chromatic, multiple illumination directions

This is the transfer function of quasi-monochromatic coherence scanning interferometry

1. Multi-Camera/Source Coherent Imager Concept

- 225 coherent imagers (15 x 15)
- 225 reference beams required (one per CI)
- 225 object beam positions (configurable)
- 3 optical wavelengths
- Specimen size up to 100 x 100mm
- Stand-off 180mm
- Illumination fibre launch NA > 0.5

Coherent Imager: BS Configuration

- Simple optical design
- Lower cost
- Enabling technology

Focussed Ion Beam (FIB) Fibre

Side-Launch FIB Fibre Design

Object Reconstruction

Fibre Launch & Distribution

The Calibration Problem

- The **cameras** need to be positioned sufficiently well to Identify the plane waves, \mathbf{k}_{o} , and place them in angular space
 - Rotation tolerance is of the order of the angular resolution
 - Position tolerances is of the order of the aperture size
- The **sources** need to be positioned sufficiently well to Identify the plane waves, \mathbf{k}_i , and place them in angular space
 - Position tolerances are of the order of the aperture size
- The **phase** of the plane waves component \mathbf{k}_{o} \mathbf{k}_{i} must be defined to better than $\pi/2$
 - Phase needs to be "locked" at various positions in object space

k, **k**=**k**₀- **k** k_o

luminatior

Observation **k**_o

SAI – Phase Locking with Active Target Coherent Imager

#InspiringWinners since 1909

100

150

2x High NA

Scanning Source SAI

Conclusions

- Champardo a sine aproposado the sine aproposado the standard using;
 - Beam-splitter cubes and FIB-etched fibres or
 - No beam-splitter and novel side launch fibres

 The position of the cameras and source fibres can be found to the required tolerances using a novel method which we call differential trilateration and a novel chrome on glass calibration plate

Conclusions

- Raspberry Pi cameras characterised (IR performance, 6 bit resolution and 2 FPS)
- Raspberry Pi boards have sufficient capacity to record the 675 video frames required.

- We have developed a novel "spotlight method" to reconstruct fringes in a region (or multiple regions) that are the size of the native camera resolution (approx. 100µm)
- Raspberry Pi boards process holograms locally and pass only 8 Bytes of data per region

Acknowledgements

Pablo Ruiz Russ Coggrave, Rob Middleton, Nikolay Nikolaev Ian Park, Jorge Garcia

EPSRC EP/M020940/1 Taylor Hobson Ltd. Epigem Ltd. Manufacturing Technology Centre

Questions?

