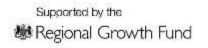
Session overview

10:00 - 10:30	State-of-the-art review - Jon Stammers, Advanced Manufacturing Research Centre
10:30 - 10:50	Gorka Kortaberria – IK4-Tekniker "Integrated volumetric error mapping solution for traceable on-machine tool measurement"
10:50 - 11:10	Tim Rooker – IDC Machining Science "Machining centre performance monitoring with calibrated artefact probing"
11:10 - 11:30	Liam Blunt – University of Huddersfield "In process surface metrology for roll to roll manufacture of printed electronic devices"
11:30 - 11:50	Florian Schwimmer – Alicona "In-line measurements with focus variation as enabler for an autonomous manufacturing cell"
11:50 - 12:20	Darek Ceglarek – University of Warwick "Closed-loop in-process quality improvement: 'Right-first-time' production through digital technologies"
12:20	Lunch



Integrated Metrology for Precision Manufacturing Conference 22 - 23 January 2019

Process Monitoring

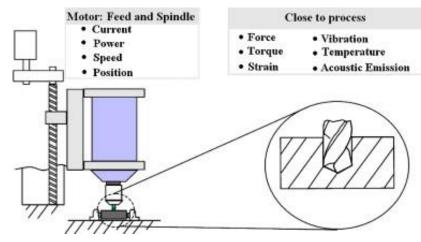
Dr Jon Stammers

Technical Fellow, Process Monitoring and Control

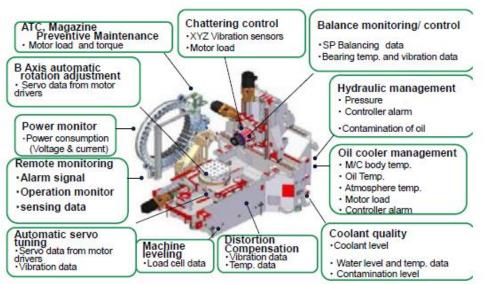
Confidential. Copyright C The University of Sheffield / AMRC May-18. Template: AMRC.PPT – Revision 4 (May 2018)

Process monitoring

Confidential. Copyright © The University of Sheffield / AMRC May-18. Template: AMRC.PPT – Revision 4 (May 2018)


Process monitoring

Program



Teti, R., Jemielniak, K., O'Donnell, G., & Dornfeld, D. (**2010**). CIRP Annals-Manufacturing Technology, 59(2), 717-739

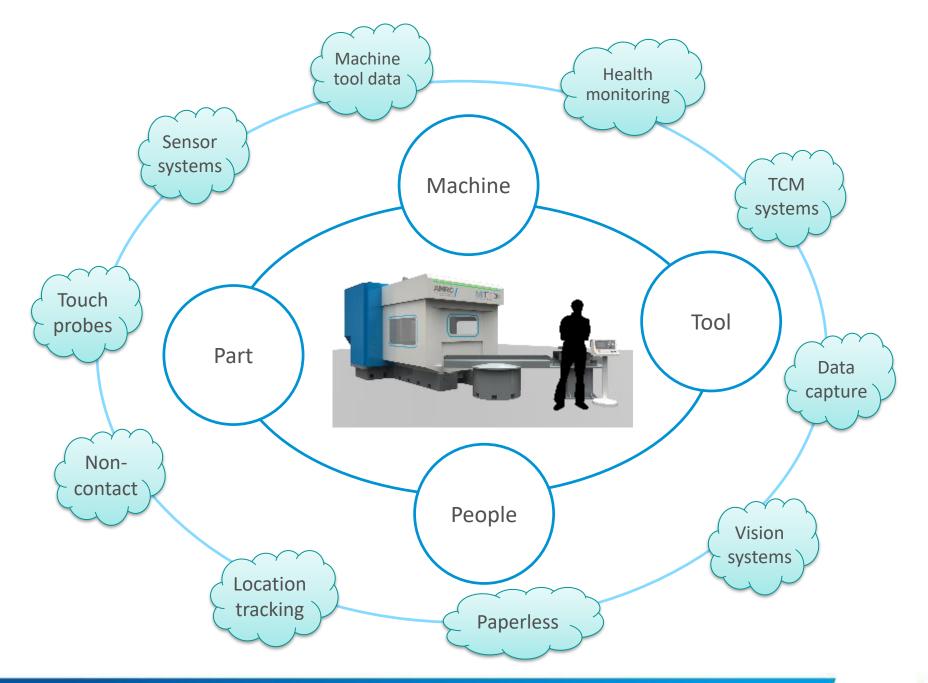
Fujishima M. et al. (**2017**) 24th Conference on Life Cycle Engineering, Procedia CIRP 61, 796-799

Sensors	Fusion methodology	Application
Current sensor, AE	BN	Tool wear diagnosis
Current sensor, accelerometer	BN	Tool wear diagnosis
	BN	Surface roughness prediction
Accelerometer, AE	NN	Tool wear diagnosis
Accelerometer, vision system	NN	Tool wear diagnosis
Dynamometer, AE	-	Tool breakage detection
	NN	Tool wear diagnosis
Dynamometer, AE,	NN	Surface roughness prediction
accelerometer	NN	Tool wear diagnosis
Dynamometer, accelerometer	NN	Tool wear diagnosis
	NN	Surface roughness prediction
	NN	Prediction of dimensional part accuracy
Dynamometer, thermistors	NN	Prediction of dimensional part accuracy
Dynamometer, accelerometer, spindle current, voltage sensor, sound pressure level	NN	Tool wear diagnosis

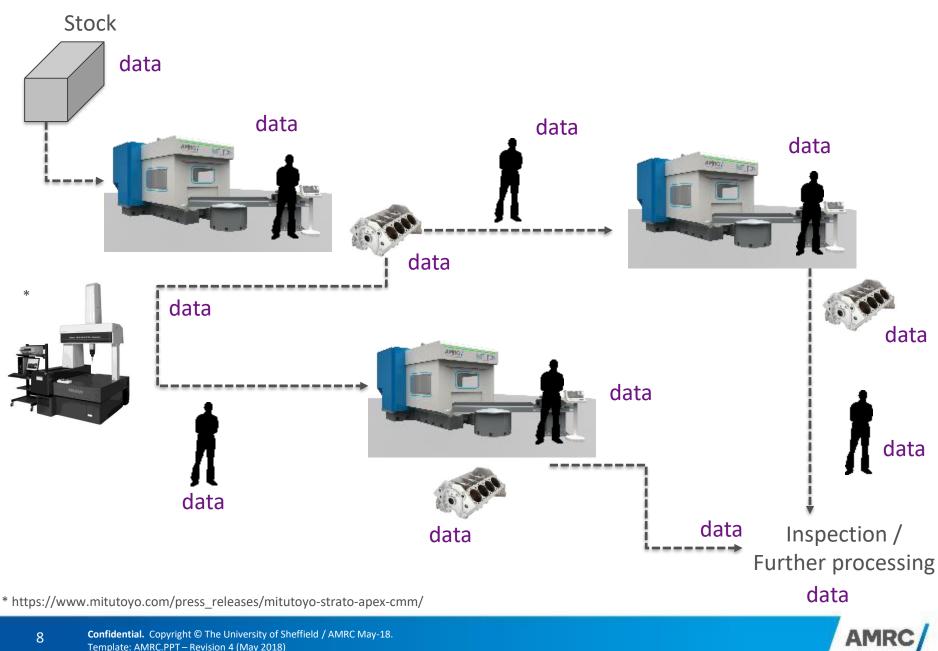
Abellan-Nebot, J. V., & Subirón, F. R. (**2010**) *The International Journal of Advanced Manufacturing Technology*, *47*(1-4), 237-257

Industry

SIEMENS


Analyze MyCondition

AMRC/


CELOS BY DMG MORI

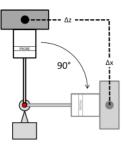
Process Monitoring and Control at AMRC

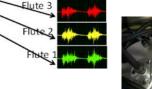
Key themes

Machine Tools and Metrology

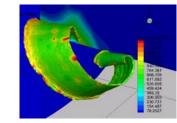
- In-process inspection
- Machine tool verification

Manufacturing Informatics


- Machine condition monitoring
- Tool condition monitoring
- Sensing and signal processing
- Instrumentation and connectivity
- Computational intelligence and uncertainty
- Machine tool servitisation


Digital Shop Floor

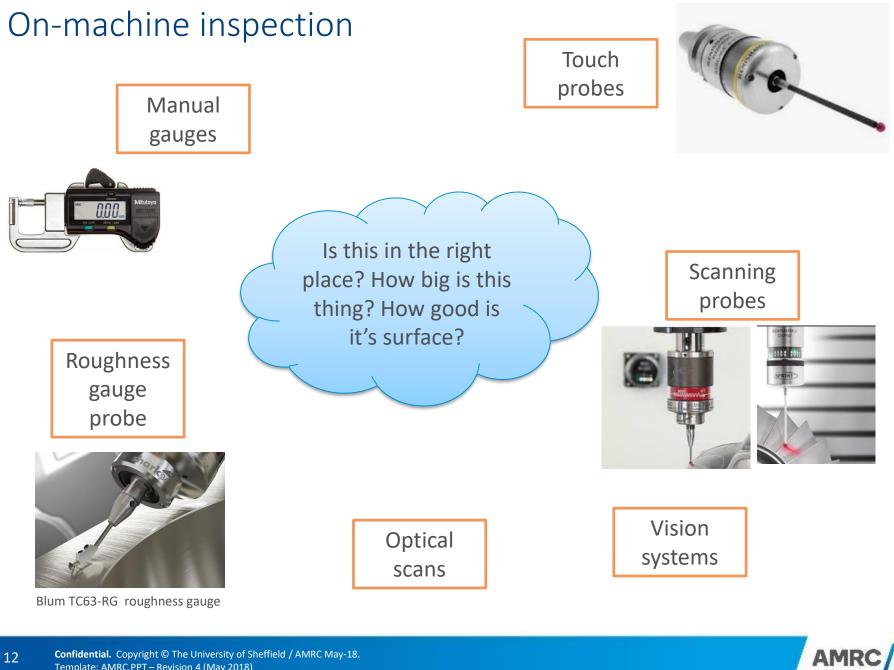
- Paperless shop floor
- Data gathering and presentation



AMRC

Contents

- On-machine inspection
- Tool condition monitoring
- Machine health verification
- Process health
- Future thoughts



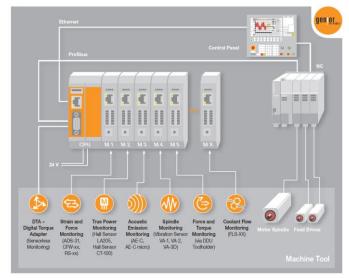
On-machine inspection

- inspection of a part or feature without removing the part from the machine tool

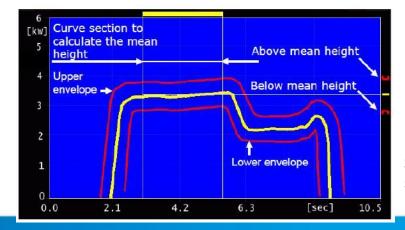
Tool condition monitoring

- continually verifying that the tool condition is within the bounds of the process

13 Confidential. Copyright © The University of Sheffield / AMRC May-18. Template: AMRC.PPT – Revision 4 (May 2018)


Tool condition monitoring

Use-case: Is my tool still OK? Has it worn beyond acceptable limits? Is it about to break or has it broken already?


TCM systems

Advantages

- Many commercial-ready systems available
- Can inform on process condition
- Auto stop of machine if tool breaks
- Machine health often covered **Disadvantages**
- Add-on item additional expense
- Learning time
- Tool wear not always covered

For example, the ARTIS Genior system

Nordmann SEM system screen grab

AMRC

Tool condition monitoring

Use-case: Is my tool still OK? Has it worn beyond acceptable limits? Is it about to break or has it broken already?

Academic view

Direct vs Indirect¹

Actual vs. Inferred measurements

- Microscope for actual
 - Accurate
- Sensors for indirect
 - Non-intrusive

Indirect

- Forces dynos²
- Acoustic emission
- Vibration³
- Machine tool data (eg spindle power)
- Machine learning features heavily

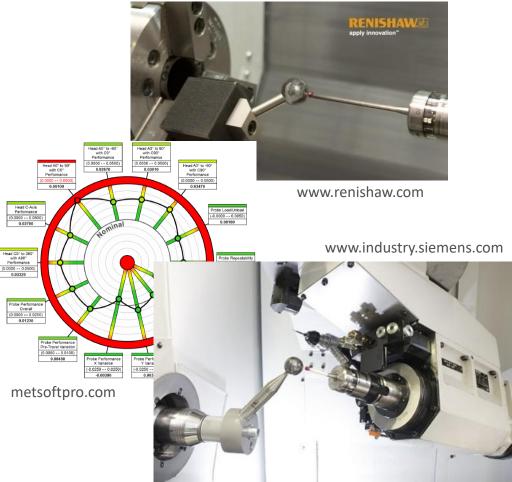
FPGA-Based signal processing unit Vibration DAS

FPGA-based system⁴

- 1 Ambhore N et al. *Materials Today: Proceedings*, 2015, pp. 3419–3428.
- 2 Huang PTB et al. Appl Soft Comput J 2015; 37: 114–124.
- 3 Krishnakumar P et al. Procedia Comput Sci 2015; 50: 270–275.
- 4 Sevilla-Camacho PY et al. Measurement 2015; 64: 81-88.
- 15 Confidential. Copyright © The University of Sheffield / AMRC May-18. Template: AMRC.PPT – Revision 4 (May 2018)

- verifying before/during/after machining that the machine tool is performing within the bounds of the process

Use-case: Is this machine tool ready to go? Will it make a good part? Is it in need of servicing, either now or in the near future?


Probe tool checks

Advantages

- Probe tool usually already available
- Automated
- Data logging
- Start of shift
- Can use machine bed as artefact¹

Disadvantages

- Time consuming machine tool not cutting
- Not a diagnosis
- Reliant on probe accuracy

17 **Confidential.** Copyright © The University of Sheffield / AMRC Template: AMRC.PPT – Revision 4 (May 2018)

Use-case: Is this machine tool ready to go? Will it make a good part? Is it in need of servicing, either now or in the near future?

Spindle health

Advantages

- Can often be permanently mounted in machine
- Rapid verification of spindle runout
- Automated
- Data logging

Disadvantages

- Additional hardware often required
- Can be expensive
- Machine not cutting....

www.ibspe.com

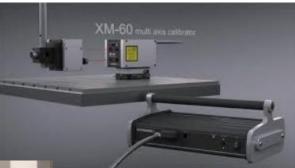
www.apisensor.com

www.blum-novotest.com

Use-case: Is this machine tool ready to go? Will it make a good part? Is it in need of servicing, either now or in the near future?

Laser measurement

Advantages


- Highly accurate measurement of positioning performance
- Large volumes covered

Disadvantages

- Expensive hardware
- Cannot be fully automated
- Experience required to set up and diagnose

www.etalon-ag.com

www.renishaw.com

www.etalon-ag.com

Use-case: Is this machine tool ready to go? Will it make a good part? Is it in need of servicing, either now or in the near future?

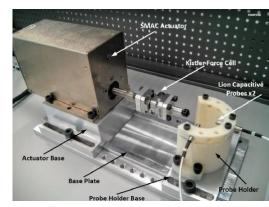
Sensor systems

Advantages

- Rapid check of machine health
- Indication of change to machine health
- Unobtrusive sensors

Disadvantages

- Diagnosis of error source needs many sensors
- Sensors need to be retrofitted


Academic work

Multi-sensor box¹

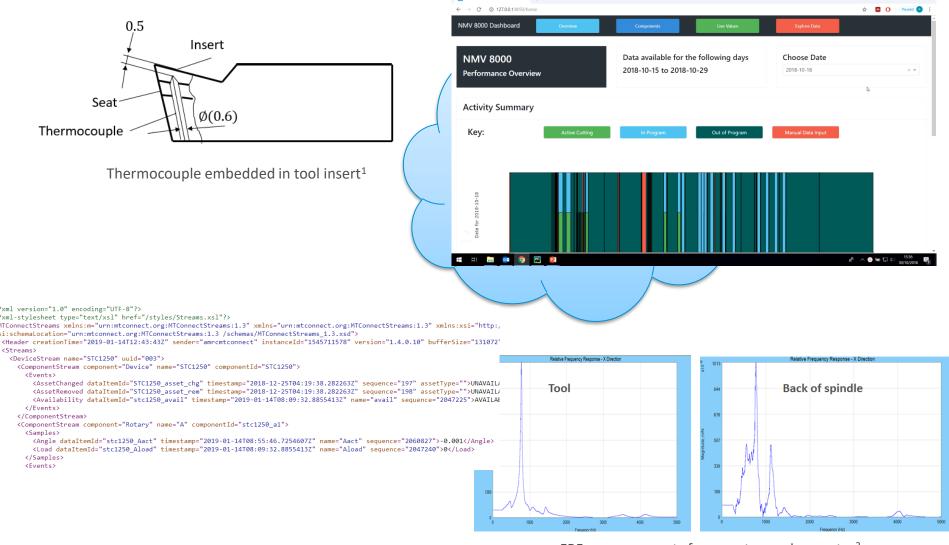
- Degradation of linear axes
- Laser interferometer for reference
- Promising results

Auto tap test²

- Diagnosis of error source needs many sensors
- Sensors need to be retrofitted

1 – G. W. Vogl et al., *Procedia Manufacturing*, vol. 5, pp. 621-633, 2016. 2 – AMRC with Boeing, "ABG109 - Self-actuated automated system for impact testing at high rotating speeds," 2016.

20 Confidential. Copyright © The University of Sheffield / AMRC May-1 Template: AMRC.PPT – Revision 4 (May 2018)


Process health

- continuous monitoring of performance indicators to verify that the process is within acceptable bounds

21 Confidential. Copyright © The University of Sheffield / AMRC May-18. Template: AMRC.PPT – Revision 4 (May 2018)

Process health

FRF measurements for remote accelerometer²

1 – AMRC with Boeing, "ABG2473B – Temperature measurement in milling", 2018. 2 – AMRC with Boeing, "ABG113 – Non-intrusive sensing system", 2016

Confidential. Copyright © The University of Sheffield / AMRC May-1 22 Template: AMRC.PPT – Revision 4 (May 2018)

Future thoughts

Process version control

Version control is not new – very common in software development and server-based document storage.

Can it be applied to all shop floor processes?

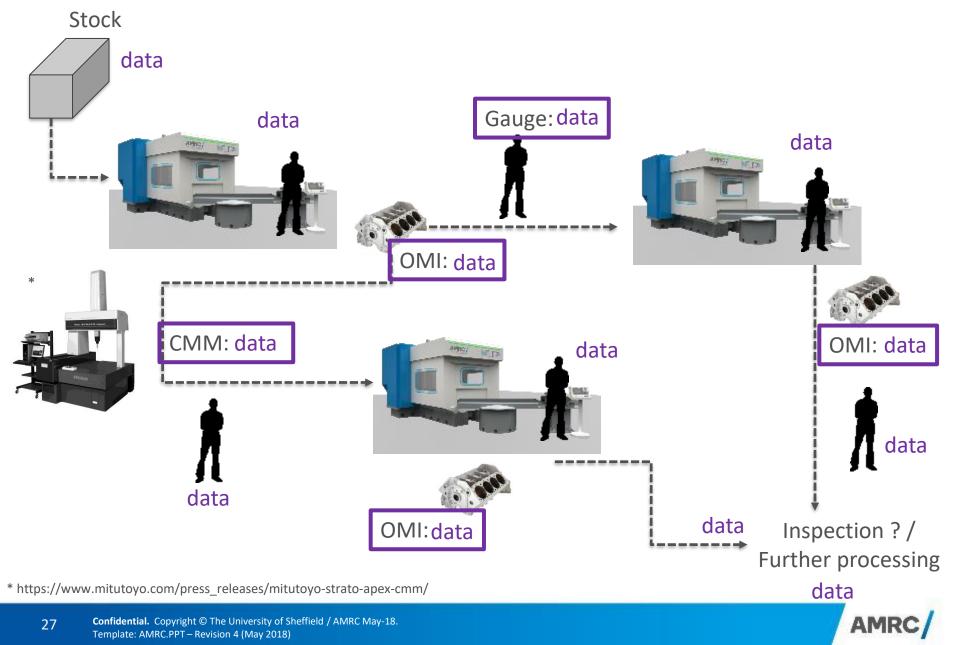
- NC programs
- Manufacturing documents
- Drawings
- People?
- Raw stock
- Tools
- Calibration certificates

Complete data trail for all processes

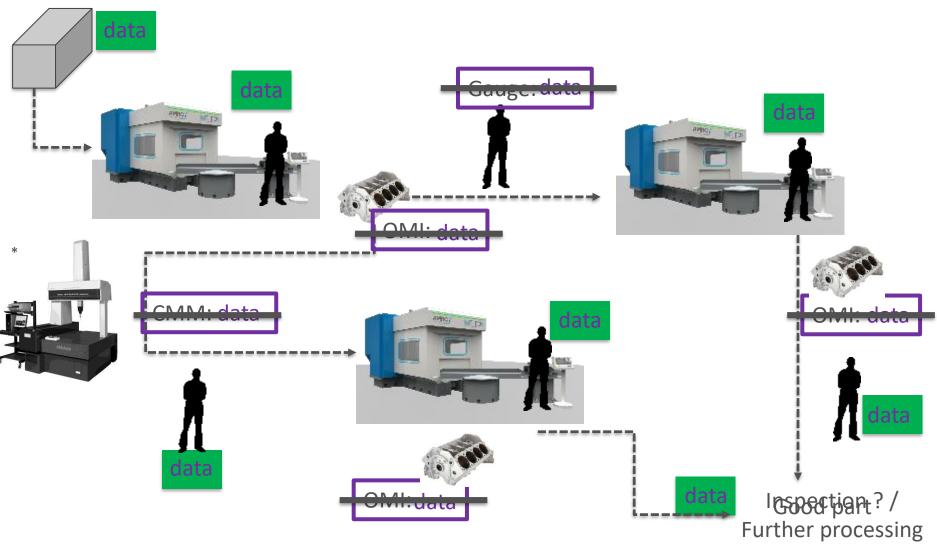
Machine tool servitisation

Power by the hour

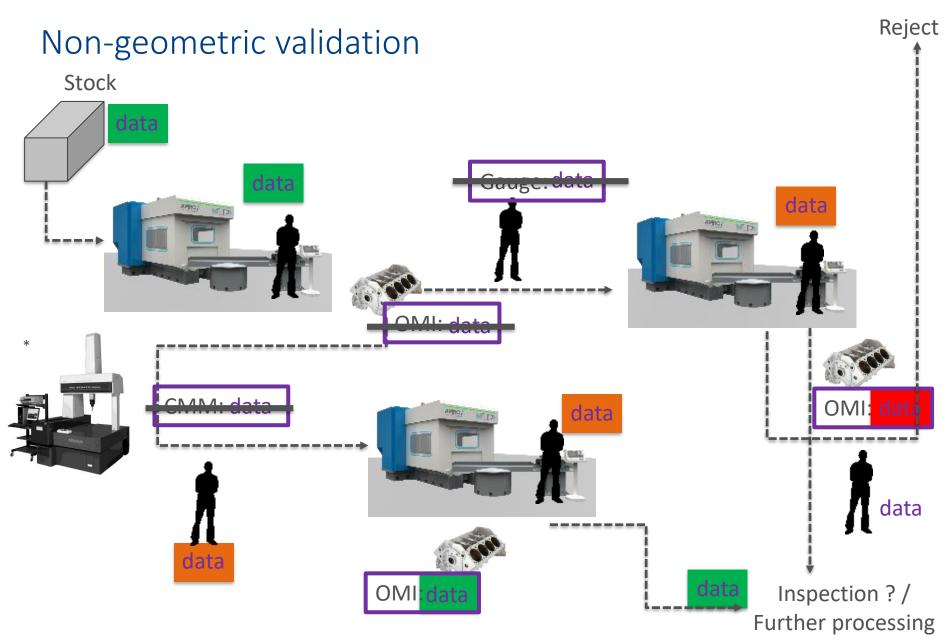
Servitising a machine tool


A service built around the asset of a machine tool

Confidential. Copyright © The University of Sheffield / AMRC May-18. name source: Hemplate: AMRC.PPT-Revision 4 (May 2018) ustry/machine-tools-marchining-processes The following slides were not used in the presentation at the conference, but were available for discussion.



Non-geometric validation


Non-geometric validation

Stock

* https://www.mitutoyo.com/press_releases/mitutoyo-strato-apex-cmm/

AMRC/

* https://www.mitutoyo.com/press_releases/mitutoyo-strato-apex-cmm/

AMRC/

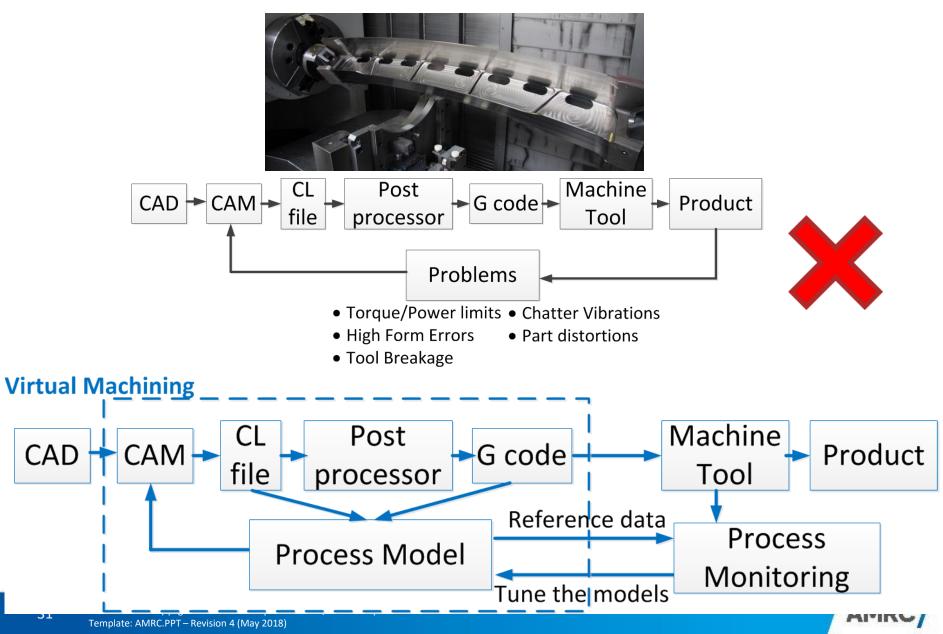
Non-geometric validation

Can we validate a part without doing any traditional inspection?

Use of sensor data (and others?) to inform on process health.

If no significant change to the data, why would the part not conform?

Only inspect when absolutely necessary – Inspection by Exception


System will need to learn what good parts look like, from a data perspective

Human input still needed as system will continue to learn – correction of false positives / negatives

Sample inspection still needed?

Virtual machining and Optimisation

Thank you.


For further information please contact or visit:

Email: j.stammers@amrc.co.uk

Tel: 0114 222 6687

web: amrc.co.uk

Twitter: @theAMRC

Confidential. Copyright C The University of Sheffield / AMRC May-18. Template: AMRC.PPT – Revision 4 (May 2018)

Session overview

10:00 - 10:30	State-of-the-art review - Jon Stammers, Advanced Manufacturing Research Centre
10:30 - 10:50	Gorka Kortaberria – IK4-Tekniker "Integrated volumetric error mapping solution for traceable on-machine tool measurement"
10:50 - 11:10	Tim Rooker – IDC Machining Science "Machining centre performance monitoring with calibrated artefact probing"
11:10 - 11:30	Liam Blunt – University of Huddersfield "In process surface metrology for roll to roll manufacture of printed electronic devices"
11:30 - 11:50	Florian Schwimmer – Alicona "In-line measurements with focus variation as enabler for an autonomous manufacturing cell"
11:50 - 12:20	Darek Ceglarek – University of Warwick "Closed-loop in-process quality improvement: 'Right-first-time' production through digital technologies"
12:20	Lunch

