

Ultrasonic sensors for insitu monitoring of manufacturing processes

Prof Rob Dwyer-Joyce,

MetMap 2019 Advanced Manufacturing Research Centre, Sheffield

Monitoring a Manufacturing Tribology Process

- What might we want to know
 - Part geometry
 - Surface roughness/integrity
 - Friction at the interface
 - Tool wear/life
- Advantages of in-situ over ex-situ measurements
 - Ex-situ CMM, profilometer etc.
 - In-situ dyno, load cells, force sensors, AE, vibration
- Interfaces and Tribology are important
 - Presence of a surface film (lubricant)
 - Contact stress/pressure

The

Contents

- Ultrasound and Interfaces (basic principles)
- Developing an Interface Sensor
- 3 Case (Pilot) Studies
 - Metal Rolling
 - Cutting tool monitoring
 - Incremental sheet forming

Ultrasound and Interfaces

Ultrasound and Waves

Tribology

Centre

- Ultrasound are small mechanical vibrations (>20kHz)
- Elastic waves in a solid or liquid tiny amplitude
- The particles don't travel they just oscillate
- Wavelength, frequency, amplitude

- Ultrasound can travel through a medium
- Ultrasound *reflects* from boundaries echoes
- We can measure the frequency, time of flight and amplitude

Bat sonar

Returning sound waves

Generating Ultrasound #1

- Usually generated by piezo electric transducers
- Apply a voltage pulse (10 100V)
- Frequency of vibration depends on thickness

The

Pulser Generates short duration voltage pulses Piezo-electric element Converts voltage to deflection (and vice versa)

Laptop & Labview Instrument control and

signal processing

Digitisor

Digitiser Converts received pulses to digital signal

Ultrasonic Reflection

<u>_2</u> $Z_2 + Z_1$

- Reflection Coefficient, R
- *R=Amplitude r / Amplitude i*
- The *acoustic impedance* is important;
 - $z = \rho c$

Steel - steel	R=0
Steel - brass	R=0.4
Steel - oil	R=0.85
Steel - air	R=0.999999

A Simple Spring Model (oil Gentre Centre film)

frequency of the wave (= $2\pi f$)

stiffness of oil film = B/h
(bulk modulus / oil film thickness)

The

A Simple Spring Model (rough interface)

w=frequency of the wave (=2pf) z=acoustic impedance of the solids

In Basic Terms

Time of Flight will tell us about the geometry of the part (compression)

- Amplitude will tell us about the interface (an oil film, close contact)
 - R is small very thin film of lots of contact
 - R is big thick oil film little contact
 - R=1 no oil no contact

Three Examples

metal rolling cutting tool contacts incremental sheet forming

Metal Rolling & the Rollbite

The

Tribology Centre

- A very complicated tribological contact
 - Rough, plastic, mixed regime lubrication, two phase lubricant
- Stress, elongation, strip thickness, lubricant film
- RollGap Sensors EU Project (RFCS scheme)

A Sensor Inside the Roll

- Transducer mounted within the roll
- Slip rings to take out the signal
- Ultrasonic pulse towards the roll bite
- Reflected back to same sensor

The

CU10

Arcelor Meziers Pilot Mill

The CUNAROU

Tribology Centre

Typical Reflected Signal (when sensor is over the strip)

 Analysed to give:

- Roll bite width
- Strip thickness
- Oil film thickness
- Roll stress

Estimate of Roll-bite Width

Strip Thickness

- time difference between strip nearside and far-side reflections
- Compared with prediction from 'Metalub'

$$\left|R\right| = \frac{1}{\sqrt{1 + (2K/\omega z)^2}}$$

Oil Film Thickness

Film Thickness - Various Speeds - PtoP - Ch. 1 & 2

Roll Stress

- time of flight through roll
- as sensor moves over strip
- As roller compresses path is shorter

14.05 14.04 **Time of Flight (µm)** 14.02 14.01 14 14 13.99 13.98 5 15 20 25 30 0 45 50 10 35 40 **Distance (mm)**

Acousto-elastic Effect

- When a material is under stress its speed of sound changes
- Called the acousto-elastic effect
- Means the time of flight will change
- Depends on, α (acousto-elastic constant)

$$V_L = V_{L0}(1 + \alpha_L \sigma)$$

Radial stress : σ_{RR} [MPa]

Three Examples

metal rolling cutting tool contacts incremental sheet forming

- Effect of machining parameters on
 - ship formation
 - tool wear
 - coolant film formation
 - friction
 - surface finish

Instrumenting a Cutting Tool Tribology

The

eunardo

- 6082-T6 Aluminium tube,
- Orthogonal cutting with a Kyocera tool insert uncoated
- CNC Lathe MAG HAWK 300
- Kistler Dyno for cutting forces

Parameters	Levels				
	1	2	3	4	5
Cutting speed (m/min)	40	60	90	120	140
Depth of cut (mm)	1.2	1.5	2	2.5	2.8
Feed (mm/rev)	0.09	0.12	0.16	0.2	0.23

Dry Cutting

The

Tribology

Centre

- Vary feed with depth and speed constant
- Not immediate engagement
- Increase in chip contact area with feed rate
- High frequency oscillation in the signal (4.77 Hz corresponds to spindle speed 286rpm)

Effect of Cutting Speed

Dry • Wet

Effect of Feed Rate

Dry • Wet

Effect of Cutting Depth

Effect of Oil on 'Contact Area' Tribology Centre

The

೯೮ಗ

Cutting Forces measured on Dyno

The

eunardu

Correlation to Cutting Forces Tribology

The

Four Examples

metal rolling cutting tool contacts incremental sheet forming

Incremental Sheet Forming

- Incremental passes of a round tipped tool over a work piece.
 - Controlled by CNC
 - No need for a forming die
 - Reduces cost for low production runs
- But how much can you press each run
- Role of lubrication under different forming conditions

Tool Instrumentation

Test No	Feed rate (mm/min)	Lubricant	Forming Angle (degree)
1	1000	Grease	60
2	1000	Grease	30
3	2000	Grease	30
4	1000	oil	30

The forming load from cone 60° is slightly higher than 30°

Measured Oil Film

- Fluctuation around the circumference
- The oil film is thinner than the grease film
- For grease

The University Of Sheffield.

- The higher loaded case has lowest film
- Speed made little difference
- 3 > 2 > 1 > 4

> Sample 1 has largest RA value

No obvious difference can be seem in surface profiles
 3 < 2 < 4 < 1

Conclusions

- The cutting/forming interface is critical in manufacturing
- Ultrasound can be a non-destructive way of measuring that interface
- The problem is that interface is often small and inaccessible
- If we have nice big contacts
 - Direct measurement of oil film, geometry and contact stress
- Often the interface is small
 - smallest sensor size 1 2mm square
 - We can only observe 'empirical' correlations
- Challenge using the measurements to change the process

Acknowledgements

- RA's and PhD students
 - Andy Hunter, Tom Holdich, Joshua Adeyemi (metal rolling)
 - Dlair Obaid (machining)
 - Bin Liu (sheet metal forming)
- Some sponsors
 - Tata Steel, Arcelor,
 - EU RFCS & Marie Curie programmes
 - EPSRC fellowship on Tribo-acoustic sensors