

University of Nottingham

Methodology for the development of in-line surface measuring instruments (with a case study)

Wahyudin P. Syam Manufacturing Metrology Team Faculty of Engineering

• Fast and accurate optical in-line measurements for **mass-production** manufacturing processes at millimetre- to micrometre-scale

Many challenges for the realisation of fast and accurate optical inline measuring instruments:

- 1. Methods
- 2. Speed
- 3. System integration and control
- 4. Traceability
- 5. Intelligence

NOTE: Not all challenges need to be addressed for a given case

Proposed by Richard Leach

University of

Case study: additive surface finishing

Rough surface:

Smooth surface:

PostPro3D machine

Goal: a fast in-process surface condition detection for close-loop control

Phase 1

Knowledge and data (a priori) gathering: surface topography (texture and form), correlation between topography and component's function

Phase 2

The development of in-line measuring instrument and the integration into a production line or machine

Phase 3

The control system of production processes or products

- A lot of measurements with high resolution focus variation microscopy
- Different polymers measurements
- Understanding surface evolutions during different post processing

1 = 0 %
2 = 25 %
3 = 50 %
4 = 75 %
5 = 100 %
6 = Over process

Requirements:

- Small and compact measuring instrument
- Software to control the instrument
- Fast detection of surface condition
 < 30 s (preferably < 15 s)
- Low cost

University of

- Flexible and portable
- Easy to integrate
- Time limit: a 6 month project

Solution:

- 3D surface reconstruction (at this moment) is not a solution
 - With current technologies, measurements take time = 1 min. (scanning, data processing, etc)
 - High-cost for precision stage (most 3D measuring instruments involve a scanning a surface through its focused position).
 - Longer development time
- 2D image analysis solution is selected
 - Low-cost
 - With machine learning, image analysis is significantly enhanced
 - Absolute surface measurements are not required

Instrument development:

University of

Nottingham

UK | CHINA | MALAYSIA

Software development:

University of Nottingham

UK | CHINA | MALAYSIA

Measurement module

Machine learning module

PRODETECT: In-process surface defect detection	PRODETECT: In-process surface defect detection	
File Task Help	File Task Help	
	Machine learning (ML) module	2 ×
Conces Conces Conces Control panel Conces Control I Colour balance Stop cames Pool gan Mn. Max Robot Torred family I Specified II Specified III Specified III Specified III Specified IIII Specified IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Camera Camera Channel 1 Exposure Poxel gain Contrast Poxel gain Contrast Poxel gain Contrast Poxel gain Contrast Robot Tavel distance [rm]: Start camera Blue gain Colour balance Stop camera Blue gain Contrast Robot Tavel distance [rm]: Start camera Number of training data: Save output Connect I Pocas + Pocas Number of training data: Number of training data: Output message: Output message: Connected to Camera: Docuput message: Connected to Camera: Poxel sze: 3.6 um	

Instrument and software testing: TPU samples

Type 2 – 25 %

Type 1 – 0 %

University of

Nottingham

UK | CHINA | MALAYSIA

Type 3 – 50 %

Type 4 – 75 %

% Type 5 – 100 %

 Instrument placement: inline

University of

Nottingham

• After the process, but still inside the process cycle

11

2

- Fundamental research to address the challenges for in-line measurements at millimetreto micrometre-scale
- Exploitation of various state-of-the-art machine learning methods for improved measurement performance
- Implementation of the methodology for absolute in-line measurements, for example: diameter measurement, length, *Sa*, *Sq*, etc

University of Nottingham

Manufacturing Metrology Team at Nottingham

Thank you

EPSRC Centre for Doctoral Training in Additive Manufacturing

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States