The Integration of a Vision Based Inprocess Inspection System within the CassaMobile Project

Dr. Andrew Johnson, <u>Dr. Xiaoxiao Han</u>, Prof. Richard Bibb

24th January, 2017, MTC QCAM

Contents

- Introduction to CassaMobile project
- Introduction to the Additive Manufacturing (AM)
 Module
- The integration of the inspection system
- Conclusion

- €5.6 million, 11 partners
- http://www.cassamobile.eu/
- 36 months; September 2013 August 2016
- Keywords: Mobile, flexible, modular

The General Concept

Mobile, flexible, modular, small-footprint manufacturing system in a transportable container that can be easily configured for different products and processes

On-site manufacturing anywhere, enabling the benefits of localised service delivery without duplication of equipment at multiple locations

The Process Flow

The CassaMobile Container

Introduction to the AM module

CAD model

Basic specification

- Material Extrusion
- Dual Nozzles with water cooling
- Print speed: 600mm/min
- Minimal layer thickness:0.15mm
- Discrete control cabinets
- Integrated inspection camera and lighting

The Concept Overview

Hardware

- A high specification camera and lens
- Inspection lighting and power supply units
- An appropriate I/O box
- An industrial personal computer (IPC)

Specification

- Basler acA2040-90um camera
- Kowa LM12HC lens
- 300mm long ProPhotonix line light Qty 4
- National Instruments USB-6501 I/O box
- 24v power supply unit

Hardware components connections

Software

To facilitate the realisation of the proposed in-process inspection concept, a number of software requirements need to be satisfied, including:

- Generating reference image data
- Appropriately preparing/coding the I/O box
- Establishing the custom G-code to trigger the inspection system
- Designing and implementing an appropriate in-process software inspection system

UI (User Interface)

- Module one Displays images of the both the reference slice image as attained from the raw CAD data, and an image of the capture printed layer.
- Module two Enables the operator to set the number of required inspections, an acceptable calculated percentage difference between the reference and built images, and whether a perimeter or area inspection is to be performed.
- Module three Provides a clear indication to the operator as to the inspection status of the system
- Module four Allows the operator to commence or abort the inspection cycle.

Inspection system housing within the AM module

Inspection system initial testing

Future study

- Establishing a mean to automate the thresh-holding of captured images to optimise inspection performance.
- Determining an intelligent lighting protocol to minimise shadows within the inspection area of highly complex parts.
- Enhancing the storage and visibility of inspection results/data using
 3D graphic solutions.

Conclusion

- A vision based in process inspection system has been established
- It has been integrated in the AM module
- The system has been tested within the AM module in the container

CassaMobile Video

https://www.youtube.com/watch?v=PoyVWIaEHaA

Thank you for your attention. Any questions?

Dr Xiaoxiao Han x.han2@lboro.ac.uk

