Special Interest Group Meeting : Quality Control for Additive Manufacturing 23rd – 24th January 2017

le c**nam**

Non-destructive volumetric control of additive manufactured parts: alternatives methods to X-ray tomography

Anne-Françoise Obaton (Dr/Habil.) Research in metrology for additive manufacturing anne-francoise.obaton@lne.fr

Laboratoire commun de métrologie LNE-Cnam

Agenda

> Assessment of the potential of...

✓ ...density and percentage of lattice cell measurements...

- ✓ ...Eddy currents...
- ✓ ...ultrasound techniques...
- ✓ ...terahertz waves...

...to characterize AM parts

> LNE projects on AM:

- ✓ PhD thesis: On line control using laser ultrasound
- ✓ National project: Quality control on industrial AM parts
- ✓ European project: Metrology for AM medical implants

Assessment of the potential of density and percentage of lattice cell measurements to characterize AM parts:

> Archimedes' method

Gas pycnometric method

Assessment of the potential of density and percentage of lattice cell measurements to characterize AM parts:

> Archimedes' method

Archimedes' method

Equipment:

Balance: 400 g max, 0,1 mg resolution Container: filled with liquid placed beneath the balance

Suspension device: immersed in the liquid and hung beneath the weighing pan.

Protocol

- 1. Measurement of the apparent mass (m_1) in air
- 2. Measurement of the apparent mass (m_2) in twice –distilled water for dense parts or in absolute ethanol for lattice structures
- 3. Calculation of the density:

$$\rho = \frac{m_1}{m_1 - m_2} \left(\rho_{air} - \rho_{liquid} \right) + \rho_{liquid}$$

Density and percentage of lattice cell measurements of dense structures

Analysis of two different (77 % and 79% porosity) AM titanium lattice structure specimens

Measurements performed by E. Mahé and P. Jeanjacquot from LNE

Benefits of the method for AM:

- Density measurement
- > Percentage of lattice cell measurement
- Compliance verification with part specifications
- Characterisation of lattice structures

- Material characterisation (internal porosity quantification)
- Part repeatability/reproducibility (part comparison)
- Limitation: long measurement

Assessment of the potential of density and percentage of lattice cell measurements to characterize AM parts:

Gas pycnometric method

Euspen-Quality control for AM-Coventry-A-F. Obaton

7

Gas pycnometric method

Protocol

- 1. Measurement of the apparent mass (*m*) in air
- 2. Increase of the pression from P_{atm} to P_1 in the cell where the sample is placed
- 3. Opening of the expansion cell until equilibrium
- 4. New measurement of the pression P_2 in the cell where the sample is placed
- 5. Density calculation:

$$\rho = \frac{m}{V_{cellule} - V_{expansion} \left(\frac{P_2 - P_{atm}}{P_2 - P_1}\right)}$$

Density and percentage of lattice cell measurements of dense structures

Measurements performed by Dr. C. Cayron from LNE

Benefits of the method for AM:

- > Density measurement
- Percentage of lattice cell measurement
- Compliance verification with part specifications
- Characterisation of lattice structures
- Material characterisation (internal porosity quantification)

- Part repeatability/reproducibility (part comparison)
- Fast measurement, convenient for routine control
- Limitation: less accurate than Archimedes' method

23rd - 24th January 2017

Assessment of the potential of Eddy currents to characterize AM parts

Innovative Eddy current method

Sciensoria Electromagnetic solutions

Specificities

- Broadband system
- Measurements independent of the probe position
- Gives the electrical conductivity

Electrical conductivity measurements of lattice structures

AM process used repeatable

Measurements performed by Dr. Minh-Quang LÊ from Sciensoria (sciensoria@gmail.com)

Benefits of the method for AM:

- Electrical conductivity measurement
- Characterisation of lattice structures
- Part repeatability/reproducibility (part comparison)

- Fast measurement, convenient for routine control
- Complementary to ultrasound methods
- Limitation: sub-surface characterisation

Assessment of the potential of ultrasound techniques to characterize AM parts:

Resonant Ultrasound Spectroscopy (RUS)

C-Scan high frequency ultrasound

Assessment of the potential of ultrasound techniques to characterize AM parts:

Resonant Ultrasound Spectroscopy (RUS)

Elasticity parameter measurement methods

Innovative Resonant Ultrasound Spectroscopy (RUS) method & LNE

23rd - 24th January 2017

Elasticity parameter measurements

	Shear modulus (GPa)
E1 - 77%	1.32
E2 - 77%	1.31
E1 - 79%	1.12
E2 - 79%	1.12

le cnam

Inserm

16% variation of the shear modulus between the two specimens

LIB measurements (contact: pascal.dargent@upmc.fr)

Benefits of the method for AM:

- Elasticity parameter measurement
- Non-destructive mechanical characterisation

(reusable part)

Low volum speciment needed

- Part repeatability/reproducibility (part
 - comparison)
- Easy to use for routine control

Assessment of the potential of ultrasound techniques to characterize AM parts:

C-Scan high frequency ultrasound

Euspen-Quality control for AM-Coventry-A-F. Obaton 18

C-Scan high frequency ultrasound set-up

MISTRAS

Products & Systems UT Division

Specificities

• Emission and reception card adapted to the sensor

 Adaptive system to the needs, applications and conditions

C-Scan high frequency ultrasound measurements & LNE | e cnam

Products & Systems UT Division

relative and the scan

AM AI 6061 parts

Measurements performed by V. Prezza, P. Delvart and D. Marlot from Eurosonic-Mistras (dmarlot@mistrasgroup.eu) $23^{rd} - 24^{th}$ January 2017Euspen-Quality control for AM-Coventry-A-F. Obaton20

Volumetric ultrasound views for two different depths

C-Scan high frequency ultrasound measurements & LNE | e cnam

Products & Systems UT Division

AM AI 6061 parts

1.9 cm focalised 20 MHz sensor

Measurements performed by V. Prezza, P. Delvart and D. Marlot from Eurosonic-Mistras (dmarlot@mistrasgroup.eu)

23rd – 24th January 2017

Euspen-Quality control for AM-Coventry-A-F. Obaton

22

C-Scan high frequency ultrasound measurements

Products & Systems UT Division

LNE le cnam

Surface measurements

Measurements performed by V. Prezza, P. Delvart and D. Marlot from Eurosonic-Mistras (dmarlot@mistrasgroup.eu)

23rd - 24th January 2017

Euspen-Quality control for AM-Coventry-A-F. Obaton 23

Volumetric ultrasound views for two different depths

C-Scan high frequency ultrasound measurements & LNE | e cnam

Top, relative to the scan

> S AMP G2 CH1 4 > C-Scan Image Measurements performed by V. Prezza, P. Delvart and D. Marlot from Eurosonic-Mistras (dmarlot@mistrasgroup.eu) 23rd – 24th January 2017 Euspen-Quality control for AM-Coventry-A-F. Obaton 25

•

4 1

10

20

30

40

50

0-

C-Scan high frequency ultrasound measurements

Measurements performed by V. Prezza, P. Delvart and D. Marlot from Eurosonic-Mistras (dmarlot@mistrasgroup.eu)

Benefits of the method for AM:

- Dimensional measurement
- Non-destructive control
- > 3D images of external and internal structures
- Compliance verification with part specifications

Faster than X-ray tomography (XCT)

Limitations:

- ✓ Not suitable for complex geometry parts
- ✓ Less accurate than XCT

Assessment of the potential of terahertz waves to characterize AM parts:

- > Terahertz spectrometry
- Terahertz tomography

Assessment of the potential of terahertz waves to characterize AM parts:

> Terahertz spectrometry

Terahertz spectrometer

29

Terahertz spectrometer TPS3000 from TeraView

TPS3000 experimental setup for transmission measurement

Terahertz spectrometer measurements

LNE lecnam

AM zirconium part for microfluidic applications

Terahertz spectrometer image

Optical image after sectioning of the part

IMS measurements (contact: patrick.mounaix@u-bordeaux.fr) 30

Euspen-Quality control for AM-Coventry-A-F. Obaton

Assessment of the potential of terahertz waves to characterize AM parts:

Terahertz tomography

Euspen-Quality control for AM-Coventry-A-F. Obaton 31

Terahertz tomography measurements

IMS terahertz tomograph

➢ Set-up:

- ✓ THz source
- ✓ Chopper modulating the terahertz beam

 \checkmark Polytetrafluoroethylene lens focusing the beam on the DUT

✓ DUT

✓ Polytetrafluoroethylene lens recollimating the beam on the detector

✓ Detector

- ✓ Lock-in amplifier
- **> THz source:** Gunn diode
 - \checkmark coupled to a horn-shaped antenna
 - ✓ frequency tripled
 - ✓ power and frequency: 12 mW at 287 GHz
 - ✓ beam size: 1.33 mm
- Chopper: kilohertz range
- Detector: Schottky diode
 - ✓ one monopixel

23rd – 24th January 2017

Terahertz tomography measurements

AM spinal implants in peek

AM ceramic part

IMS measurements (contact: patrick.mounaix@u-bordeaux.fr)

23rd – 24th January 2017

Euspen-Quality control for AM-Coventry-A-F. Obaton

Terahertz tomography measurements

Benefits of the method for AM:

- Dimensional measurement
- Non-destructive control
- > 3D images of external and internal structures
- Compliance verification with part specifications

Faster than X-ray tomography (XCT)

Limitations:

- Not suitable for metal
- ✓ Less accurate than XCT

Agenda

35

> Assessment of the potential of...

✓ ...density and percentage of lattice cell measurements...

- ✓ ...Eddy currents...
- ✓ ...ultrasound techniques...

✓ ...terahertz waves...

...to characterize AM parts

> LNE projects on AM:

- ✓ PhD thesis: On line control using laser ultrasound
- ✓ National project: Quality control on industrial AM parts
- ✓ European project: Metrology for AM medical implants

On line control using laser ultrasound (2016-2018)

Euspen-Quality control for AM-Coventry-A-F. Obaton 36

On line control using laser ultrasound

Surfacic waves: Rayleigh waves, surfacic longitudinal waves Volumetric waves : longitudinal waves, transverse waves

« I AM SURE » project with Airbus Group, DCNS, Thales, LNE, CEA-List, Cetim, VLM, Polyshape and AFPR

Célia Millon **PhD student CEA/LNE**

matériaux : acier ferritique, épaisseur 20 mm entaille : profondeur 2,5 mm, largeur 0,3 mm dans

National project:

Quality control on industrial AM parts ("I AM SURE", 2016-2018)

23rd – 24th January 2017

Euspen-Quality control for AM-Coventry-A-F. Obaton

✓ Metrological characterisation and validation of X-ray tomographs for dimensional measurements of the industrial AM parts;

- ✓ Supervising the PhD thesis : On line control using laser ultrasound;
- \checkmark Metrological characterisation and validation of the AM machines.

40

European project: Metrology for AM medical implants ("MetAMMI", 2016-2018)

Euramet project coordinate by LNE

Objective: Provide dedicated and qualified metrology tools as well as good practise protocols for a safe use of AM implants and guides in the medical sector:

EURAME

- ✓ Non-destructive volumetric methods for FAI: XCT and alternative methods;
- ✓ Routine controls for mass production;
- ✓ Good practice guides/Measurement protocols

SRT h04, 227.8 MM, 1876 k€ MetAMMI Metrology for additively manufactured medical implants

e cnam

Motivations The ageing population ⇒ Need for more patient specific health care system. Solutions Additive manufacturing: on demand, customised and complex geometry implants and guides. ⇒ New manufactured technology in highly critical applications: health ⇒ Measurement tools, procedures, good practices and standards for high quality ⇒ Guarantee of reliability to notified bodies ⇒ Facilitation of acceptance in the medical sector.

⇒ Manufacture of very complex geometry parts of high surface roughness Need for new non-destructive control methods Qualification and traceability of these methods.

Overall objective and Metrology challenges

Provide dedicated and qualified metrology tools as well as good practise protocols for a safe use of additive manufacturing implants and guides in the medical sector.

Euspen-Quality control for AM-Coventry-A-F. Obaton

Euramet project coordinate by LNE

LINE IC CNAM

23rd – 24th January 2017

WP1: Realisation of AM implants and guides, and traceable standards Aim: Providing implants guides and standards to be characterized throughout the project.

WP2: Characterisation of AM implants and guides, and traceable standards using nondestructive and destructive techniques Aim: Full implant, guide and standard characterisation.

Thank you for your attention

Anne-Françoise Obaton (Dr/Habil.) Research in metrology for additive manufacturing anne-francoise.obaton@lne.fr

Euspen-Quality control for AM-Coventry-A-F. Obaton

43