

SIMULTANEOUS INTEGRITY & DIMENSIONAL CT INSPECTION

Nick Brierley
Melanie Bombardiere

Quality Control for AM Conference, 24-01-2017

1. BACKGROUND 1. General

- ▶ Computed Tomography (CT) is widely used for the non-destructive inspection of AM components.
 - Insensitive to sample geometry and surface finish.
- ▶ CT is primarily used for integrity inspection / defect detection, with a separate measurement technique being applied to confirm dimensional conformance.
 - But latest CT systems can also be used for dimensional metrology, including of inaccessible features.
- ▶ The most frequent industrial concern regarding CT is the cost (/time) of CT inspections.
 - Simultaneous integrity and dimensional inspection is one possibility for addressing this.

From Zeiss brochure

1. BACKGROUND 2. Simultaneous Inspection

- ▶ Using a CT scan for both integrity & dimensional inspections
 - ▶ Potentially eliminating a separate dimensional inspection process

From GOM.com

From Nikon brochure

From hexagonmetrology.eu

From Nikon brochure

BACKGROUND Limitations of CT

- ▶ In the context of simultaneous inspection it is important to bear in mind the many limitations of CT.
- ▶ NDT / general limitations, including:
 - ▶ The need to rotate the part ruling out very large parts
 - ▶ The need to penetrate the part ruling out very thick / dense parts
- ▶ Dimensional metrology limitations, including:
 - Many sources of uncertainty, most not fully understood
 - ▶ Lack of traceability & comprehensive standards

BACKGROUND Limitations of CT (2)

- The segmentation / surface determination in analysis of CT data has potential to substantially affect inspection performance:
 - ▶ For NDT, this relates to probability of detection & false calls
 - ▶ For dimensional metrology, edge dependent measurands will have a strong dependence

Edge dependent (a) and edge independent distances (b). From Kiekens, K. et al., 2011. Parameter Dependent Thresholding for Dimensional X-ray Computed Tomography. *International Symposium on Digital Industrial Radiology and Computed Tomography.*

2. SIMULTANEOUS INSPECTION 1. Advantages

- ▶ Time & money savings compared to alternative based on a separate dimensional measurement process
- ▶ CT overcomes some limitations of tactile & optical sensors, e.g. regarding
 - Access to re-entrant features
 - Surface roughness
- The scanning time is independent of
 - Workpiece complexity
 - ▶ Number of features to be inspected

2. SIMULTANEOUS INSPECTION2. Disadvantages / Limitations

- ▶ The workpiece and associated measurands may not be suitable for dimensional measurement using CT
- Additional costs could be incurred upgrading equipment for dimensional measurement
- ▶ The manufacturing process possibly needs to be reconfigured for simultaneous inspection
- ▶ A compromise of settings (including fixture) having to be accepted, between two optimal configurations
- ▶ Potential additional costs associated with the possible collection of more data overall (given changes to CT configuration)
- ▶ A loss of flexibility & availability of dimensional metrology hardware if conventional metrology system is eliminated from the shop floor

3. INSPECTION STRATEGIES 1. Overview

- ▶ Different inspection strategies exploiting simultaneous integrity & dimensional CT inspection can be identified:
 - Using CT data in isolation
 - Separate dimensional metrology step completely eliminated
 - Using CT data together with data from a master part
 - ▶ Convectional (tactile / optical) dimensional assessment of master part
 - Using CT data together with some data from one or more conventional (tactile / optical) metrology systems
 - ▶ Limited conventional metrology data collected, either as a separate processing step or concurrently with CT scan, and exploited in data evaluation

3. INSPECTION STRATEGIES 2. CT in isolation

- Desirable financially as separate, conventional metrology step can be eliminated
- ▶ Feasible only if circumstances are favourable for using CT for dimensional measurement
 - CT can fully satisfy measurement requirements
- ▶ Features on metrology CT systems are designed to increase likelihood of system being able to satisfy requirements
 - ▶ E.g. GE's scatter|correct feature can provide improved greyscale homogeneity in presence of x-ray scattering from sample, supporting clean and accurate surface determination

Slice through conventional CT scan volume of a steel part (left) and scatter corrected scan using GE scatter|correct (right). Highlighted areas in red are subject to scatter artefacts. Scan carried out as part of a system trial at GE in Wunstorf, Germany. Sample geometry courtesy of GRM Consulting Ltd.

3. INSPECTION STRATEGIES3. CT plus data from a master part

- ▶ Relevant only to inspection of multiple nominally identical parts
 - Serial production rather than R&D / bespoke work
- ▶ Requires one or more well-characterised good parts
 - ▶ A "virtual golden part", a composite of several experimental datasets, can be used if no single sample can be identified
- Essentially uses CT as a comparator, or gauging system
 - ▶ Bypasses concerns relating to measurement traceability
 - Provides limited information on deviations
- Repeatability of the CT data acquisition critical
 - Periodic re-calibration of master part necessary
 - ▶ More frequent re-calibration needed if hardware not used consistently

3. INSPECTION STRATEGIES4. CT plus conventional metrology

- ▶ Potential benefits vs. a CT-only measurement approach:
 - ▶ Tactile / optical points may take care of measurands for which CT is unsuitable, so remainder can then be assessed by CT only
 - Use of tactile / optical points as part of a calibration procedure
 - Use edge independent measurements for voxel scaling
 - Use edge-dependent measurements to initialise or fit surface determination
 - Improved traceability
 - Use of tactile / optical points to improve the CT reconstruction and hence improve the data for measurements to be extracted
 - ▶ Beam-hardening compensation from path-dependent X-ray absorption
 - Seeding of iterative reconstruction
- ▶ No off-the-shelf tools exist to facilitate all these possibilities

3. INSPECTION STRATEGIES4. CT plus conventional metrology (2)

- Considerations when embedding a convectional measurement system into a CT enclosure:
 - ▶ Tactile: will have to occur before or after the CT scan to avoid interfering with this, incurring a time and cost penalty
 - Optical: potential interferences between X-rays and optical detection system used
 - ▶ Both: size & positioning constraints, given radiation safety must be maintained; potential long-term radiation damage to equipment

3. INSPECTION STRATEGIES4. CT plus conventional metrology (3)

Only commercially advertised systems that combine CT with conventional measurement technologies are Werth multi-sensor CMMs

Tactile probe in CT enclosure

http://www.werth.de/fileadmin/media/pdf/ Hauszeitung/Multisensor_E_2016.pdf

CONCLUSIONS

- ▶ CT can overcome limitations of tactile & optical sensors
 - Especially regarding internal features & scanning time
- ▶ But sample & associated measurands may not be suitable for dimensional measurement using CT
 - ▶ Edge independent measurands are more likely to be suitable than edge dependent measurands
- ▶ It may be necessary to accept a compromise of settings, between optimal configuration for integrity and dimensional inspection purposes
- ▶ There are significant potential barriers to the introduction of simultaneous inspection, e.g.
 - Additional capital costs
 - ▶ Need to reconfigure the manufacturing process chain
- Possibility of supplementing CT data with limited tactile / optical data a promising option
 - High level of flexibility
 - ▶ Potential for an improvement in data quality & measurement traceability vs. a CT-only inspection
- ▶ Whilst some of latest hardware & software is geared towards enabling simultaneous inspection, there are so far no off-the-shelf solutions for exploiting all the possibilities of a CT inspection supported by limited tactile / optical measurements.

- Questions?
- nick.brierley@the-mtc.org
- ▶ The work described in this presentation was completed as part of the MTC Core Research Programme project *Rate-Scalable X-ray CT Inspection*, funded by the MTC membership and the High Value Manufacturing Catapult.

DISCLAIMER:

The data contained in this document contains proprietary information and it may not be copied or communicated to a third party or used for any other purpose than that which it was supplied without the MTC's prior written consent. © MTC 2017

