

Approaches for AM inprocess inspection using SRAS and OCT

Adam T. Clare^a, Matthias Hirsch^{a,b}, Guanying Guan^a, Rikesh Patel^b, Wenqi Li^b, Sam Catchpole-Smoth, Paul Dryburgh^b, Don Pieris^b, Steve Sharples^b

Advanced Component Engineering Laboratory, Uni of Nottingham Optics and Photonics Group, Uni of Nottingham

adam.clare@nottingham.ac.uk

Overview

- 1. The opportunity and need for measurement
- 2. Techniques investigated
- 3. Limitations
- 4. Opportunities for further work and next steps.

The Processes

Powder Bed / Additive Layer Manufacture or similar

DED, LENS, DMLS, WAM or similar

The Problem: Defects

Summary of PBF discontinuities.

Material discon.	Photo	Description	Typical sizes
(Gas) pores	33,36]	Entrapped gas pores within the bulk of the material. Material dependent.	~9.9 μm (electron beam-PBF) 5–20 μm (laser-PBF)
(Elongated) pores	[33,36,43]	Lack of fusion pores in between layers of the AM process.	50–500 μm
Balling		Molten material is not a flat layer, but instead creates large spherically shaped particles on the surface.	Part dependent — theoretically up to the length of the part.
Unfused powder	[46]	The melt pool varies in size and unfused powder is present.	Satellite powder clumps: 100–150 µm.
Cracking	[40,48]	Cracks can be within the component or more commonly, a disconnection of the part from the baseplate is seen.	Parts on bed: residual stress in the range of materials yield strength. Parts removed from bed: deformation may occur without heat treatment or further processing.

[Everton et al. 2016, Materials and Design]

When can we measure?

Ex-situ

Gold Standard: X-Ray CT

Observing integrity in finished parts is all well and good but:

- It is <u>expensive</u>
- <u>Time</u> consuming
- Requires part/source/detector manipulation
- <u>Resolution</u> is material and geometry dependent
- It can be a pain to interpret large data sets.
- Cant fix failed builds

When can we measure?

In-situ

Integrate NDE into AM processes

- Measure <u>each layer</u> for full 3D part data
- Can spot a problem and cancel AM process
- Inform a repair algorithm in the AM process, to fix and continue building

Our Solutions

• Two main instruments types:

Optical Coherence Tomography (OCT)

- for Selective Laser Sintering (Polymers)
- Interferometry technique for semi-transparent materials

Spatially Resolved Acoustic Spectroscopy (SRAS)

- for Selective Laser Melting (Metals)
- Laser Ultrasound technique, mapping surface acoustic waves

[Guan et al., Materials & Design, 2015]

OCT Results

Intensity algorithm allows automatic subsurface unmelted powder to be detected.

[Guan et al., Proceedings Royal Society A, 2016]

OCT Results

Detecting differences in unsintered powder and solid.

[Guan et al., Materials & Design, 2015]

OCT Results

OCT a scans showing the dense outer layer which hides un-melted powder underneath. Not possible before...a first

[Guan et al., Proceedings Royal Society A, 2016]

SRAS – Current Measurement technique

- Spatially Resolved Acoustic Spectroscopy
- - Laser ultrasonic NDE technique suitable for metals
- - Surface acoustic waves (SAW) generated using a pulsed grating pattern
- - Frequency of detected perturbation relates to wave velocity *where it is generated* (instead of measuring ToF)

SRAS Results

- SRAS Optical data (a) and surface acoustic map (d) showing <u>surface</u> and <u>subsurface defects</u>, respectively
- Surface defects equated to SEM micrographs (c)
- Subsurface defects equated to XCT measurements (f)

[Smith et al., JMPT, 2016]

SRAS Results

• What can we do with this information?

SRAS acoustic image

Pore analysis yellow: surface pore blue: sub-surface pore

[Smith et al., JMPT, 2016]

How good is an inspection process?

- Non-Destructive Evaluation Capability on AM
 - Is the interrogation technique appropriate?
 - What needs to be optimised?

 $NDE \ capability = Cap_{spatial}; Cap_{temporal}$

$$Cap_{spatial} = \frac{rD_{min}}{Cl_{min}(h_X, h_Y, h_Z)}$$

$$Cap_{temporal} = \frac{1}{Nt_{scan} + t_{latency}}$$

Where r is resolution; D_{min} is minimum Defect size; CI_{min} is minimum Cluster size; h_x , h_y , h_z is step size; N is Number of data points; t_{scan} is scan time per data point; and $t_{latency}$ is latency time

[Hirsch et al., Journal of AM, 2016]

Texture Evaluation of SLM parts using SRAS

- CM247LC samples produced with varying layer rotation
- Highly cracking and porous surfaces
- Analysis through SRAS and Optical Microscopy scans

SRAS Optical micrograph 7ptical Signal ү (mm) Y (mm) Y (mm) 2 Ô. 2 5 X (mm)

OM micrograph

X (mm)

SRAS Velocity micrograph

Texture Evaluation of SLM parts using SRAS

- (a) melting strategy
- (b) simulation of created toolpaths (observable error)
- (c) schematic of error
- (d) SRAS velocity data
 Texture defect present
- (E) SRAS optical data
 - Texture defect not present

Texture Evaluation of SLM parts using SRAS

- What can we use this information for?
- Feed back into the manufacture process
- Defect density of 5.32% in affected areas versus 1.17% in bulk material
- Avoid 'island interfaces' in the scan strategy

To Conclude

- Ex-situ works a treat.....
- Machine integration
- Make processes faster this is not trivial
- Understand what <u>needs</u> measuring AND what does <u>not</u>

Thank you

