

State-of-the-art in surface metrology for metal additive manufacturing

Nicola Senin Research fellow Manufacturing Metrology Team, Faculty of Engineering

Review paper

Surface texture metrology for additive manufacturing: a review (2016),

The University of Nottingham

UNITED KINGDOM · CHINA · MALAYSIA

A. Townsend, N. Senin, L. Blunt, R. Leach, J. Taylor,

Precision Engineering, 46. pp. 34-47. ISSN 0141-6359

Metal AM

Material	EBM	Laser	DED
Nickel alloys	0	100%	0
Aluminium alloys	0	100%	0
Stainless steels	0	87%	13%
Other steels	0	83%	17%
Titanium alloys	35%	50%	15%
Others	0	100%	0

Material	%papers	
Nickel alloys	5%	(75% Inconel 625):
Aluminum alloys (e.g. AlSi10Mg)	5%	
Stainless steels	39%	(70% 316L)
Other steels	10%	
Titanium alloys (in particular: Ti6Al4V)	34%	(95% Ti6Al4V)
Others	7%	

Part I Role of surface metrology in AM research

Active AM projects 2015-2016 (RCUK)

The University of Nottingham

UNITED KINGDOM · CHINA · MALAYSIA

The current landscape of AM research -2016 ICL AMN report

Process capability assessment

The University of **Nottingham**

UNITED KINGDOM · CHINA · MALAYSIA

90% literature on metal AM uses artifacts

Application-specific / product-specific research?

AM markets by application

UNITED KINGDOM · CHINA · MALAYSIA

The current landscape of AM research - 2016 ICL AMN report

In-process surface metrology

UNITED KINGDOM · CHINA · MALAYSIA

Need to be quick, need access, need to operate in challenging conditions

Most 2.5D and 3D measurement techniques don't work

In-process surface metrology

UNITED KINGDOM · CHINA · MALAYSIA

Other: (acoustic emissions, laser ultrasonics. Etc)

Defect "detection" (Y/N)

Part II Measurement of AM topography

Surface measurement pipeline

The University of **Nottingham**

Part II Measurement of AM topography What do AM surfaces look like?

UNITED KINGDOM · CHINA · MALAYSIA

SLM_Cube_Z0002 2016-03-08 14:10 h D7.8 x200 500 μm

UNITED KINGDOM · CHINA · MALAYSIA

SLM_Cube_Z0003 2016-03-08 14:12 h D7.5 x500 200 μm

Part II Measurement of AM topography Technologies

Stylus profilometer

UNITED KINGDOM · CHINA · MALAYSIA

40% of metal AM literature

Stylus problems

- Representativeness
- Traversal problems
- Damage

Optical areal measurement

The University of

--_

- Confocal Microscopy (%11)
- Focus Variation (%11)
- Coherence Scanning Interferometry (%7)

(Usage percentages form the PE review)

Optical areal measurement

X-ray Computed Tomography

Areal Measurement

Part III Characterisation of AM topography

Surface metrology pipeline

So many possibilities!

Texture parameters in AM surface metrology

UNITED KINGDOM · CHINA · MALAYSIA

From the PE review:

80% papers on metal AM use profile parameters

Ra >>>> **Rq** >> **Rz**, **Rt** >>(others)...

The good old Ra

ISO 4287:1997

Ra – Arithmetical mean deviation of surface heights (on the roughness profile)

Texture parameters in AM surface metrology

From the PE review:

20% papers on metal AM use **areal parameters** (90% of which cite *Sa*)

ISO 25178-2 arithmetic mean height - Sa

$$Sa = \frac{1}{A} \iint_{A} |z(x, y)| dx dy$$

Scale-limited characterisation

The University of **Nottingham**

UNITED KINGDOM · CHINA · MALAYSIA

Choice criteria

- Study application/function
- Study mfg. process
- Study measurement
- Parallel with profiles?
- Intrinsic properties of the dataset

From the PE review:

90% papers using profile parameters indicate cut-offs 70% papers using areal parameters indicate cut-offs

Z. Reese, J. Taylor, C. Evans ASPE 2016

The University of Nottingham

UNITED KINGDOM · CHINA · MALAYSIA

A. Townsend, L. Blunt, PE review, 2016

The University of **Nottingham**

UNITED KINGDOM · CHINA · MALAYSIA

[N.Senin, L.Blunt, in: Charact. Srf. Texture, R.Leach (Ed), 2014]

UNITED KINGDOM · CHINA · MALAYSIA

UNITED KINGDOM · CHINA · MALAYSIA

UNITED KINGDOM · CHINA · MALAYSIA

UNITED KINGDOM · CHINA · MALAYSIA

Part IV Open challenges Quality of acquired topography?

It does indeed look beautiful...

Part IV Open challenges What's relevant in topography?

<section-header>

What scales?

Possibly, **no single answer** (Viewpoints are context dependent)

Part IV Open challenges New scenarios for surface metrology

AM markets by application

UNITED KINGDOM · CHINA · MALAYSIA

The current landscape of AM research -2016 ICL AMN report

Do we know what to expect?

AM technologies inspire the creation of new designs

... forcing metrology to deal with unforeseen challenges

Lattice structures

Freedom of form

UNITED KINGDOM · CHINA · MALAYSIA

No tool-access problems

Probe-access problems?

Multimaterial / embedded function

UNITED KINGDOM · CHINA · MALAYSIA

Surfaces as interfaces between parts How to access if parts are built together?

The University of Nottingham Dimensional micro-metrology

III

The University of Nottingham

CHINA · MALAYSIA

Thank you

Centre for Precision Technologies @ Huddersfield

The Manufacturing Metrology Team

Lawrence Livermore National Laboratory

Advanced Manufacturing Technology Research Group

