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“Defects” are clearly a function of process parameters

(a) CO: Control

(b) C1: Contour only

(e) C4: Contour in-out

(g) C6: Snake function off  (h) C7:Turning function off
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In a single build, the
number of defects (red)
can be altered by
changing the melt
strategy.

Red = high circularity
defects (gas pores)

S. Tammas-Williams, H. Zhao, F. Léonard, F. Derguti, |. Todd, P.B.
Prangnell, XCT Analysis of the Influence of Melt Strategies on
Defect Population in Ti-6Al-4V Components Manufactured by
Selective Electron Beam Melting, Mater. Charact. 102 (2015) 47—
61.
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HIP



(a)

(b}

Whilst HIPing is undoubtedly good — it is not a “cure all”

S. Tammas-Williams et al. Metallurgical and Materials Transactions A May 2016, Volume 47, Issue 5, pp 1939-
1946



Defects
After HIPing and heat treatments

Annealed: 0.004 %
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As-built HIP

termination sites

9 mm (380 layers)

5 mm

nucleation site

Figure 3 Chimney pore that split into two branches soon after it
nucleated.

From Cordero et al.J Mater. Sci 52,
(2017), 3429-3435



Prevention is better than Cure (1):
In-situ Detection
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Thermal camera
Specifications
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Thermal camera
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Tunnel Defects
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In situ AM Synchrotron Setug

Scan
direction

Metallic powders
Boron Nitride

Synchrotron X-ray

In situ AM on Beamline 112

Leung, Lee, Towrie et al,
Funding EPSRC (RCaH&MAPP), FP7
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Prevention is better than Cure (2):
Control (Machine Learning)
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Human-Centric Systems

 Human-Centric Systems: Computational
Systems designed for user-centred information
processing

— Frameworks that mimic human cognition, i.e.
incremental learning, learning from examples etfc.

— Systems that are easy to interpret and interact with —
by non-experts i.e. linguistic interpretability

© The University of Sheffield
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Process monitoring

Courtes:y LZH, CAVITAR

* High-speed imaging and
bespoke illumination
system for melt pool
monitoring

e Spectral monitoring
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Methodology

e Construct a modelling framework based on a data-driven
approach (model output: defects)

* Develop a fast, but transparent ‘learning’ methodology
for the model

e Observe (algorithmically) how the model learns from
data

* Use information theory to link the learning performance
of the model to the input signals (process monitoring)

01/02/17 © The University of Sheffield



The model’s learning 22
evolution (training o
error) is linked "1
directly to the model’s ~
inputs (monitoring
signals)

Output Layer

Output layer weights Training Error

g ) IIF‘\\ \3___
0.2 / / \\\\\*—»,, o / 4 0: : “ ’ MM \‘ ‘
0.3 — 1 V j\lm‘ M’&INJNMW’\(‘W 'IU\M JI‘) \N
Zi=wlxl+w2x2+....+wjxj+...+wmxm (11)

Each model input ‘xj’
corresponds to a metric from the
process monitoring signals

where w;j is the weight for the correspond input x;:



Hypothesis: For two data sequences (model weights — evolution of model learning)
we can use information-theoretic measures to identify relevance/importance:

Cross-sample entropy is used [1]:

For two normalized sequences x(1) and y(1), 1<1=N, the vector

— E)

sequences Xim and Y.™ were formed as follows:
. number _of _j_that _meets_d;" <r

B(rxly) = . (8)
- y " " N-m
X, -{x(l),x(H- l),...,.\'(l+m-l)} (5)
and
¥ = { )y +1), y(G+m=1)} (6)
N number _of _j _thal_meets_d""‘l sr
where 1oi 1o . . A"(r)x]|y)= : L—(9)
ere 1=<i,j<=N-m, N 1s the number of data points of each N =-m
time series and m (embedding dimension) and r (tolerance
limits of similarity) are fix parameters. CSE 1s defined as:
. ) m m: . Nem -
The distance between X.™ and Yj 1s defined as: 2,.. A*(r)x|ly)

Cross —= SampEn(m,r,N )= ~In

\omB.( , .
df =d| X", Y| =max|x(i+k)-y(j+k)| (7) D BINxlly)

where l<sk<sm-1.

[1] G. Tzagarakis and G. Panoutsos, Model-Based Feature Selection Based on Radial Basis Functions
and Information Measures, Proceedings of the 2016 IEEE World Congress on Computational
Intelligence, Canada (2016)

For each ; < N -=m denote:
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Simulation results

e Simulation results on a Example?oqel-basfed defect
rediction surface
sample of 81 welds g

e 80 features from the

monitoring signals were
used to create the overall

dataset
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* Most important metric
linked to defects:

— Mean of reference width
measurement (meltpool)

Weld Quality Prediction ('Ok’, 'Nok')
o
D
i

0.4

0.7
Mean of reference 06 0

0.2
Mean of Sensor Signal
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What Next?

Development of Deeper Process “rules”

Performance by Design - building from / on
— models of differing levels of complexity — generation of Axioms

— data acquisition —in and ex-situ and in-operando (see P.Lee talk
later...)

— direct observation — visual, hyperspectral, resistance etc.
Capacity to Develop “cyber-physical” manufacturing
environments — Human Centric but Machine Learning enabled

This is a clear intersection of AM and Industry 4.0 — but
should enable the promise of AM (and other processes) to be
fulfilled.
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