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Defects 



“Defects” are clearly a function of process parameters 

In a single build, the 
number of defects (red) 
can be altered by 
changing the melt 
strategy. 
 
Red = high circularity 
defects (gas pores) 
 

S. Tammas-Williams, H. Zhao, F. Léonard, F. Derguti, I. Todd, P.B. 
Prangnell, XCT Analysis of the Influence of Melt Strategies on 
Defect Population in Ti-6Al-4V Components Manufactured by 
Selective Electron Beam Melting, Mater. Charact. 102 (2015) 47–
61. 
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Where:  
q = Beam power 
 v = Beam traverse rate 
 l = Layer thickness 
h = Hatch offset 
 

S. Tammas-Williams, H. Zhao, F. Léonard, F. Derguti, I. Todd, P.B. 
Prangnell, XCT Analysis of the Influence of Melt Strategies on 
Defect Population in Ti-6Al-4V Components Manufactured by 
Selective Electron Beam Melting, Mater. Charact. 102 (2015) 47–
61. 



HIP	
	
	

	



Whilst HIPing is undoubtedly good – it is not a “cure all” 
S.	Tammas-Williams	et	al.	Metallurgical	and	Materials	TransacLons	A	May	2016,	Volume	47,	Issue	5,	pp	1939–
1946	



Defects 
After HIPing and heat treatments 
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  As-built        HIP 

From	Cordero	et	al.J	Mater.	Sci	52,	
(2017),	3429-3435	



PrevenLon	is	be[er	than	Cure	(1):	
In-situ	DetecLon	
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12 Thermal camera 
Specifications 

•  2048x2048	resoluLon	
•  High	quantum	efficiency	allows	good	

detecLon	in	NIR	spectrum	(650	-	1800C)	
•  Temperature	range	can	be	shibed	by	

changing	the	ND	filter	
•  ConLnuous	video	feed	during	preheat	

and	melt	
•  100	fps	at	full	resoluLon	

•  2048x512	-	400	fps	
•  2048x128	-	1603	fps	
•  2048x8	-	25,655	fps	

•  Custom	made	lenses	with	AR	coaLng	
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13 Thermal camera 
Example Footage 

Tunnel	Defects	
10	mm	
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14 Thermal camera 
Example Footage 

10	mm	
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Metallic powders 
Boron Nitride 

plates 

Scan 
direction 

Attenuated X-ray 

250 µm Synchrotron X-ray 

In situ AM Synchrotron Setup 
 

Diamond	Light	Source	

In	situ	AM	on	Beamline	I12		

SS316,	200W,	7.5mm/s,	5000fps	

Leung,	Lee,	Towrie	et	al,	
Funding	EPSRC	(RCaH&MAPP),	FP7	



PrevenLon	is	be[er	than	Cure	(2):	
Control	(Machine	Learning)	

	
	
	

	



Model-Based Feature Selection 
Based on Radial Basis Functions 

and Information Theory  
George	Panoutsos	

g.panoutsos@sheffield.ac.uk	
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Human-Centric Systems 
•  Human-Centric Systems: Computational 

Systems designed for user-centred information 
processing 
–  Frameworks that mimic human cognition, i.e. 

incremental learning, learning from examples etc. 
–  Systems that are easy to interpret and interact with – 

by non-experts i.e. linguistic interpretability 



Process monitoring 
•  High-speed	imaging	and	
bespoke	illuminaLon	
system	for	melt	pool	
monitoring	

•  Spectral	monitoring	
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Methodology 

•  Construct	a	modelling	framework	based	on	a	data-driven	
approach	(model	output:	defects)	

•  Develop	a	fast,	but	transparent	‘learning’	methodology	
for	the	model	

•  Observe	(algorithmically)	how	the	model	learns	from	
data	

•  Use	informaLon	theory	to	link	the	learning	performance	
of	the	model	to	the	input	signals	(process	monitoring)	
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The model’s learning 
evolution (training 

error) is linked 
directly to the model’s 

inputs (monitoring 
signals) 
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Output	layer	weights	 Training	Error	

Each	model	input	‘xj’	
corresponds	to	a	metric	from	the	
process	monitoring	signals	
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Hypothesis:	For	two	data	sequences	(model	weights	–	evoluLon	of	model	learning)	
we	can	use	informaLon-theoreLc	measures	to	idenLfy	relevance/importance:	

Cross-sample	entropy	is	used	[1]:	

[1]	G.	Tzagarakis	and	G.	Panoutsos,	Model-Based	Feature	SelecLon	Based	on	Radial	Basis	FuncLons	
and	InformaLon	Measures,	Proceedings	of	the	2016	IEEE	World	Congress	on	ComputaLonal	
Intelligence,	Canada	(2016)	



Simulation results 
•  SimulaLon	results	on	a	

sample	of	81	welds	
•  80	features	from	the	

monitoring	signals	were	
used	to	create	the	overall	
dataset	

•  Most	important	metric	
linked	to	defects:	
–  	Mean	of	reference	width	

measurement	(meltpool)	
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Example	model-based	defect	
predicLon	surface	



What Next? 
•  Development	of	Deeper	Process	“rules”	

•  Performance	by	Design		-	building	from	/	on			
–  models	of	differing	levels	of	complexity	–	generaLon	of	Axioms		
–  data	acquisiLon	–	in	and	ex-situ	and	in-operando	(see	P.Lee	talk	

later…)	
–  direct	observaLon	–	visual,	hyperspectral,	resistance	etc.	

•  Capacity	to	Develop	“cyber-physical”	manufacturing	
environments	–	Human	Centric	but	Machine	Learning	enabled	

•  This	is	a	clear	intersecLon	of	AM	and	Industry	4.0	–	but	
should	enable	the	promise	of	AM	(and	other	processes)	to	be	
fulfilled.	
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