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The asymptotic power properties of fixed-1" panel unit root tests allowing for serially
correlated error terms are examined by deriving their asymptotic local power functions.
This is done for dynamic panel data models allowing for individual effects or individual
effects and incidental trends. For the first model, the paper shows that an instrumental
variables (IV) based test statistic, which exploits orthogonal moment conditions of the
demeaned by their initial observations individual series of the panel, performs better
than least squares (LS) tests based on the "within group" transformation of the series.
Allowing for serial correlation reduces the power of the IV based test. This reduction
however is unimportant in the case of positive serial correlation of the error terms.
For the panel data model with incidental trends, the paper shows that LS based test
statistics relying on "within group" or forward deviations transformations of the data
have non-trivial power in the natural root-/N neighborhood of unity, if the errors terms
are negatively correlated. This power is retained even in panels with small N. For
the IV based test statistic, the asymptotic local power function constitutes a poor
approximation of its true power, even in large N panels.

JEL classification: C22, C23

Keywords: Panel data models; unit roots; local power functions; serial correlation;
incidental trends

The authors would like to thank Tassos Magdalinos and Robert Taylor for their
helpful comments. They also thank seminar participants of the Granger Centre for
Time Series Econometrics for useful comments on a previous version of the paper.

a :Yiannis Karavias: ioannis.karavias@nottingham.ac.uk

b :Elias Tzavalis: etzavalis@aueb.gr



1 Introduction

Panel unit root test statistics assuming fixed (finite) time dimension (7") and large cross-
sectional dimension (N) have received much interest in the literature over the last decade
because of their very good small sample properties. Early contributions in this area include
the test statistics suggested by Sargan and Bhargava (1983), Breitung and Meyer (1994),
Harris and Tzavalis (1999, 2004), Kruiniger and Tzavalis (2002), Bond et al. (2005), De
Wachter et al. (2007), Kruiniger (2008), Han and Phillips (2010) and De Blander and
Dhaene (2011).

In this paper, we derive analytically the limiting distribution of fixed-7T" panel unit root
tests allowing for serial correlation under local alternatives and, then, we study the as-
ymptotic power properties of these tests. Despite the plethora of studies for large-T" panel
unit root tests,! there are a few studies in the literature investigating the asymptotic local
power properties of fixed-T' panel unit root tests (see, e.g., Bond et al. (2005) and Madsen
(2010)). These studies are focused on panel data unit root tests which assume white noise
error terms and consider panel data models without incidental trends. Allowing for serial
correlation of the error terms, or higher order dynamics of panel data models, can affect the
power performance of fixed-T" panel unit root tests in small samples. The effects of serial
correlation on the power of these tests have been studied through Monte Carlo simulations
by De Blander and Dhaene (2011). Our paper considers fixed-T" unit root tests for the panel
data autoregressive model with individual effects and for that allowing also for incidental
trends.

Several contributions are made by the paper. First, it is shown that, for the model
with individual effects, the instrumental variables (IV) based test statistic suggested by De
Wachter et al. (2007) is a very powerful test statistic. To allow for serial correlation and
to remove the panel data initial conditions nuisance effects on testing for unit roots, this
test statistic exploits orthogonal moments of panel data individual series demeaned by their
initial observations under the null hypothesis of unit roots. It is found to have higher power
than the least squares (LS) based test statistic suggested by Kruiniger and Tzavalis (2002).2
The latter relies on the "within group" transformation matrix to become invariant to initial
conditions. For large T', scaled appropriately with 7' the IV based test statistic reaches its
maximum power, which equals that of the common-point optimal test of Moon et al. (2007).

Second, allowing for serial correlation has a different impact on the power of each of
the fixed-T" panel unit root tests examined. This was expected, since the moments used in
estimation and testing procedures under serial correlation of the error terms are exploited

differently in every test. The power loss of the tests is more severe when the degree of serial

!See, e.g., Moon and Phillips (1999), Breitung (2000), Moon and Perron (2004), Moon et al. (2007),
Moon and Perron (2008), Harris et al. (2010).
2 A similar statistic is also presented by Moon and Perron (2004) for large-T panels.



correlation is large and negative. In this case, the "within group" LS based test statistic
becomes biased. In the case of positive serial correlation, the power reductions of the IV
based test statistic are unimportant, while the "within group" LS based test displays power
gains.

Third, fixed-T' panel unit root tests suffer from the "incidental trends problem", as their
corresponding large-T" tests. However, this problem appears in the case of no serially corre-
lated error terms. In this case, the asymptotic power of the LS based test statistics relying
on either the "within group" transformation of the individual series of the panel or on their
forward orthogonal deviations transformation, suggested by Breitung (2000), have both triv-
ial power. However, under negative serial correlation of the error terms, both tests above
have non-trivial power. This power is retained in small samples even under positive serial
correlation. The IV based test statistic, which relies on a first-difference transformation of
the data to avoid estimating incidental trends, is found to have asymptotic local power even
in the case of no serially correlated error terms. But, as shown by Monte Carlo simulations,
the asymptotic local power function constitutes a very bad approximation of the true power
of this test.

The paper is organized as follows. Section 2 introduces the fixed-T test statistics and
presents the required assumptions for the derivation of the asymptotic results. Section 3
derives the asymptotic local power functions and provides results on the behavior of the tests.
Section 4 conducts a small Monte Carlo exercise to examine the small sample performance
of the asymptotic results and Section 6 concludes the paper. All proofs are relegated to the
Appendix. In the following, we name the main diagonal of a matrix as ”diagonal 0”7, the
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first upper diagonal as "diagonal +1”, the first lower diagonal as ”diagonal —1” etc.

2 Models and Assumptions

Consider the following first order autoregressive panel data models with individual effects:

M1 @ yi=pyia+(1—@ae+u, i=1,.,N. (1)
M2 :  yi=wyio1+ (1 —p)ae+ B+ (1 — )87 + u;. (2)

where y; = (yi1, ..., yir)" and y; = (Yio, .-, Yir—1)" are (T X1) vectors, u; is the (T'X'1) vector of
error terms u;, and a; and f3; are the individual coefficients of the deterministic components
of the models. a; coefficients reflect individual effects of the panel, while 3, capture the
slopes of individual linear trends, referred to as incidental trends. The (7°X1) vector e has

elements e; = 1, for t = 1...T, and 7, = t is the time trend.



To study the asymptotic local power of fixed-T" unit root tests, define the autoregressive

coefficient ¢ as py =1 — \/LN Then, the hypothesis of interest becomes

Hy : ¢=0 (3)
H, : c> 0, (4)

where c is the local to unity parameter. The asymptotic distributions of fixed-T" panel unit
root test statistics allowing for serial correlation or heteroscedasticity in error terms u;; under
the sequence of local alternatives ¢, can be derived by making the following assumptions.

Assumption 1: (1.a){u;} constitutes a sequence of independent normal random vectors
of dimension (7'X'1) with mean E(u;) = 0 and variance-autocovariance matrix E(u;u}) =
[ = [y, where v,, = E(ujuis) = 0 for s = t+pmax+1, ..., T, and ppax < T'—2. (1.b) v, >0
for at least one t = 1,...,T. (1.c) The 4+ 6 — th population moments of Ay;, i = 1,..., N are
uniformly bounded. That is, for every I € RT such that Il = 1, E(|I'Ay;[*"’) < B < 40
for some B, where A is the difference operator. (1.d) I'Var(vec(Ay;Ay.)l > 0 for every
[ € ROST(THY guch that /'l = 1.

Assumption 2: The individual coefficients a; and (,, and the initial observations of
models M1 and M2, y,, satisfy the following conditions: F(uza;) = 0, E(uyf;) = 0 and
E(ujyip) =0,fort =1,....,T and i = 1,..., N, and Var(y;) < +oo.

Assumption (1.a) implies that the order of serial correlation of error term wu; can be
at most T" — 2. It requires the existence of at least one moment condition in conducting
inference about the true value of ¢y, which is free of correlation nuisance parameters. That
is, it implies that, at least, v, = 7, = 0. This assumption can be strengthened to allow
for a smaller order of serial correlation. If p is the order of serial correlation assumed by
the researcher and p* the true order, then the limiting distribution of ¢, is valid as long as
p > p*. Choosing p > p* means selecting fewer than possible moments for inference. For a
discussion, on how to estimate the true order of serial correlation, p*, see Hayakawa (2010).
Assuming normality in the error terms allows for closed form representations of the variances
of the limiting distributions of the tests.

Assumption (1.b) imposes finite fourth moments on initial conditions y;o, error terms w;;
and individual coefficients a; and 3, of models M1 and M2. Along with assumptions (1.c)
and (1.d), they allow application of the Markov LLN and the Lindeberg -Levy CLT, and
ensure that all quantities in the denominators of the estimators of ¢, are non-zero.

Assumption 2 is required only when ¢ > 0. Under null hypothesis Hy: ¢ = 0, all test
statistics considered in the paper are invariant to ;0 and/or coefficients «; and ;. This is
achieved either by subtracting y;o from the levels of all individual series y;; of models M1
and M2 (see IV, FOD and FDIV statistics, in next section),> or by the "within group”

3This approach is suggested by Schmidt and Phillips (1992), for single time series, and Breitung and



transformation of y; (see WG and WGT statistics).? Under the local alternative hypothesis

Hy: ¢ > 0, the assumption that Var(y;) < +oo allows for constant, random and mean
2
1—01,0?\,

Kruiniger (2008) and Madsen (2010)) is not considered. This is because, as is also noted

stationary initial conditions. Covariance stationary of y;o, implying Var(yo) = (see
by Moon et al. (2007), this assumption implies that Var(y,) — oo when ¢, — 1, which
means that the variance of the initial condition increases with the number of cross-section
units, which is not meaningful for cross-section data sets.

To study the asymptotic local power of the tests, we employ a "slope" parameter, denoted

as k, which is found in local power functions of the form
D (z, + ck),

where @ is the standard normal cumulative distribution function and z, denotes the a-level
percentile. Since @ is strictly monotonic, a larger k£ means greater power, for the same value
of c¢. If k is positive, then the tests will have non-trivial power. If it is zero, they will have

trivial power, which is equal to a, and if it is negative they will be biased.

3 Asymptotic local power functions

This section presents the fixed-T' panel unit root test statistics considered and it derives their
limiting distributions under the sequence of local alternatives. The first part of the section

presents results for model M1, while the second for model M?2.

3.1 Individual intercepts

The IV panel unit root test statistic (see De Wachter et al. (2007)): This test statistic
assumes an order of serial correlation p and it is based on transformation of the individual
series of the panel in deviations from their initial conditions, given as z;; = y;; — yi0. The
statistic becomes invariant to the serial correlation effects by exploiting the following moment

conditions:
T—p—1

Z Zitui»t-f-P—i-l(gD)] = 07 L= 17 EE) Nv (5)

t=1

E

Meyer (1994) for the individual series of panel data models with individual effects.

4This transformation means that one subtracts the means of the individual series of the panel from their
levels, across all units. This transformation is also made by Dickey and Fuller (1979) in their unit root test,
for single time series. It is also employed by the panel unit root tests of Harris and Tzavalis (1999), and
Levin et al. (2002).



and it is based on the IV estimator

N T-p-1 -1 /N Tp1
Orv = (Z Z Zitzit—i-p) (Z Z Zitzit+p+1>- (6)

i=1 t=1 i=1 t=1

The moments given by (5) can be rewritten in matrix notation as follows:
E(z1pu;) = 0, (7)

where II, is a (T XT) matrix selecting zero-mean moments, according to (5), and z;_1 =
Yi—1 — Yioe. In particular, II, has ones in the pth diagonal and zeros everywhere else. Given

the definition of II, the above IV estimator can be rewritten as

N N
- -1
Prv = (Z zi_q1lp2i1) (Z zi_111p2;) (8)
i=1 i=1
The asymptotic distribution of the IV based unit root test statistic under the sequence of

local alternatives oy =1 — \/Lﬁ is derived in the next theorem.

Theorem 1 Under Assumptions 1, 2 and the assumption that the order of serial correlation
18 at most p, we have

\/NVI;I/Z(QAOIV —1) L N(—ckrv, 1), (9)

as N — oo, where
1

VViv

and Viy = itf(f\(,‘éxﬂ—;‘;\lp)?, with Ay = 3(N'IL,+1IA), is the variance of the limiting distribution

of - The definition of matrixz A is given in the appendiz (see proof of the theorem).

kry = (10)

The limiting distribution of the IV test statistic given by Theorem 1 nests the distribu-
tions of it under the null and alternative hypotheses Hy: ¢ = 0 and H;: ¢ > 0, respectively.
For ¢ = 0, (9) gives the distribution of the test statistic under Hy, derived by De Wachter et
al. (2007). The test statistic of Breitung and Meyer (1994) can be seen as a special case of
the IV test, for p = 0.° The only unknown quantity in the variance is I", which is required for

the estimation of the variance of the limiting distribution of ¢y, Viv. If I' = 021y, where

2

2 is cancel out

Ir is the (T'XT) identity matrix, then no estimation of I' is needed since o
from both the nominator and denominator of ®;,. In the more general case that I # o2 7,

an estimator of I' can be obtained under null hypothesis Hy: ¢ =0 as

)

N
1 /
2 Auidy, (11)

=1

5 As Bond et al. (2005) show, in this case ¢, can be also seen as a maximum likelihood estimator of ¢.
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since Ay; = u; under this hypothesis.

Figure 1: IV slope behavior in the presence of serial corrslation
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The results of Theorem 1 show that the IV test statistic has always non-trivial power,
since the slope parameter of the local power function kjy is always positive. This parameter
depends on the time dimension of the panel T', the assumed order of serial correlation p and
the form of serial correlation considered by variance-covariance matrix I'. In the case where

error terms u;; follow MA(1) process
Ui = Vi + 491)1‘15_1, for all i, (12)

with v ~ NIID(0,02), then an closed form of kjy, defined as kry(p,6) for different values

of p and #, is given in the next corollary.

Corollary 1 If error terms u; follow MA(1) process (12), and Assumptions 1 and 2 hold,

then slope parameter kry(p,0) is given as

b (0,0) = /572 = T) (13)

171,1\/92 + Dy 1v0 + D11y

and k[v(179) =
\/R1,Iv94 + Rov0 + Rsv0® + Ropv0 + Ry

(14)

where D; 1y and Ry, fori=1,2 and j = 1,2,3, are functions of T’ given in the appendiz.

Closed form solutions of kpy(2,0) and kpy(3,0) are also given in the appendix.

7



The results of Corollary 1 can be employed to examine how the values of nuisance pa-
rameter 6 affect the local power of the IV based panel unit root test statistic. To this end,
Figure 1 presents values of kv (p, #) across T, for p € {0,1} and 6 € {—0.9,—-0.5,0,0.5,0.9}.

Inspection of Figure 1 clearly indicates that the IV test statistic has its maximum as-
ymptotic local power, when p = 0 and 6§ = 0. This can be attributed to the fact that, in this
case, the test exploits the maximum number of possible moment conditions in (5). If p =1
(implying that one moment condition is lost), then the power of the test decreases. Finally,
the test has much higher power if # > 0 than 6 < 0. This can be attributed to the fact that
0 > 0 increases the variability of y;;, thus making it easier for the test to distinguish between
hypotheses Hy: ¢ = 0 and H;: ¢ > 0. In this case, the variance of estimator ¢, decreases.
On the other hand, # < 0 reduces the variability of y; and thus, the IV test statistic is
harder to distinguish Hy: ¢ = 0 from H;: ¢ > 0. Independently of the sign of 8, the plotted
values of kry(p, @), given by Figure 1, clearly indicate that the power of the IV test increases
with T'.

The WG panel unit root test statistic (see Kruiniger and Tzavalis (2002)): This test
statistic becomes invariant to initial conditions ;o of the panel by taking the "within group"
transformation of the individual series y;;, using the annihilator matrix Q = I — e(e’e) ¢/,
where I is the (T XT) identity matrix. Then, the least squares estimator of the transformed

series is given as
N N
pwa =¥ aQuic) 'Oy 1Quy). (15)
i=1 i=1

Since ¢y is not a consistent estimator of ¢, due to the above transformation of y;; and the
presence of serial correlation in error terms w;;, Kruiniger and Tzavalis (2002) suggested the
following fixed-T" WG test statistic:

. b
VNéwe (@Wc —-1- 3WG> <, N0, Vwe), (16)
wa

1o b
or VNViybwe (@WG —1- AWG> —2, N(0,1),
waG

which corrects estimator ¢, for the above two sources of its inconsistency, where dy g =
N

% Zyg_lei_l is the denominator of estimator @y, scaled by N, g:;g
i=1
consistent estimator of the inconsistency of @y, given as M, and ¥, w¢ is a (T'XT)-

tr (¥ ) .
— T( Ap,WG ) is
Swa

a

tr(AQAT)
dimension selection matrix having in its —p,..,0,...p diagonals the corresponding elements
N
of matrix A’Q, and zero everywhere else. [' = % Z Ay; Ayl and Viyg = 2tr((Awel)?) is the
i=1

variance of the limiting distribution of the corrected for its inconsistency LS estimator ¢y,
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where Ay = %(A' Q+QA -V, we— \I/;’WG).G This variance can be consistently estimated
provided consistent estimates of I'. As for the IV test statistic, this can be done based on
(11).

The WG unit root test statistic is based on the same testing principle with the IV
test statistic, described above. It exploits moments of the numerator of ¢y, which have
zero mean under Hy: ¢ = 0. But, this now is done for the corrected for its inconsistency
estimator Qo — 1 — g;‘;—g through the selection matrix ¥, . Moon and Perron (2004)
have suggested a version of the WG test statistic for the case that both N and T" go infinity.
The next theorem gives the limiting distribution of the WG statistic under the sequence of
local alternatives ¢ =1 — \/LN
Theorem 2 Under Assumptions 1, 2 and the assumption that the order of serial correlation

18 at most p, we have
124 b
VN Vi ilPowe | owe —1— 2< | =% N(—ckwa, 1), (17)
dwa
as N — oo, where

tr(NQAT) + tr(F'QL) — tr(¥, weAL') — tr(A'V, wel)

Viva

kwa =

and F = % |p=1, where ) is given in the appendiz.

The results of Theorem 2 indicate that annihilator matrix () and the inconsistency correc-

tion of estimator @y, gW—G, based on ¥, y¢, makes more complex the local power function.
WG ’

As equation (18) shows, the slope parameter of this function ky ¢ depends on the following
quantities: tr(A'QAL), tr(F'QL), tr(V,weAl') and tr(A'V, wel). The first two quantities

6Note that the WG test statistic, given by 16, has been reformulated to avoid computing selection matrix
S of Kruiniger and Tzavalis (2002), which is very demanding. The relationship between the two alternative
formulations of the test statistics can be seen by noticing that

N
tr(\Ilp7WGf) = vec(QA)S (]1/* Z vec(AyiAy§)>

i=1

and

2tr ((AweT)?) = vec(QA) (Ir> — S)Var(vec(Ay; Ayl))(Ip2 — S)vec(QA),

where I7: is the (T?XT?) identity matrix and S is a (T2XT?) diagonal selection matrix, with elements sg;
defined as s(s_1)74¢,(s—1)7+¢ = 1 — d(74s = 0) with s, =1,2,...,T and d(.) is the Dirac function.
"To understand more clearly the role of selection matrix ¥, wg, assume 7 = 3 and
consider that error terms w; follow MA(1) process (12). Then, matrix I' becomes I' =
o?(1+6%) 026 0 -2 -1
( 20 o2 (1+ 02) 20 ) and Uy ¢ is given as ¥y wa = ( —% )
0 a0 o2 (14 6%

o O O

2
3

O wl=



come from the annihilator matrix () and the last two from selection matrix ¥, . For p = 0,
the effects of matrix U, yy ¢ disappear, since tr(V, weAL') = tr(A'¥, wel') = 0. To study the
effects of the serial correlation nuisance parameters and lag-order p on ky ¢, next corollary
gives analytic formulas of k¢, for p € {0,1} and 6 € {—0.9,—0.5,0,0.5,0.9}, while Figure

2 plots values of these formulas across 7'.

Corollary 2 If error terms u; follow the MA(1) process in (12), and Assumptions 1 and 2

hold, then slope parameter kry(p,0) is given as

V3(T — 1)

kwa(0,0) =
\/T2 — 9T — 445

, forp=0 and 0 =0, (19)

(T —2)(TO* — 6>+ 370 — 70 +T — 1)
QT\/ Riwed* + Rowet® + Rawab® + Rowab + Riwe

and  kwa(1,0) = , (20)

where Ry wea, Rowea and Rzwe are functions of T defined in the appendixz. The appendiz

also gives analytic formulas of kwa(p,0), forp=1,2,3 and § = 0.

As can be seen from Figure 2, the effects of § and p on the power of the WG test dif-
fer from those on the power of the IV test. This can be attributed to the "within group"
transformation of individual series y;; and the correction of estimator ¢y, for its inconsis-
tency. For positive values of #, the WG test statistic has more power than for # = 0. For
6 > 0, the power also increases with T'. These results are in contrast to those for the IV
test statistic. For 6 negative, the WG test statistic becomes biased, something that never
happens for the IV test statistic. This happens because the inconsistency correction affects
slope parameter ky¢(p,#) through quantity tr(V, weAl') + tr(A'V, wel'). For < 0, this
quantity takes positive values and, thus, reduces the power of the WG test statistic. For
6 > 0, it becomes negative and thus, it moves the limiting distribution towards the critical
region, increasing the power of the test. As T increases, the above sign effects of 6 on the
WG test statistic are amplified. That is, they lead to a test with greater power and bias, if
6 > 0 and 6 < 0, respectively. Finally, comparison between kyq(p,0) and kpy(p, ) reveals
that the IV test is more powerful than the WG test statistic. This is true for all values of 0
and p considered, and across T'. It can be also seen by the results of Table 1, which presents
values of slope parameter k for the IV and WG test statistics for 7" € {7,10}, p € {0,1} and
0 € {-0.9,—-0.5,0,0.5,0.9}.

The limiting distributions of the IV and WG test statistics given by Theorems 1 and 2,
respectively, scaled appropriately by T' become invariant to the serial correlation nuisance

parameters, if T, N — oo jointly.
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Figure 2: WG slope behavier in the presence of serial corrslation
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This result is established in the next proposition, which derives the limiting distributions of
the scaled by T versions of the IV and WG test statistics under the following sequence of

local alternatives:
c

-1 _ 7
PNT T\/N
considered in the large-T" panel data literature (see, e.g., Moon et al. (2007)).

Proposition 1 Let Assumptions 1 and 2 hold. Then, under oy =1 — #ﬁ, we have

TVN(V2) (o — 1) -5 N(—C%, 1),  and (21)
TVN(V3) owa (@Wc —1- gWG) —5 N(—c0, 1), (22)
waG

if TN — oo jointly and the following condition holds: \/N/T — 0.

Condition v N /T — 0 is required only under alternative hypothesis Hy: ¢ > 0. Under
null hypothesis Hy: ¢ = 0, it is not needed (see, e.g., Harris and Tzavalis (1999, 2004), and
Hahn and Kuersteiner (2002)). The results of the proposition apply for every fixed order of
serial correlation p and any form of short term serial correlation. For ¢ = 0, the limiting
distribution of estimator @, given by (21), coincides with that derived by De Wachter et
al. (2007), while the limiting distribution of estimator ¢y, adjusted for its inconsistency

corresponds to that derived by Moon and Perron (2008).
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Table 1: Values of slope parameter k
T=T7
0 -0.9 -0.5 0.0 0.5 0.9
kry 1477 2463 4.582 4.159 4.192
kwa -0.452 0.167 1.655 2.266 2.367
T=10
p\0 -0.9 -0.5 0.0 0.5 0.9
kry 1960 3.965 6.708 6.271 6.299
kwe -0.958 -0.067 1.694 2.261 2.343

For ¢ > 0, the IV test reaches its maximum local power, which is equal to that of
the common-point optimal test of Moon et al. (2007), denoted as MPP. However, the
WG test has trivial power, since ky e = 0. This happens because the last test adjusts
only the numerator of ¢y, for its inconsistency, in contrast to Harris” and Tzavalis (1999)
(denoted HT') and Levin’s et al. (2002) (denoted LLC) tests. The latter tests adjust both
the numerator and denominator of @y, for its inconsistency. Moon and Perron (2008) show
that the WG test has non-trivial power in a n~'/4T neighborhood of the null hypothesis.
Values of the slope parameter of the power function of the above tests, for large T, are

reported in the following table:

Table 2: Slopes of large-T tests.
v MPP LLC/HT SGLS IPS WG
1/vV2 1/vV/2 (3/2)4/(5/51) 1/v/3 0.282 0.0

For comparisons, the table also reports values of k for the large-T" panel unit root tests
of Im et al. (2003) (denoted IPS) , and Sargan’s (SGLS) test statistic (see Moon and Perron
(2008)). Values of k for these tests are obtained in Moon et al. (2007), Moon and Perron
(2008) and Harris et al. (2010).

3.2 Incidental trends

To study the power of fixed-T" panel data unit root tests allowing for serial correlation in the
case of incidental trends, this section extends the IV test presented in the previous section and
gives a fixed-T' version of Breitung’s (2000) test which also allows for serial correlation. As
said before, the latter is based on forward orthogonal deviations transformation of individual
series of the panel y;; to overcome the problem of estimating the incidental trends’ nuisance
parameters. Thus, it will be henceforth denoted as FOD. To overcome this problem, the IV
test is based on a first difference of panel data series y;;, and it will be denoted as FDIV'.

12



FDIV panel unit root test: Taking first differences of model M2 yields

where y; = (yiz, - ¥ir)'s Yic1 = Wity Yir—1)'s Yiz = Wios -, Yir—2)'s wi = (U2, ..., wir)’,
w1 = (U1, ..., ur—1) and e* = (1,1,...,1) are (T'— 1) X1 vectors. Subtracting from both
sides of model (23), the vector of the first difference of initial observation Ay; e gives the

following first differences transformation of the model:
yi =y + (1 —g)ai +ui, =1, N, (24)

where yf = Ay; — Aype, y' | = Ay — Ayae, af = (6; — Ayin) and uf = Au,;. Model (24)
clearly shows that, if error terms u; are serially correlated, moments similar to (7) can be

exploited to test the null hypothesis of a unit root, i.e.
By Iuy) = 0, (25)

where IT5 is a (T'— 1) X (T — 1) matrix with unities in its p+1 diagonal, and zeros everywhere
else. If we define E(ufu}") = ©, then. a consistent estimator of ©® under Hy: ¢ = 0 is given

as
1 Y
=~ Z Ay; Ay, (26)
=1

which corresponds to (11), for Ay; = u;. It can be easily seen that © = 2I' — I'; — I'}, where
I' = F(u;u}) and I'y = E(u;u;_;). But, as will be thoroughly explained latter on, I" and
I'; can not be consistently estimated under Hy: ¢ = 0 based on Ay; due to the presence of
incidental trends. Theorem 3 derives the limiting distribution of the IV estimator under the

sequence of local alternatives ¢ =1 — \/Lﬁ, exploiting the above moment conditions.

Theorem 3 Under Assumptions 1, 2 and the assumption that the order of serial correlation

18 at most p, we have

VNVepre (@pprv — 1) == N(=ckppiv, 1), (27)
as N — oo, where
tr(AYIIXA*O)
k = L 28
FDIV 2 (Arnr O)7) (28)

N

E : ! § : * TT* * 2tr((Arprv©)? 1/ A #ITT*
a’nd PrpIv — Yi— 1prz 1 Yi_ H VFDIV t'r(A*’H*A*@ 2 ) AFDIV — §(A H +

1=1

IYA*). A* is a (T — 1) X(T — 1) version of A.
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The results of Theorem 3 indicate that, as with the IV test, the power of the FFDIV test
statistic depends on the serial correlation nuisance parameters and lag-order p, as well as the
time dimension of the panel. Corollary 3 derives the value of the slope parameter krpy, if

error terms u;; follow MA(1) process.

Corollary 3 If error terms wu; follow MA(1) process (12), and Assumptions 1 and 2 hold,

then slope parameter kppry(p,0) is given as

T—p—3
kFDIV(pa 0) = (29)
2(T —p—2)
T—)*—0+T—4
cmd kFDIV(]-7 9) = ( )9 9 + s (30)

V2P + Po° 4 Pyo® + Pof + P)

where polynomials Py, Py, and Ps are defined in the appendiz.

Table 3 presents values of krpry (p, 0), obtained through relationship (30), for p = {0, 1},
T € {7,10} and 6 € {—0.9,—-0.5,0,0.5,0.9}. The results of the table indicate that the
FDIV test has non-trivial power for all values of p and 6 considered. The power of the test
increases slowly with T, as with the WG test. However, if T' — oo, it can be shown that
krprv = T\/% — 0, which means that the incidental parameter problem remains. This
is due to the normalization of the statistic with T". These results mean that the asymptotic
power of the FDIV test comes from the assumption that T is fixed and the presence of serial
correlation. A positive value of 6 tends to increase the power of the test, as it happens with

the IV test for model M1.

Table 3: Values of slope parameter p.
T=7
0 0.9 -05 0.0 0.5 0.9
krpry  0.862 0.896 1.264 1.186 1.179
kwer 0.694 0.466 0.00 -0.212 -0.248
krop 0.148 0.110 0.00 -0.062 -0.073
T=10
0 -0.9 -05 0.0 0.5 0.9
krpry  1.160 1.229 1.750 1.989  2.008
kwer 1.042 0.645 0.00 -0.216 -0.248
krop 0.151 0.110 0.00 -0.047 -0.054

The WG unit root statistic: The version of the WG test statistic in the case of

incidental trends (denoted as WGT) considers an augmented annihilator matrix, given as

14



Q" = Ir — X(X'X)"'X’ where X = [e,7]. Under null hypothesis Hy: ¢ = 0, multiplying
model M2 with Q* leads to a transformed model without individual effects and incidental
trends. The WGT test statistic is based on the least squares estimator of the autoregressive
coefficient ¢ of the transformed model, denoted as Q. As with @y, this estimator is
adjusted for its inconsistency. The latter is due to the above transformation of individual
series y;; and the presence of serial correlation in error terms wu;. To correct @y op for its

inconsistency coming from the serial correlation in u;;, we can no longer rely on the previous
N

estimator of variance-covariance matrix I', T, given as I' = ~ ZAyZAyg (see (11)) This

=1
happens because Ay; depends on the nuisance parameters of the incidental trends /j3,, for

model M2, i.e.

Ayz = 51‘@ + U;,
which implies
N
. N . 1 r_ 2 !
legI;oF—legoﬁszlAyi—F+E(6i)6€- (31)

To remove the effects of 3, from the estimator of matrix I', the following selection matrix
will be defined.® Let matrix M have elements my, = 0 if v,, # 0 and my, = 1 if v,, = 0.
Then, tr(MT') = 0 and, thus, we have

1

N
lim ————— Y Ay MAy, = E(5?). 2
P tr(Mee' )N ; Yi Yi (57) (32)

The last relationship can be employed to substitute out individual effects E(3?) from (31),
and thus to provide a consistent estimator of I" and ¢r(A'Q*I") under null hypothesis Hy:
¢ = 0 which is net of 3;. Based on relationships (31) and (32), we can define selection matrix
S, waer = VYpwer — %M , where ¥, wer is a (I'XT) matrix having in its diagonals
{-=p,..,0,...p} the corresponding elements of matrix A'Q*, and zero everywhere else. This
matrix has the property ¢r(®, weree’) = 0, which leads to the following consistent estimator
of tr(NQ*T):

p lim tr(®, werl) = tr(AQ*T). (33)

The limiting distribution of ¢y 4 corrected for its inconsistency under py = 1— \/Lﬁ is given

in the next theorem.

Theorem 4 Under Assumptions 1, 2 and the assumption that the order of serial correlation

8Note that, as in case of model M1 (see fn 6), this selection matrix simplifies considerably the computation
of the WGT test statistic, compared with the selection matrix S used by Kruiniger’s and Tzavalis (2002).

15



18 at most p, we have

1 b
VNV, 2dwer <¢)WGT 1 AWGT) L N(=ckwer, 1), (34)
WGT

as N — 400, where

tr(NQT) + tr(F'Q'T) — tr(®warAL) — tr(A, D)
2tr((AWGTF)2) ’

kwer = (35)

= i=

2tr((AwerD)?), with Awer = 3(NQ* + Q*A — @ wer — @), war), is the variance of the
limiting distribution of the WGT test.

N -1 /N A
A / * / * BWGT tr(q)p,WGTF)
= 1 QY Q%Y : = and V, =
Ywar 21 Yi—1\ Yi—1 21 Yi1" Yi |5 5000 ISN v Qs WGT

The implementation of the WG test statistic is based on the estimator of I' given by
. As was made clear by our analysis above, Premultiplying r by selection matrix ®, wear
renders this estimator net of the incidental trends nuisance parameters effects. The results
of Theorem 4 imply that, if there is no serial correlation, test statistic WGT has trivial
power. This is true for any order of serial correlation p. These results are established in next
corollary, which derives values of the power slope parameter ky¢r(p, ) under MA process

(12) of wy, for different values of p and 6.

Corollary 4 If error terms u; follow MA(1) process (12), and Assumptions 1 and 2 hold,

then, the values of slope parameter kwcr(p,0) are given as

kwer(p,0) = 0, forp=0,1,2,....,T — 2, (36)
and  kwer(1,0) # 0, for 8 #0. (37)

Values of kwar(p,0), for p = {0,1}, T € {7,10} and # € {—0.9,—0.5,0,0.5,0.9}, are
given in Table 3. These indicate that test statistic WGT has asymptotic local power, if
0 < 0. This power is less than that of the FDIV for 6§ < 0, and it increases slowly with T'.
This power can be attributed to the effects of quantities t7(®, werAl') and tr(A'®, werl)
on slope parameter kywgr(p, ). As for the FDIV test, it can be shown that the large-T

version of the WGT test has trivial power when 7" — oco.

FOD panel unit root test: This test is initially suggested by Breitung (2000) as a
large-T" panel unit root test. It is based on forward orthogonal deviations transformation of
the individual series y;; of model M2, known as Helmert transformation, to avoid estimating

incidental trend parameters 3,. As shown by Moon et al. (2006), the joint 7', N asymptotic
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/2 Below, we present a fixed-T'

local power of the test is zero at the natural rate of TN~
version of the test and examine its asymptotic local power, as N — oo.

In a first step, the orthogonal transformation of series y;; requires subtracting initial
observations 1, from y;, for all ¢, and taking the transformed series z; = v — yi0. Then,

define the following (7" — 1) X'T" matrices:

0 0 _ 0 0
. B 1X(T—2) 1 ,
GH It—s  Or-2x1 —7T7-2

where
1 1
— I =75 71
1 —a 1 1
-1 0 0 1 =7 —73
T3 .
G = =2 and H =
1 1
0 3 1 =5 =3
0 0 1 —

with dimensions (7—2) X (7'—1) and (7'—1) X T respectively, and vector 7p_5 =
T-2
In case of no serial correlation of error terms w;;, multiplying Az; with matrix A and z; with

matrix B implies the following orthogonal moment conditions under null hypothesis Hy:
c=0:

E(z;B'AAz;) = 0. (38)
These conditions imply that F(u;u}) = c?Ir. They can be tested based on the following LS
estimator:
N
Z 2l B'AAz;
Yrop =1+ i:;,—y (39)

Z Z;B,BZZ'
i=1

which is equal to that of Breitung (2000) plus 1. To test conditions (38) in the case of
serial correlation in wu;, we will first adjust estimator ¢ for its inconsistency, which arises
from the presence of serial correlation. The next theorem derives the limiting distribution

_<¢_

of estimator ¢, corrected for its inconsistency under ¢ =1 — O

Theorem 5 Under Assumptions 1, 2 and the assumption that the order of serial correlation

17



18 at most p, we have

N A b
\/NVFolg(SFOD (@FOD -1- AF0D> <, N(—ckrop, 1), (40)

FOD

as N — oo, where

krop = (41)
tr(AN'B"AAT) + tr(B'AAT) + tr(AN'B'AL) 4+ tr(F'B'AL') — tr(A'®, popl’) — tr(®, ropAlL)
QtT((AFODF)2) ’
B tr <I>p’ f‘ . . . . . ~ o
g?gz = %Z(ifili?g’;zz' is a consistent estimator of the inconsistency of Ppop, Pprop =

U, rop — “;(i%)M, where Y, pop is a (T XT ) matriz having in its diagonals {—p, ..,0,...p}

the corresponding elements of matriz = and zero everywhere else, where = = N'B'A + B'A,
and Viop = 2tr((AropT)?), with Apop = %(E +Z —®,rop — P, pop), is the variance of

the adjusted for its inconsistency estimator Qpop-

As with WG, the limiting distribution of the FFOD test statistic depends on the estimator
of I', I'. This estimator now becomes invariant of the incidental trends nuisance parameters
effects by being premultiplied by selection matrix ®,, rop. Theorem 5 implies that, if there is
no serial correlation in w; (i.e., p = 0), the asymptotic local power of the FOD test statistic
is zero, since krop = 0.° As with WGT, the test has power only if there is serial correlation
in u;;. These results are established in the next corollary, which gives values of the power

slope parameter krop(p, ) in the case that u; follows MA(1) process (12).

Corollary 5 If error terms uy follow MA(1) process (12), and Assumptions 1 and 2 hold,

then slope parameter krop(p,0) is given as

krop(p,0) = 0 forp=0,1,2,...T —2. (42)
and krop(1,0) # 0 forf #0. (43)

Values of krop(p,0), for p = {0,1}, T € {7,10} and 0 € {-0.9,—0.5,0.0,0.5,0.9}, are

9In this case, it can be shown that
p lim (q;bFOD —1)=r(ET) =0,
N—o0

since tr(Zl') = 0 when I' = 02I7.In other words ¢ rop is consistent. In this case a test that does not require
a bias correction can be derived. In a previous version of this paper we showed that

VNV (dpop — 1) — N(—c0, 1),

where Vrop = tr((A,f;;gg%)(Z[erlT))z and Az = %(E + Z’). The incidental trend problem remains. But if

I' = o217, this version of the test has better finite sample properties.
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given in Table 3. These indicate that the FOD test statistic has asymptotic local power only
if 0 < 0, which increases slowly with T". The power of the test for # < 0 can be attributed to
the effects of quantities tr(A'®, ropl') and tr(®, popAl') on krop(p, #). These have the same
qualitative effects on power slope parameter krop(p, #) to those of quantities tr(®, warAl)
and tr(A'®, werl') on kwer(p, ), for the WGT test statistic which has also no-trivial power
when 6 < 0. The results of the table also indicate that the test has smaller local power than
that of test statistics FDIV and WGT. Finally, if T — oo the test has trivial power, as the
WGT test statistic.

4 Simulation Results

To see how well the asymptotic local power functions of the tests derived in the previous
section approximate their small sample ones, this section presents the results of a Monte
Carlo study based on 5000 iterations. For each iteration, we calculate the size of the tests
at 5% level (i.e., for ¢ = 0) and their power (i.e., for ¢ = 1), assuming that error terms
u; follow MA process (12). This is done for N € {50,100, 200, 300,1000}, T" € {7,10},
6 € {—0.9,-0.5,0.0,0.5,0.9} and p € {0,1}. The order of serial correlation p is assumed
to be zero in the case of § = 0.0, otherwise it is set to p = 1. The nuisance parameters of
models M1 and M2 which do not appear in the above local power functions are set to zero,
ie,a;=0,08, =0,y =0, for all 7.

Tables 4 and 5 present the results of our simulation study. Table 4 presents the results
for the test statistics based on model M1, while Table 5 presents those for the test statistics
based on model M2, allowing also for incidental trends. In the tables, TV denotes the
theoretical values of the power of the tests obtained from their asymptotic power functions
derived in the previous section. The results of Table 4 clearly indicate that, for model M1,
the IV test has higher power than that of the WG test independently of T', as is predicted by
the theory. For # > 0, the asymptotic power function of the test approximates sufficiently
its small sample value even for small N, i.e., N = {50}. However, for § < 0, the power of
the test considerably reduces, and its small sample estimate deviates considerably from its
theoretical value, TV. This can be obviously attributed to second, or higher order effects,
which are not captured by the first order approximation of the local power function. As is
predicted by the theory (see Table 1), the WG test tends to have power only for 6 > 0. Note
that, for § € {—0.9,—0.5}, this test loses its power and becomes biased. Finally, note that
both the IV and WG test statistics have size which is close the nominal level value 5%. The
size performance of both tests improves, as N and T increases.

Regarding the test statistics for model M2, the results of Table 5 indicate that the IV

based test statistic, denoted as FDIV, no longer performs satisfactorily. It is biased in
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small samples, and its power deviates substantially from that predicted by its asymptotic
local power function. This is true independently of the values of 6, T" and N considered
in our simulation analysis. This result can be attributed to the poor approximation of the
asymptotic local power function in small samples, due to the presence of more complicated
deterministic terms (see also Moon et al. (2007) and Han and Phillips (2010)).

Table 4: Size and power of the IV and WG tests.

T=7 T=10

50 100 200 300 1000 TV 50 100 200 300 1000 TV

c=0 IV ~ 0.068 0.065 0.057 0.048 0.054 0.050 0.064 0.0564 0.063 0.061 0.051 0.050
WG 0.053 0.054 0.053 0.053 0.053 0.050 0.050 0.050 0.048 0.047 0.047 0.050
c=1 IV ~ 0.089 0.101 0.087 0.071 0.067 0.433 0.088 0.102 0.086 0.074 0.081 0.623
WG 0.054 0.052 0.0564 0.053 0.047 0.018 0.055 0.053 0.043 0.048 0.045 0.004

c=0 IV ~ 0.063 0.053 0.053 0.051 0.0561 0.050 0.050 0.054 0.063 0.047 0.050 0.050
WG 0.045 0.050 0.047 0.049 0.043 0.050 0.049 0.053 0.052 0.052 0.049 0.050
c=1 IV ~ 0.285 0.382 0.444 0.496 0.567 0.793 0462 0.639 0.773 0.807 0.904 0.989
WG 0.057 0.066 0.068 0.076 0.087 0.069 0.044 0.048 0.048 0.053 0.056 0.043

c=0 IV 0.087 0.073 0.070 0.066 0.066 0.050 0.069 0.065 0.062 0.065 0.060 0.050
WG 0.058 0.058 0.053 0.053 0.049 0.050 0.051 0.052 0.047 0.051 0.049 0.050

c=1 IV~ 0.997 0.997 0.997 0.997 0.998 0.998 0.997 0999 0.999 0.999 1.00 1.00
WG 0220 0.274 0.321 0.344 0.414 0.500 0.117 0.156 0.213 0.245 0.357 0.519

c=0 IV ~ 0.072 0.062 0.058 0.055 0.054 0.050 0.071 0.075 0.068 0.056 0.061 0.050
WG 0.047 0.049 0.049 0.048 0.052 0.050 0.049 0.052 0.053 0.049 0.055 0.050

c=1 IV 0979 0.985 0.988 0.990 0.993 0994 1.00 1.00 1.00 1.00 0.999 1.00
WG 0.388 0.489 0.57 0.610 0.678 0.730 0.236 0.325 0.429 0477 0.632 0.731

c=0 IV ~ 0.063 0.067 0.061 0.063 0.061 0.050 0.077 0.068 0.063 0.067 0.057 0.050
WG 0.041 0.045 0.048 0.049 0.054 0.050 0.053 0.050 0.047 0.057 0.053 0.050

c=1 IV 0977 098 0.986 0.98 0.992 0994 1.00 1.00 0999 1.00 0.999 1.00
WG 0.483 0.593 0.671 0.689 0.754 0.764 0.302 0.412 0.529 0.569 0.700 0.757
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Table 5: Size and local power of FDIV, WGT and FOD tests.

T=7 T=10

N 50 100 200 300 1000 TV 50 100 200 300 1000 TV

0=-09

c=0 FDIV 0.038 0.038 0.048 0.050 0.050 0.050 0.040 0.041 0.045 0.044 0.050 0.050
WGT 0.044 0.049 0.045 0.047 0.051 0.050 0.049 0.046 0.048 0.054 0.049 0.050
FOD 0.051 0.045 0.048 0.050 0.052 0.050 0.051 0.053 0.052 0.047 0.050 0.050
c=1 FDIV 0.031 0.044 0.039 0.047 0.041 0.216 0.036 0.045 0.043 0.047 0.046 0.313
WGT 0.046 0.053 0.050 0.054 0.058 0.170 0.046 0.048 0.053 0.059 0.056 0.273
FOD 0.089 0.070 0.078 0.068 0.067 0.067 0.129 0.113 0.102 0.091 0.078 0.067

0 =-0.5

c=0 FDIV 0.032 0.043 0.045 0.050 0.050 0.050 0.038 0.045 0.042 0.045 0.050 0.050
WGT 0.043 0.049 0.047 0.051 0.047 0.050 0.048 0.055 0.052 0.050 0.047 0.050
FOD 0.048 0.053 0.053 0.049 0.052 0.050 0.055 0.055 0.054 0.055 0.050 0.050
c=1 FDIV 0.039 0.039 0.045 0.048 0.055 0.226 0.043 0.046 0.050 0.047 0.047 0.338
WGT 0.083 0.082 0.081 0.088 0.087 0.119 0.102 0.102 0.116 0.103 0.115 0.158
FOD 0.100 0.089 0.0858 0.081 0.073 0.062 0.163 0.143 0.128 0.109 0.088 0.062

9:

c=0 FDIV 0.054 0.055 0.056 0.055 0.056 0.050 0.052 0.055 0.052 0.049 0.053 0.050
WGT 0.067 0.061 0.062 0.058 0.057 0.050 0.064 0.062 0.057 0.063 0.060 0.050
FOD 0.053 0.053 0.049 0.056 0.051 0.050 0.061 0.059 0.056 0.057 0.052 0.050
c=1 FDIV 0.053 0.057 0.050 0.057 0.054 0.351 0.056 0.050 0.060 0.053 0.053 0.541
WGT 0.137 0.105 0.094 0.084 0.070 0.050 0.155 0.127 0.106 0.094 0.074 0.050
FOD 0.112 0.090 0.091 0.079 0.063 0.050 0.226 0.167 0.139 0.119 0.087 0.050

0 =0.5

c=0 FDIV 0.042 0.048 0.048 0.046 0.045 0.050 0.048 0.053 0.050 0.049 0.050 0.050
WGT 0.058 0.056 0.054 0.060 0.047 0.050 0.063 0.056 0.053 0.053 0.054 0.050
FOD 0.057 0.059 0.057 0.057 0.054 0.050 0.069 0.065 0.061 0.063 0.055 0.050
c=1 FDIV 0.037 0.039 0.043 0.047 0.048 0.323 0.035 0.036 0.048 0.040 0.053 0.634
WGT 0.083 0.068 0.057 0.053 0.038 0.031 0.152 0.122 0.085 0.069 0.051 0.031
FOD 0.100 0.086 0.077 0.067 0.052 0.043 0.235 0.158 0.132 0.108 0.070 0.045

0=0.9

c=0 FDIV 0.038 0.036 0.048 0.047 0.048 0.050 0.045 0.050 0.050 0.045 0.043 0.050
WGT 0.060 0.059 0.056 0.053 0.050 0.050 0.061 0.056 0.059 0.053 0.055 0.050
FOD 0.059 0.065 0.056 0.047 0.047 0.050 0.072 0.067 0.052 0.052 0.055 0.050
c=1 FDIV 0.030 0.037 0.033 0.041 0.044 0.320 0.029 0.034 0.035 0.036 0.047 0.641
WGT 0.072 0.053 0.040 0.033 0.023 0.029 0.135 0.099 0.071 0.054 0.035 0.029
FOD 0.098 0.082 0.058 0.050 0.043 0.042 0.206 0.165 0.118 0.105 0.066 0.044
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In contrast to the FDIV test, the WGT and FOD tests are found to have some power in
small samples. As is predicted by the theory, the tests have power if # < 0. As NN increases,
the power of the WGT test converges to its asymptotic local power value from below, while
that of the FOD test converges to it from above. As can be seen from the table, the WGT
and FOD tests can have power in samples of small N even if § > 0, where their asymptotic

local power indicates that should be biased, or have trivial power.

5 Conclusions

This paper examines the power properties of fixed-T" panel data unit root tests under serial
correlation, assuming that only the cross-section dimension of the panel (V) grows large. To
this end, the paper provides an extension of the IV based test statistic of De Wachter et al.
(2007), which exploits orthogonal moment conditions of the data under serial correlation, to
allow for incidental trends. It also gives a fixed-T" version of Breitung’s (2000) test statis-
tic, based on forward orthogonal deviations transformation of the data to avoid estimating
incidental trends parameters, which allows for serial correlation in the error terms of the
individual series of the panel. The paper derives the asymptotic local power functions of
the above tests and LS based panel unit root statistics relying on the "within group" trans-
formations of the data to wipe off individual effects or incidental trends. Analytic forms of
these power functions are also derived for the case that the error terms of the panel follow
a moving average procedure of lag-order one, often assumed in practice for many economic
series.

The results given by the paper lead to the following main conclusions. First, for the panel
data model without incidental trends, the IV based test clearly outperforms the "within
group" LS based test. This can be attributed to the fact that the last test requires an
adjustment of the LS estimator for its inconsistency, due to the individual effects and the
presence of serial correlation in the error terms. The power of the IV based test is bigger
under positive correlation of the error terms than under negative, and it is decreasing as the
order of serial correlation increases.

Second, for the model with incidental trends, only the LS based tests relying on the
"within group" and forward orthogonal deviations transformation of the individual series
of the panel are found to have non-trivial power, as is predicted by the theory. These
tests have always power when the serial correlation in the error term is negative. They
also retain their power even for small N. This non-trivial power can be attributed to the
impact of the inconsistency correction, required by the LS estimator, for the serial correlation
nuisance parameters. For panel data models with incidental trends, the IV based test is
found to be biased in small samples, despite its very good asymptotic properties. This

is true independently of the sign of serial correlation of the error terms. The asymptotic
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local power of this test is found to be a very bad approximation of its true power. These

results suggest employing the above LS based fixed-T' panel unit root tests in mitigating the

incidental trends problem in short panels with serially correlated error terms.
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6 Appendix

Proof of Theorem 1 Under the sequence of local alternatives p =1 — \/LN’ the IV test
statistic can be written as follows:
N N
%Zzz{—l pUi + ]{/ Z (1 —ppn)aizi_1e
VN(@ —py) = VN = ~ = TN — PN
% Z AN | A
i=1
N N
\/Lﬁzzi Hpui + \/LN Z(l pn)aizi_ e
B — =1 _@FO)

L

7 (1 — ppy)aizi_Ile and (

where (« Z\ﬁg 2w, (b) =

Under Hy: ¢ > 0 vector Yi—1 can be expanded as
Vi1 = wyio + Qe(l — oy)a; + Qu;, i=1,2, ..., N, (45)
where
0 . .o 0
1 0
PN 1
Q= X YN (46)
. 1 0
PN PN py 10
and w = (1, 0y, %, ..., o ). Note that, for ¢, = 1, we have Q = A.
The first order Taylor expansions of 2 and w yields
= A+ F(ey—1)40,(1) and (47)
= e+ flexy —1) +op(1), (48)
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dw

respectively, where F = % loy=1 and f = don len=1-

Zi—1 = Yi_1 — Yioe can be written as
Zic1 = Yio1 — €Yo = (w — e)yo + Qe(1 — vy )a; + Qu;.

Substituting (49) into quantity (a), defined by (44), yields

N
1
(a) ILu,; = \/—_ Z — e)yio + Qe(l — oy)ai + Qu;)'TLu;

Il

é‘ —

= 1[M]=
20

1
= \/N_ Z yio(w — e)'TLu; + (1 — oy )aie’ UTLu; + w;, QT u,.

Using these expansions,

vector

(49)

This quantity has a limiting distribution N (0, 2tr((A;yT)?)), since the following results hold:

yio(w — €)' Tlu; 250

'MZ

@
I
—

(1 — on)aie UTu; - 0

2= 2~
-

I
A

(2

Zu VT, 4, N(0,2tr((ApT)?))

QV

(50)

(51)

(52)

The results given by (50) and (51) can be derived by using (47)-(48) and standard results on
quadratic forms (see Schott (1997)), while (52) can be proved using tr(A'ILT") = tr(F'IL,I") =
0 and Lindeberg-Levy’s CLT. For quantities (b) and (g), the following results can be easily

derived:

(b)

N
\/—_Z 1—py)az;_ 1He—>0
i=1

and  (g)

ZIH

N
Z HpZi_l L) tT(A/HpAF)
Using (50)-(54) yields

VN(@r —on) —5 N (07 M)

tr(A'IL,AL)?
X c 2tr((AryT)?)
== )= (0 e

\/N(Sblv - 1) i> N(—Q Vlv)
\/_‘/I 1/2(801\/ 1) i> N( V} 1/271) )
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2tT((A[Vr)2)

T (AT, ATY? 0 which proves Theorem 1.

where Vi =

Proof of Corollary 1 The results of the corollary can be proved based on the formula of

the variance of the limiting distribution of the IV test V;, = K%AH—I:AFF))?, Apy = %(A’ IL, +

IT'A), given by Theorem 1. Under no serial correlation (i.e., § = 0 and I'y = o71Ir), the

following relationship holds:
2tr(Apv?) = tr(NTL,A), for all p. (56)
This yields

1
tr(A'TI,A) = §(T2 —T), forp=0

T 5T
tr(NTLA) = 5 T + 3, for p =
T 7T

Using the last relationships, we can derive the following values of the slope parameter of the

power function kyy(p, ), for 6 = 0:

/1
krv(0,0) = §(T2—T),
T2 3T

kf]v(l,()) - 7—7+1,
T2 5T
krv(2,0) = (5 =5 +3,
T 1T
and kjv(?),()) = 7 — 7 + 6.

For the case of 6§ # 0 and p = 1, the formula of kjy(p,0) is derived by De Wachter et al.
(2007). The coefficients of this formula are analytically given as
T 3T

Dy = 7—74‘1

Doy = T?—4AT +4

1
Ry = 5T(T —3)+1
Rojv = 2T(T —5)+12

Rspy = 3T(T —5)+20.
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Proof of Theorem 2 The proof of the theorem for the case ¢ = 0 is given, separately, in
Part I, for a direct comparison to that of Kruiniger and Tzavalis (2002). For case ¢ > 0, it

is given in Part II.

I) To derive the limiting distribution of test statistic WG under null hypothesis Hy: ¢ = 0,
we will proceed into stages. First, we will show that the LS estimator ¢y, is inconsistent,
as N — oo. Then, we will construct a normalized statistic based on ¢y, corrected for its
inconsistency and we will derive its limiting distribution under Hy: ¢ =0, as N — oo.

Decompose vector y;_1 for model (1) under Hy: ¢ = 0 as
Yi—1 = eYio + Auy, (57)

where matrix A is a (T'XT') matrix defined as A, . = 1, if r > ¢, and 0 otherwise.

Premultiplying (57) with matrix @) yields
QYi,—1 = QAu;, (58)
since Qe = (0,0, ...,0)". Substituting (58) into @y yields

N
5 _ N Doic1 Yi 1 Qi - % Zfil w, N Quy;
Swe — 1= 7= — = Nl v . (59)
N i Vi QUi v 2img WiN QA

By Kitchin’s Weak Law of Large Numbers (KWLLN), we have

N N
1 I A/ p / 1 I AT p /
¥ E w,N'Qu; — tr(A'QT) and N E w,N'QAu; — tr(A'QAT), (60)

i=1 i=1

n n

where "-2>" signifies convergence in probability. Based on the last two results, the yet

non-standardized test statistic WG can be written as

VNowe (@WG —1- BWG) — Nbwe <% S Y Qui tr(q;pwaf))

uge dwa dwa

N N
1 1
v N <N E y;,—lQui N E A?J;\I’p,WGAyi> , (61)
i=1 i=1

where

N
A 1 ,
I' = N ZE 1 Ayi\lfpy[/gAyi. (62)
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Since, under Hy: ¢ = 0 we have u; = Ay;, the last relationship can be written as follows:

dwa
| N
- VN (N ;u;A'Quz - ;uzllfp WGu1>
1 & 1 &
= — "(NQ — T ;= —— tr[(NQ — U U 63
Qo= D (N pwalual) (63

where W; constitutes a random variable with zero mean, i.e.,

E(W;)

Elui(NQ = Wy we)w] = tr{(NQ — Uy we) E(uiu;)]
= tT(A/Q — \I/p’Wg) =0

since tr(A'Q) = tr(Y, we) (or tr(A'Q — ¥, we) = 0), and variance
Var(W;) = Var(u;(NQ — ¥, we)u;) = 2tr((Awel)?). (64)

The last relationship follows from standard linear algebra results (see e.g. Schott(1997).
The results of Theorem 2 follow by applying Lindeberg-Levy’s CLT to the sequence of 11D

random variables W;.

IT) To derive the limiting distribution of the WG test under H: ¢ > 0, subtract y;_; from
both sides of model M1:

Ayi =u; + (SON - 1)yi—l + (1 - @N)aie‘ (65)

The limiting distribution of the yet unstandardized WG test statistic around ¢, can be
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obtained by writing

waG

b % i-1Qu; i
5WG\/_< il ) = dweVN | oy + —= —E oy

N
1 ~
= VN <N ; Y Qui — tr(\pp,wgr)>
1 & 1 &
= VN (N Z Yi 1 Qui — N Z A?Jz{q’p,WGAyi)
=1

1=1
1 1«
= = Z Yi 1 Qui — —= Z AyiVyweAy; = (d) — (h), (66)
VN i=1 VN i=1

where (d Z yi_1Qu; and (h) Z AyiV, weAy;. By applying Lindeberg-Levy’s
i=1
CLT, we can find the limiting distributions of quantities (d) and (h). To this end, write (d)

as

5= 3~
M- 1

N N
(d) Z Y 1 Qu; = \/L_ Z (wyio + Qe(1 — py)a; + Qu;)' Qu; (67)

(yiow' Qu; + a;(1 — on)e' Y Qu; + u; Q' Qu;)

=1

= (di) + (d2) + (d3),

N

where (dy) = \%Z Yiow' Qug, (dg) = \anl —pN)eQQu; and (d3) = \FZU QQu;.
i=1

The limits of (d), (d2) and (ds) can be obtamed after substituting Taylor’s series expanswns

for w and €2 given in (47) and (48), respectively, into them and ¢y =1 — - For (di), w

have
(dl) = \/— Z Yiow Quz = \/— Z yzO e+ f ) + OP( ))IQul (68)

1 ’ 1 / p
= —F Z?Jioe Qu; + — Z ['Quiyio + 0p(1) — 0,
VN i=1 N i=1

N N
since _ZfQuzyzO — f'QF(uyi) = 0 by Assumption 2 and \FZyloe Qu; = 0, as

=1 =1
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€'Q) = 0. For (dz), we have

| N B
(dg) = \/_N ;ai(l — pn)€QQu; = % ;aie'(A’ + F’ (\/—%) + 0,(1))Qu;  (69)
N
= %;aie’/&’ Qu; — N3/2 Zal "F'Qu; + 0,(1) - 0,

N

since = Z aie’ N Qu; = ¢;’ N QE(a;u;) = 0 by Assumption 2 and N3/2 Z a;e' F'Qu; —
7, 1

0, as N3/2 goes to zero. For (d3), we have

(d3) = ZUQQUZ—\/_Z (N + F'( \/NHO”( ))Qu; (70)

1 , c
= — Z wN Qu; — — Zu;F’Quz +0,(1),
VN o N3

where
c N
o W Qu o ctr(FQD), (71)
=1
1 N
VN (N > AN Qui — tr(A’QF)> —% N(0, Vivg,a). (72)
=1

Vivg.a is the variance of the limiting distribution of (ds) and (d), since (d;) —~ 0 and
(d;) -2+ 0. It can be assumed as a known quantity, under the normality assumption (see
Assumption 1). Term ¢r(A’QTL'), which is added in (72), does not have to be subtracted from
the WG test statistic, as it cancels out with a similarly added term, given as tr (¥, weI'), in
(74) below, since by construction tr(A'QL) = tr(¥, wel).

Using the results of equations (68), (69) and (70), we can obtain the limiting distribution
of (d) as

(d) = \/_ Zyz 1Qu; N N(—=ctr(F'Qr), Vivg.a)- (73)

The proof for the limiting distribution of quantity (h) follows analogous steps to those of
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(d), but it is more tedious. Substituting (65) in (h) yields:

N
Z Ay;qu,WGAyi ==
N =1

(ui + (on — Dyics + (1 — gpN)al-e)’\IJpr(ui + (on — Dyic1 + (1 — py)ae)
1

<.
I

|
S- - Y-
()= L{1]=

U;‘I'p,WG“i + U;‘I'p,WGyz’—l(SON - 1)+ U;‘I’p,WGe(l —on)a; + (pn — 1)y£fl‘ljp,WG“i

i=1

+(pn — 1)292_1‘1’p,WGyz‘—1 + (on = Dyi 1 Ypwae(l — on)a; + (1 — on)aie’ Uy wau;
_I_

—_—~ o~

1- 90N>@i6/\1’p,WG?Ji—1(90N —1)+(1- @N)ZQ?GIWP,WGG

Then, we can derive the following results:

N
1
\/N (N Z u;\I/pngui — t?"(\:[/py[/(;r)) L N(O, VWG,h) (74)
i=1
1 N
Vi D U, wayia(py — 1) == —ctr(¥, weAT) (75)
i=1
T
i D i, wee(l — oy)a; = 0 (76)
i=1
T
\/_N (on — Dy Y, weu 2, —ctr(A'%, wel') (77)

1

.
I

N
1
VN D (on = D%V wayi —— 0 (78)
=1
Ly Dy, O 1 250 79
\/_NZ(SON_ Wi Vpwee(l — py)a; — (79)
=1
1 N
VN > (1= on)ae ¥, weu; == 0 (80)
=1
Ly 1 "y 1) 20 81
\/_NZ( —on)aie’Vpweyi-i(py —1) — (81)
=1
N
1
e S P Wye 20 (52

.
Il
—

The above results, given by equations (74)-(82), imply that the limiting distribution of (h)
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is given as
N
1

(h) = Vi Z Ay, welAy; — N(—ctr(NV, wel) — ctr(Y, weAL), Vive.r), (83)
i—1

where Viy p, is the variance of the distribution, defined by (74). Based on these results and

(73), we can derive the limiting distribution of WG around ¢, as

b
dwaVN (SOWG 5WG - 90N> 4N (—c(tr(F'QT) — tr(A'Y, wel) — tr(V,weAL)), Vive) -
WG
(84)

The variances of (d) and (h) and their covariance add up to the variance of the of statistic
WG under Hy: ¢ = 0, given by Theorem 2 (see also (64)). It is not necessary to show this
algebraically because, as can be seen from (72) and (74), the variance of the estimator under
Hy: ¢ > 0 does not depend on the local parameter c. It is constant independently on whether

¢ > 0 or ¢ = 0. Given the above result and
1 Y / p !
N Z Yi1Qui—1 — tr(NQAT), (85)
i=1
we can obtain the limiting distribution of the WG test statistic, given Theorem 2, as follows:

dwe VN
N <—c(tr(F’QF) — tr(AT ) T) — (AT T)), VWG) (86)

b

WG

b
\/_6WG (@WG WG —1 -+ —) i)

N (=eltr(NQAT) + tr(F'QT) = tr(AW, 1y oT) = tr(AW,, 6T)), Vg ) (87)

. b
VNbwaVipd? <¢WG 5WG —1) (88)

WG

( (tr(AN'QAT) + tr(F'QT) — tr(AV, wal) — tr(AT, wel)) >
N|— s 1.
VWG’
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Proof of Corollary 2 Equation (13) of the corollary, implying I' = 621, can be proved
by substituting into (18) the following relationships:

t?“(A/\I/png) = O,
ZfT(\pr7ng) = 0,

™ T 1
r(F'Q) = - 4 =

2 _
tr(NQA) = T G !

and writing
1 !/ !/
tr(dive) = tr|7 (NQ+QA—Tywe — V) we)
1 1M\ 2 1 ! 2
= St((NQ)?) + St (NQA) — tr(¥ )

where tr((A'Q)?) = —%+%— 35 and tr(02 ;) = T+5=—3, since the following relationships
hold:

tr(Upweh'Q) = tr(V,weQA) = tr(V, weN'Q) = tr(V, yoQA)
tr(V we¥pwa) = tr(¥2e) = tr(NQY,we) = tr(¥,weA'Q).

For p > 0, the last relationships become:

tr(qj@WG’\Ijé),Wg) = t’l“(A,Q\I/p7wg) = tr(QA\P;,WG) = t’l“(\I/p7ng/Q) = t’l“(\I/;)7WGQA)
tr(V2 we) = tr(QAY,we) = tr(NQY, wa) = tr(V,weQA) = tr(V), 1 oN'Q)

and, thus,
2 1 / 2 1 / 2 1 /
tr(Ayg) = 5757“((/\ Q)°) + 5757“(/\ QA) — tr(qu,WG) - §tr(q]p7WG\IJp7WG’)'

Thus, we have the following results: for p =1

tr(NV, we) = %,
iy = 11,2
r(Wwe) = —5mt g
tr(YpwaV, wa) T + % — % - g
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for p =2

T —2)?
tT(\I’pywc;A) = —%,
T—-1)2
tT(A/\IJp,Wg) = %,
1 25 2 5)
2 _
tr(qu,WG) - _gT - 6_T + CZTQ + 57

tT(IIII%WG\II;),WG) = T4+ —=— — — —

and for p =3
3 10 15
tT(\I/p’WgA) = —7 - ? + ?,
3I' 4 9
tT(A/\ij,WG) = 7 + T — 5,
2 77 10
tr(V2 we) = —gT —er T T 11,
7 175 26 25
t/’n(\ij,WG\I’I;7WG) = gT + 6_T — ﬁ — ?

Substituting the above relationships into (18), we can obtain the following analytic forms of
kwea(p,d), for 6 = 0:

bwe(L0) = V3(T? — 3T +2) | (89)
T\/T2 - 6T - 2 + 3 +17

V3(T? — 5T + 6)
T T2 10T - % + % a1

V3(T? — 7T + 12)
T\/T?— 14T - ¢+ 32 77

kwa(2,0) =

and kyg(3,0) =
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To prove equation (20) of the corollary, for 6 # 0, substitute into (18) the following relation-

ships:
, -1, 1, 2 T2 -1
tr(AN'QAT) = ( G )9 +(§T —T+§)9+( 6 ),
T2 T 1 T 3T 1 13 ™ T 1
tr(F'QT) = o )P (e T (e
1 2 1
tr(A'OT) = 5T = 1)6% + (_T +1)0+5(T - 1),
T 1 4 T 1 3
UAD) = (—= — = 2L (-2 4y 2 _242
(UAT) = (g = o+ D+ (T = 2+ 08+ (~5 — 5 +3),
and QtT((AWGr>2) = Rl,WG’94+R2,WG0 +R3,W(;02+R2,Wge+R17wg,
where Ry we = {—;—%—%—%%—l—i—;, Roywe = %—%———l—%@—k and Rswe =

45 38 43
—5T—7—|—:ﬁ+3.

Proof of Proposition 1 The proof of (22), for § = 0, is given by Moon and Peron
(2008). The results of both equations (21) and (22) of the corollary can be seen based
on the results of Corollaries 1 and 2, after scaling the IV and WG statistics appropriately
with T" and applying the continuous mapping theorem. The joint convergence of the scaled
statistics is guaranteed by the results of Hahn and Kuersteiner (2002). Since this proof is not
intuitive/clear under the sequence of local alternatives considered by the above corollaries,
we give a more rigorous proof of (21) under the sequence of local alternatives ¢, = 1— = \ﬁ
considered in the large-T" panel data literature.

Rewrite the IV estimator as ¢y

N

E Zit Zit+p+1
=1

~ .
E ZitZit+p

Then, the yet not standardized IV test statistic under the sequence of local alternatives
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oy =1— ﬁﬁcan be written as follows:

TVN (¢

where ( =

N
D
T2

T—p—1

2[=

||M

Substituting

—onr) = VN

N T—p-—-1
Z Z Zit SDNTZzt+p + Uit pr1 + (1 - SDNT)az‘)

N T—-p—1 — @nNT
Z ZitZit+p
=1 t=1
N T-p-—-1
T (ZitUit+p1 + 2a(1 — pnr)ai))
_ =1 t=1 _(m)+ (k) (90)
o N T—-p-—1 - (l) )
%%Z Z Zit Zit+p
=1 t=1
T—p—-1 N T-p-1
lN%Z Z (ZitUit+pt1) » = \/LN%Z zit(1 — pnp)a;) and (1) =

=1 t=1 =1 t=1

ZitZit+p- Under the sequence of oy =1 — ﬁﬁ’ z;i can be written as

Zig = QDI;VTZZ'O + SOETlUit—l + Uy (91)

t—1 t—2
= QOn7Uil T Pyl + .+ U

SOIEVT =1 + O(T)a

which holds by the binomial theorem, into (91) yields

ZitWit+p+1 = Uil + U+ O(T) (92)

The last relationship enables to apply standard asymptotic results about AR(1) processes
(see also Hamilton (1994)).

To obtain the limiting distribution of (90), next we derive asymptotic results for quantities
(m), (k) and (l), defined above. First, note that the probability limit of (k) is zero, as
T, N — oo. This can be seen by writing (k) as

()

Il
5~
N =
WE
&

T
©
s
S

|
5~
M-
IS
N
SN
2
>
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Taking first the limit 7" — oo gives

1 T—p—1
_2 Zit L 07
t=1
and, thus,
1 1 T—p—1
R — Z zit(1 — onr)a; 250. (93)

As T, N — oo, (m) converges to a limiting distribution. This can be seen by writing

N T-—p-1 T —p—1

\/LN% Z Z ZitUit+p+1 = \/— Z Z ZitWitp41- (94)
=1

As T' — oo, we have

T—p—1

1
Z ZitWit4-p+1 —> 202 { }2 - 1} ) (95)
t=1

—_

where W (r) denotes the standard Wiener process at time r. [IW;(1)]? follows a chi-squared dis-
tribution with one degree of freedom, which means that E {[W;(1)]?} = 1 and Var {[W;(1)]*} =
2. Next, by taking the limit of (94) for N — oo gives

4

= e {IRE -1} -5 N0, G, (96)

Finally, to find the limit of () write it, first, as

T—p—1 T—p—1

N
E %T_ g Z ZitZit+p = N Z Z ZitZit4p- (97)

Substituting the following representation of z;;,:
p p
Zitrp = PrZit T Z Pt (1= yr)ai + Z ¢?V?Uit+(p—k—1)a
k=1 k=1

obtained under Hy: ¢ > 0, into into (97) and using ¢, = 1+ o(T) yields the following

38



results:

T—p—1 1 T—p—1 L
7 X et = g 3 Aol ot [P o)
t=1 "
T—p—1
Z it Z <PNT — N7 — 0, (100)
1 T—p—1 p T—p—1
T2 Z Zit ) P Yitt (p—k-1) = Z ZthUsz k-1) +o(T) = 0. (101)

t=1 k=1 t=1

Based on the results of equations (99), (100) and (101), we can show that (m) converges to

the following quantity:
1

i i(ﬁ W) 2dr 2 — L (102)
N 4 2

as N — oo (see also Levin et al. (2002)).
The proof of the proposition follows immediately by using the results of equations (93),
(96) and (102).

Proof of Theorem 3 The theorem can be proved following analogous steps to those of

the proof of Theorem 1. First, write v N(¢ppr — ©n) as

Z y;k/ lnpyz
\/N(@FDIV —on) = \/N —¥N

Z v Ty

Zy A (enyi1 + (1 —pn)Bie” +uf)
- VN — PN
Z?J*I I5y7
N N
\/LNZ 1_90N B* *! H*e*_‘_fzy*/ H* *

=1 =1

N
%Z i H*yz 1
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The proof of the theorem follows from the last relationship after using the following results:
N
D (1= on) By e =0,
N
* ko k d
Dy Thus == N(0,2tr((Arpiv©)?),

~ >yl Iy — tr(ATIAY),

since tr(A¥I[}0) = 0.

Proof of Corollary 3 Note that under the assumptions of Corollary 3 the variance-

covariance matrix of the transformed error terms w, is given as

q r s 0
r q r s

s r qgor s

E(uju}") = - : (103)

(22

0 s r q
where ¢ = (24 6%) — 20, r = 20 — (1 + 6*) and s = —0. Substituting the following results
tr(A'IEA*) =T —p — 3 and tr((Apprv)?) =T —p — 2,

which holds for § = 0, into (28) gives (29). Equation (30) of the corollary, for § # 0, can be
proved by substituting the following results into (28):

tr(A"IA*O) = (T —4)0> — 0+ T — 4 and tr((Apprv©)®) = P10 + Po0° + P36° + Pof + Py,

where P, = 2(T — 3), P, = —2(2T — 8) and P5 = 2(47 — 15).

Proof of Theorem 4 To prove Theorem 4, first write vector y;_; and its first difference
Ay; as
Yi—1 :wyzU+QX<z+Quz> L= 1727>N7 (104)

and
Ay; = u; + (oy — Dyio1 + X, (105)
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(1 —pn)ai +¢B;

respectively, where Q) is defined by (45) and (; = ( ) (; can be written

(1 —on)B;
in more compact form as
c
i — T =My + i€*7 106
¢ Nl B (106)
here - = (1 () and e = Then, the th b d
where —~ = (1—pN), p; = and e* = 0 ) en, the theorem can be prove

by following analogous steps to those of Theorem’s 2 proof. That is, first write

b 1 / * *
\/_(5WGT (‘PWGT L SON) = T~ Z%q@ U;— ZA% ®, werAy; = (a*)—(b%),
NS \/_ i=1

WGT
(107)
N N
where (a*) = \/Lﬁ Zyg_lQ*ui and (b*) = \/LN Z Ayl®, werAy;. Writing(a*) as
i=1 i=1
1 & 1 &
a*) = — i *ui:— wyio + QX + Quy)' Q*uy,
it can be shown that the limiting distribution of (a*) is given as
| N
(a*) = \/—_ Zyz 1Q 4, N(tr(NQ'T) — ctr(F'Q'T), Vivgr.a* ),
where Viygr o+ is the variance of the distribution. This result holds, since we have
LS @ 20 (108)
\/N — 2 (2
| X
— ) (XYQu; =0 109
N le GXQ (109)
L iu’-ﬂ@*u» N N(tr(NQ'T) — ctr(F'Q*T), Vivar.a+) (110)
\/N — 7 7 ) ,a

The results given by equations (108) and (110) can be derived as before, for Theorem 2. To
see why (109) holds, write

1 N N
= C;XQ/Q*W = (—=n; + 5i€*)/XQ/Q*Uz‘
D VDI



and note the following results:

N

% Z X Q u; £ 0

N N

1 1
Wi 5 B, XV Q u; = Wi 5 B, XNQ*u; =0,
\% i=1 v =1

since e XAN'Q* = (0, ...,0).

To derive the limiting distribution of quantity (b*), we can write

N
(0) = \/—— Z YiPpwarlyi
N
= \/_—Z Dyi—1 + X)) @pwer(wi + (on — Dy + X(;)
N
= Z w; @, warti + i@y waryi-1 oy — 1) + ui®p wer X¢;

+(90N — Dyl 1@, werui + (on — 1)yl Ppweryiot + (o — 1)yi_

+( X' Py waru; + CX ' Ppwaryi-i(py — 1) + GX'@pwer X (.

and use the following results:
1
N > U@, weru; ~% N(tr(®pworl), Viver,)
i=1

P

1
\/_N Z w@pwaryi-1(pn — 1) — —ctr(®pwerAl)
i=1

U, warX (¢ — 0

'MZ

.
Il
—

(o — DY Ppweru; —— —ctr(AN @, werl)

=1

(on — 1)2y£71q)p,WGTyifl 250

-

=1

B = = =
1= 1= 104

.
—_

42

(on — VY1 @pwerX( —— —cE(B)e” X' N, werXe

(111)

(112)

1(I)p,WGTXCi

(113)

(114)

(115)

(116)

(117)

(118)



N
1
VN D GX'®,weru; 0 (119)
i=1
| N
\/_N Z C;X(I)p,WGTyi—l (QON — 1) L) —CE(B?)G*IXI(I)p,WGTAXe* (120)
i=1
1N
VN D XD, warX ¢ = ctr(X' 0, war Xe E(ui8,)) + ctr(e” X'®, war X E(u,8,))
i=1
Using the results of the above relationships gives

A ~ Z; £3 *
VNbwear (WGT _ ;Vﬂ — 1) L N(=c(d* + E(B)g"), Vivar), (121)
WGT

d* = t’I“(A/Q*AF) + tT(F,Q*F) — tr(q)p,WGTAF) — t""(A,(I)nWGTF),
g* = t?"(X,(I)RWGTXe*éI) -+ t?“(e*IXI(I)%WGTXé) — 6*/X/AI(DP7WGTX€* — e*’X'CIJP,WGTAXe*,

and E(u;;) = E(87)é, where é = L) As before, note that the variance of the above

limiting distribution, denoted as Viyqr, is the same with that under hypothesis Hy: ¢ = 0,
and it is given as Viyar = 2tr((Awerl)?) (see 34).
Relationship (34) of Theorem 5 can be proved by substituting

tr(X'®, warXe*e) = e’ X' N, werXe* and tr(e”X'®, werXeé) = e X'®, werAXe*

into quantities (d*) and (¢*). Then, (121) implies

s e bwa J
N(SWGvalG/ZQ“ (SOWGT - AW—T - 1) -
WGT

N(—C (tT’(AIQ*AF) + t?"(F/Q*F) — tr(q)p,WGTAF) — tT(AIq)p’WGTF)) Vm;gj%, 1)

Proof of Corollary 4 The proof of the corollary follows by following analogous steps to
those of the proof of Corollary 3 and using the following relationship:

tT(A/Q*AP) + tT(F/Q*F> = tT((I)p’WGTAF) + tT’(A/CI)nWGTF).
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Proof of Theorem 5 To prove the theorem, we will employ following relationships:

i = SDNZifl—i_XCi_'_ui; L= 1727"'7N (122)
zio = QX+ Qui + (w — e)yio, (123)
and Az = (py — Dz + X + uy, (124)

which hold under both the null Hy: ¢ = 0 and alternative Hy: ¢ > 0 hypotheses. Next, we
derive the results of the theorem for ¢ = 0 and, then, for ¢ > 0.
To derive the limiting distribution of the FOD test statistic under the null hypothesis

Hy: ¢ =0, we first need to derive the inconsistency of LS estimator ¢p,p To this end, write

N

~ Z 2IB'ANz; n)
~ 1= h/*
Yrop — 1= ;, =T

=
=
@
=
@
&
Il
2=
[]=
2
%
s
g
N
&
=
(oW
q
Il
Z|=
[]=
SN\
%
Sy
N
&
&
=
(o

(g*) can be written as

~

—~
=
*
~—
Il

N

% Z 2B AAz; = % Z(zg,l + B¢’ +uy)B'A(Be + u;)

1 i=1

1
— DA+ BN+ Bl ) BA(B e + i)

= & SN+ In) + B BABe + )

S~

N
1

and
1 & 1 &
(¢") = ~ ; 2/B'Bz; = ~ ;(z;_l + B,€' + uy)B'B(zi_1 + B, + ;)
N
1 ! ! ! !
= ¥ Z(ui(/\ + Ir) + B;7")B'B((A + Ir)u; + B;7)

N
1
= = ul(N+1Ir)B'B(A+ Ir)u;,

respectively, since (A + Ir)e = 7, 7B’ = 01xr and B’Ae = Orx;. By the KWLLN, the
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following results hold:

N N
1 (A / _ 1 I= p -
~ Z:; ul(N + Ip) B Au; = ; wZu; L tr(2T). (125)
since (A" + I7)B'A = =, and
1 N
~ > wl(N + Ir)B'B(A + Ir)u; = tr((A + Ir)B'B(A + Ir)T). (126)
=1

The last two relationships imply that the inconsistency of ¢y, is given as

lim ($pop — 1) = tr(=T)
P \ProD = = G (N + In)B'B(A + Ir)T)

From this relationship, it can be easily seen that ¢z, becomes unbiased, if ¢tr(ZI') = 0.
This happens when I' = o2[7, i.e., error terms u; are both homoscedastic and serially
uncorrelated (see also fn 9).

The limiting distribution of the corrected for its inconsistency estimator ¢, under null

hypothesis Hy: ¢ = 0 can be written by writing

. b
VNbpop (@FOD —-1- AFOD)

FOD
N N
N % Z 2 B'ANz; % Z Az®, ropAz;
1 ! /! =1 i=1

( :

= % ZZZ(B’BZZ' %Zz{B’Bzi
i=1 i=1

1 & 1 &

1 N
(N Z AZ; ((A, —|— IT)B/A — (I)p,FOD) AZ@)

N

> Az (2= ®prop) Az, (127)

since

AzZ{(N + I7)B'AAz; = (B;¢' + w;) (A + I7) B'A(Be + u;) = ui(A' + I7) B’ Au,.
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The result of the theorem for the case ¢ = 0 can be obtained using

N
1 -
VN Y AZ(E - P, p00)Az —5 N(0,2tr(A%op))-
=1

(128)

For the case ¢ > 0, the proof of the theorem follows analogous steps to those of the proof of

Theorem 4. This can be easily seen by applying the arguments of the proof of Theorem 4

to the following quantities:

R A b
\/NéFOD (SOFOD — YN — AF0D> =

droD
N
* Z 2 B'ANz;
= VNbpop | 1+ i:;, —¥N
% Z 2! B'Bz;
i=1
N N

The complete the proof, we need the following results:

tr(2) = 0 and tr(A'B'A) = —tr(B'A)
€= = 01xr and Ze = Orxy
B'AXe = Orxi
e X'NB'AANXe* = e"X'NB'AXe
e’ X'B'ANXe* = e"X'B'AXe
e’ X'®, popAXe* = e’X'®,ropXeé
e’ X'N®, popXe* = €X' @, popXe*

Proof of Corollary 5 It follows immediately from the proof of Theorem 5.
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