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1 Introduction

In the last few years there has been an explosion in the number of applications of panel data unit root tests

across the many areas of economics. Their main virtues, good size and power properties, stemming from the

fact that they exploit both cross section (N) and time (T ) dimensions of data sets, and their generality in

specification have made them an integral tool of econometric analysis. Important applications of them include

the following: the examination of economic growth convergence hypothesis at country, or regional, level (see,

e.g., Mello (2011), and Hafner and Mayer-Foulkes (2013)), price convergence in manufacture (see, e.g., Yan

et al. (2007), Suvankulov et al. (2012)), persistency in macroeconomic series like per capita consumption,

unemployment rate, interest and inflation rates (see, e.g., Chen and Lee (2007), Basker (2005), Romero-Avila

and Usabiaga (2007) and Constantini and Lupi (2007)), mean-reversion in firm growth and profitability (see,

e.g., Bond et al. (2003) and Canarella et al. (2013)), persistency of oil and energy shocks (see, e.g., (Narayan

et al. (2008), Apergis et al. (2010), Lean and Smyth (2013)), the validity of the purchasing power parity

hypothesis (see, e.g., Harris et al. (2005) and Murray and Papell (2005)) and income inequality (see, e.g.,

Lin and Huang (2012)). The list is far from being exhaustive.

Within the above list of applications several important econometric problems, translated in strong as-

sumptions, can arise. Firstly, in most of the above studies (especially the microeconomic ones) the time

dimension of the panel data, denoted as T , is small (short). Thus, applications of panel unit root tests

assuming large T , instead of fixed (finite), will not lead to good approximations of the small sample distri-

butions of the tests, compared to their fixed-T counterparts. As shown by Harris and Tzavalis (1999) and

De Wachter et al. (2007), in this case large-T panel unit root tests will lead to serious size distortions and

power reductions.

Secondly, there is always the possibility of structural breaks in the individual effects or deterministic trend

components of the panel series employed to test the unit root hypothesis. These breaks can be the outcome

of an economic crisis, a credit crunch, a tax policy change, an oil price shock and monetary or fiscal shocks.

They are expected to have common side effects to all cross section units of the panel. Allowance for common

breaks in panel unit root tests in the finite T framework is made by Tzavalis (2003), Hadri et al. (2012), and

Karavias and Tzavalis (2014b) but this is done only for the simple case that the error terms are independent

and identically distributed (IID) across both dimensions of the panel. The motivation of these tests was to

pursue ideas on how to conduct panel data inference about unit roots in the presence of breaks, when T is

fixed. For large-T panels, often used in macroeconomic studies, tests allowing for breaks were proposed by

Carrion-i-Silvestre et al. (2005) and Bai and Carrion-i-Silvestre (2009). These tests assume that T increases

faster than the cross section dimension of the panel, N , which does not happen in microeconometric studies.

Thirdly, it concerns the assumptions that the error terms of the individual series of the panel are serially

and cross sectionally uncorrelated, made by the first generation of finite-T panel unit rot tests (see, e.g.,

Harris and Tzavalis (1999, 2004), and Hadri et al. (2005)). These assumptions can not be easily relaxed in

the framework of finite T inference procedures. Despite the fact that in most microeconomic studies T is

very short, there is always the possibility that the errors terms are serially correlated and/or heteroscedastic
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across the time dimension of the panel. To deal with this problem, De Wachter and Tzavalis (2007) and De

Blander and Dhaene (2012) consider finite T panel unit root tests allowing for serial correlation. But this

is done for the specific cases that the error terms follow a moving average (MA), or an autoregressive (AR),

procedure of lag order one, respectively, which may be proved very restrictive in practice.1 Furthermore,

cross section dependence can be attributed to common stochastic factors of the error terms of the panel

(see, e.g., Moon and Perron (2004)) or to spatial dependence based on general types of distances of the error

terms. Distance can be defined using specific metrics either in terms of real geographical distances or in

terms of economic and social distances (see, e.g., Conley (1999), and Conley and Ligon (2002)).2 Spatial

dependence may be also exacerbated if the existence of structural breaks in the deterministic components of

the dynamic panel data model is ignored.

To address the above problems in the context of finite T and large N asymptotics, in this paper we

propose panel unit root test statistics allowing for structural breaks, spatial dependence, serial correlation,

heteroscedasticity, heterogeneity across individuals and linear and/or non-linear trends of the underlying

panel data dynamic model. Furthermore, we allow for multiple structural breaks at known or unknown

dates that can be considered under the alternative hypothesis of stationarity or the null of unit roots. Our

tests allow for general forms of spatial dependence. They have the interesting feature that the spatial weights

matrix does not have to be defined, because a non-parametric estimator of the variance-covariance matrix

of the error terms is employed. The lag-order of serial correlation of the error terms allowed by our tests can

be larger than one. This can be chosen by the researcher depending on the T -dimension of the panel and the

number of breaks, as well as their location considered during the sample. Finally, our tests can be applied

to models with individual intercepts, individual trends and other non-linear functions, such as individual

quadratic trends. As a by-product of our analysis, partial structural change models can be also considered

as well as models with common trends.

In developing the tests, the paper makes a number of contributions to the econometric literature. First,

in the case of an unknown date break, the limiting distribution of the suggested test statistics is derived

analytically as the minimum order statistic between all alternative sequential statistics that the break can

occur at different points in time, during the sample. The limiting distribution of this statistic is obtained

as the minimum value of a finite number of correlated variables. This distribution is provided analytically,

based on recent results of Arellano-Valle and Genton (2008), who have derived the analytic form of the

probability density function of the maximum of absolutely continuous dependent random variables. The

form of this distribution enables us to obtain critical values of the suggested test statistics without having

to rely on Monte Carlo simulations, which substantially facilitates application of the tests in practice. To

our knowledge, this is the first paper which provides an analytic form of the distribution of a minimum of

sequential statistics to test for unit roots in the presence of breaks, since this method was introduced in

1Heteroscedasticity in long panels has been recently studied by Westerlund (2014).
2Recent contributions in the area of panel unit root tests allowing for cross section dependence comes from Bresson et al.

(2007), Chang and Song (2009), Sul (2009), Bai and Ng (2010), Palm et al. (2011), Pesaran et al. (2013) and Meligotsidou et
al (2014), inter alia. These studies however assume large T dimension of the panel. Recently, Robertson et al. (2014) proposed
a fixed T panel unit root test assuming factors in the errors, based on a GMM estimator which exploits moments available by
these factors. For a review of cross section dependence see Sarafidis and Wansbeek (2012).
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econometrics by Zivot and Andrews (1992), and Perron and Vogelsang (1992). Note that this distribution

can also derived for the case that the number of breaks is more than one.

Second, the tests suggested by the paper are obtained based on the within group (WG) least squares

(LS) estimator of the dynamic, AR(1) panel data model adjusted (corrected) for its inconsistency (bias).

The latter comes from the within transformation of the individual panel data series considered by the above

estimation method, and the serial and spatial correlation of the error terms.3 This estimation method

requires the minimum set of assumptions about the data generating process. In particular, under the null

hypothesis of unit roots, it is invariant to the initial observations (conditions) of the panel data. Thus, it does

not require mean and covariance stationarity conditions on these observations, as the generalized method of

moments (GMM) and the first difference maximum likelihood (FDML) estimators (see, Madsen (1998), and

Kruiniger (2008), respectively). These stationary conditions can be proved very restrictive, in practice when

testing nonstationarity of data, especially in the presence of structural breaks (see, e.g., Arellano (2003) and

De Wachter and Tzavalis (2012)). Furthermore, as noted recently by De Wachter et al. (2007), Han and

Phillips (2012, 2013), taking first differences of the individual series of the panel, assumed by the above two

estimators to remove individual effects, may lead to identification problems of the parameters of interest

for the GMM method and/or to estimation problems for the FDML method. In addition to the initial

observations, the LS estimator employed in our tests is invariant to the individual effects of the dynamic

panel data model.

The property of our suggested test statistics to rely on a bias adjusted LS estimator draws from two

strands of the econometric literature. First, it is similar in spirit to the modified LS estimator of Phillips and

Hansen (1990), for single time series analysis. In this way, a non-parametric correction of the estimator is

employed which purges the effects of individual, linear and/or quadratic trends and serial and spatial correla-

tion nuisance parameters. However, instead of correcting the limiting distribution of the LS estimator based

on estimates of its long run variance-covariance matrix, it does this by exploiting cross section information

in estimating the variance-covariance matrix of the error terms. Second, the non-parametric bias correc-

tion considered by our tests is based on consistent estimation of the error terms variance-covariance matrix

suggested by Abowd and Card (1989) and Arellano (1990, 2003). Under some conditions (e.g., maximum

order of serial correlation), the nuisance parameters of this variance-covariance matrix (due, for instance, to

short run dynamics, spatial correlation effects and/or incidental trends) can be identified and consistently

estimated. This is done by employing appropriately designed selection matrices which exploit the covariance

structure of the error terms.

The paper is organized as follows. In Section 2, we derive the limiting distributions of the test statistics

under the assumption that the error terms are white noise processes. This analysis will help us to better

interpret the limiting distribution of the sequential version of the test statistics, in the case of an unknown

date break. In Section 3, we generalize the test statistics to allow for serial correlation in the error terms.

In Section 4 we extend the tests to allow also for individual linear trends. In this section, we also show how

3Dynamic panel data LS estimators adjusted for their bias have been suggested in the literature by Kiviet (1995), Harris
and Tzavalis (1999), Hahn and Kuersteiner (2002), Phillips and Sul (2007), and De Blander and Dhaene (2012), inter alia.
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to carry out the tests when there is a break in the individual effects of the dynamic panel data model under

the null hypothesis of unit roots. Section 5 considers the cases of multiple breaks, partial structural change

and more general (quadratic) patterns of linear trends. Section 6 considers the case that the error terms

are spatially correlated. Section 7 conducts a Monte Carlo simulation study to examine the small sample

performance of the tests. Section 8 concludes the paper. All the mathematical derivations are provided in

the Appendix of the paper.

2 Test Statistics and their Limiting Distribution

In this section, the proposed panel unit root tests are presented under the assumption that the error terms of

the AR(1) panel data model are independent, identically and normally distributed (NIID) across the time

(t) and cross section units (i) of the model. As said before, this provides a clear illustration of the inference

procedure employed to test the null hypothesis of unit roots and to derive the analytic form of the limiting

distribution of the suggested test statistics in the case where the break point is treated as unknown. In the

next sections, this assumption will be relaxed.

2.1 Known Date of the break

Consider the following AR(1) panel data model:

yit = a
(1)
i + ζit for t ≤ λ, t = 1, 2, ..., T (1)

yit = a
(2)
i + ζit for t > λ

ζit = ϕζit−1 + uit,, with ϕ ∈ (−1, 1],

where λ denotes the time point of the sample, referred to as break point. The model assumes that a common

break in its individual effects, denoted as αi, occurs, for all cross section units i = 1, 2, ..., N . The date of

the break is only allowed at times 2, ..., T − 1, i.e. λ ∈ I = {2, ..., T − 1}.

Define the following N × 1 vectors collecting the cross-section observations of the dependent variable yit

and error terms ζit and uit of model (1), for all t: yt = (y1t, ..., yNt)
′, ζt = (ζ1t, ..., ζNt) and ut = (u1t, ..., uNt),

respectively. Stacking yt, ζt and ut into NT × 1 dimension vectors, y = (y′1, ..., y
′
T )′, ζ = (ζ ′1, ..., ζ

′
T )′ and

u = (u′1, ..., u
′
T )′ respectively, model (1) can be written in a more compact form as follows

y = e
(1)
T ⊗ a

(1) + e
(2)
T ⊗ a

(2) + ζ (2)

ζ = ϕζ−1 + u,

where ⊗ denotes the Kronecker product, e(1)
T and e(2)

T are T ×1 vectors whose elements are defined as follows:

e
(1)
Tt = 1 if t ≤ λ and 0 otherwise, and e(2)

Tt = 1 if t > λ and 0 otherwise, a(1)and a(2) areN×1 dimension vectors

which collect individual effects αi before and after break point λ, respectively, and ζ−1 = (ζ ′0, ..., ζ
′
T−1).

Under the null hypothesis of unit roots (i.e., H0: ϕ = 1), model (1) reduces to the pure random walk model
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y = y−1 + u while, under the alternative of stationarity (i.e., H1: ϕ < 1), it considers a common structural

break in individual effects ai, for all i. The above specification of the null and the alternative hypotheses

is often considered in panel unit root inference procedures (see, e.g., Bai and Carrion-i-Silvestre (2009) and

Karavias and Tzavalis (2014b)). The main focus of these procedures is to diagnose whether evidence of unit

roots can be spuriously attributed to the ignorance of structural breaks in nuisance parameters of the data

generating processes, like individual effects ai, as was first pointed out by Perron (1989). The common break

assumption across all units of the panel i can be attributed to a monetary regime shift, which is common

across all agents (or firms) in the economy, or to a structural economic shock which is independent of error

terms uit, like a credit crunch or an exchange rate realignment. As aptly noted by Bai (2010), even if each

series of a panel data model has its own break point, the common break assumption across i is useful in

practice not only for its computational simplicity, but also because it allows for estimating the mean of

possibly random break points. Note that in model (1), the magnitude of the break change a(2)
i − a

(1)
i at

point λ can be different across units i, thus allowing for each individual unit of the economy to respond also

idiosyncratically to the effects of a structural break.

To derive the limiting distribution of a test statistic of H0: ϕ = 1, we make the following assumption

about the sequence of error terms {uit}.

Assumption A

{uit} are normal IID random variables (i.e., NIID), which are independent and identically distributed

across i and t, with mean E(uit) = 0, constant variance σ2 = E(u2
it) and finite 2 + ε moments.

Assumption A enables us to apply standard asymptotic theory for independent processes under H0:

ϕ = 1. It is particularly strong, as it imposes normality, time series and cross-section independence, and

homogeneity of error terms uit. To test the above hypothesis based on model (1), allowing for a structural

break in individual effects, we rely on the within group (WG) least squares (LS) estimator of ϕ, defined as

ϕ̂(λ) =
y′−1Q

(λ)y

y′−1Q
(λ)y−1

, (3)

where y−1 = (y′0, ..., y
′
T−1)′ and Q(λ) = INT − X(λ)(X(λ)′X(λ))−1X(λ)′ is the annihilator matrix which

demeans the individual series of the panel yit. ϕ̂(λ) is also well known as dummy variables LS (LSDV)

estimator. For model (1), matrix X(λ) is defined as X(λ) =
[
e(1), e(2)

]
, with e(j) = e

(j)
T ⊗IN for j = 1, 2. INT

and IN are identity matrices of dimension NT ×NT and N ×N , respectively. The superscript λ indicates

dependence of matrices Q(λ) and X(λ) on break date λ.

Estimator ϕ̂(λ) has the interesting property that, under H0: ϕ = 1, is invariant (similar) to the initial

conditions of the panel yi0 and individual effects α
(j)
i because the latter are orthogonal to Q(λ). Thus,

assumptions on yi0, like mean and covariance stationarity made by the generalized method of moments and

conditional and unconditional maximum likelihood estimation procedures (see, e.g., Bond et al. (2005) and

Kruiniger (2008)) are no longer required.4

4LS estimator ϕ̂(λ) is also attractive for its small sample properties. De Wachter et al. (2007) and Han and Phillips (2010)

6



Since ϕ̂(λ) is an inconsistent estimator, due to the correlation between vectors y−1 and u induced by the

within transformation of the individual series of the panel yit (see, e.g. Nickel (1981)), panel unit root test

statistics relying on this estimator must correct for its inconsistency (see Harris and Tzavalis (1999)). Under

H0: ϕ = 1, the inconsistency (asymptotic bias) of estimator ϕ̂(λ) is given by the following relationship:

p lim
N

(
ϕ̂(λ) − 1− b(λ)

d(λ)

)
= p lim

N

(
ϕ̂(λ) − 1− tr(Λ′Q(λ)Γ)

tr(Λ′Q(λ)ΛΓ)

)
= 0, (4)

(see Lemma A2 for a proof), where b(λ) ≡ E(y′−1Q
(λ)u) = tr(Λ′Q(λ)Γ) and d(λ) ≡ E(y′−1Q

(λ)y−1) =

tr(Λ′Q(λ)ΛΓ), where Λ is a NT×NT deterministic matrix defined in the Appendix and Γ = E(uu′) = σ2INT

is the variance-covariance matrix of the stacked vector of error terms, u.

To estimate Γ = σ2I, entering the bias function of estimator ϕ̂(λ), b(λ)

d(λ)
, we can rely on a consistent

estimator of the variance of uit, σ2, under H0: ϕ = 1. Lemma A4 shows that such an estimator is given as

σ̂2 = ∆y′Ψ(λ)∆y/tr(Ψ(λ)),

where ∆ is the difference operator and Ψ(λ) is a NT ×NT selection matrix having in its main diagonal the

corresponding elements of matrix Λ′Q(λ) and zeroes elsewhere. The consistency of σ̂2 can be easily seen

by noticing that, under H0: ϕ = 1, ∆yit = uit, for all i and t. Matrix Ψ(λ) is designed so as to select all

non-zero elements of variance-covariance matrix Γ and it assigns weights to them according to Λ′Q(λ) so as

tr(Λ′Q(λ)) = tr(Ψ(λ)). In doing so, Ψ(λ) enables consistent estimation of σ2 (and ultimately Γ) and it also

captures the correlation structure between vectors y−1 and u, which is induced by the within transformation

matrix Q(λ).

Having defined the above consistent estimator of σ2, the following bias adjusted estimator of ϕ can be

employed to test H0: ϕ = 1:

ϕ̂(λ) − b̂(λ)

d̂(λ)
, (5)

where d̂(λ) = 1
N y
′
−1Q

(λ)y−1 and b̂(λ) = 1
N σ̂

2tr(Ψ(λ)). Note that ϕ̂(λ) is adjusted only for the bias of its

numerator like in Levin, Lin and Chu (2002) (see also Kruninger and Tzavalis (2002) and Moon and Perron

(2004)). Under the null hypothesis, it can be shown that the probability limit of the numerator of the adjusted

estimator ϕ̂(λ) − b̂(λ)

d̂(λ)
, given as

1

N
y′−1Q

(λ)u− 1

N
∆y′Ψ(λ)∆y =

1

N
u′
(

Λ′Q(λ) −Ψ(λ)
)
u, (6)

becomes zero, i.e., E
[
u′
(
Λ′Q(λ) −Ψ(λ)

)
u
]

= tr
[(

Λ′Q(λ) −Ψ(λ)
)
E(uu′)

]
= 0. This happens because(

Λ′Q(λ) −Ψ(λ)
)
has zeros in its main diagonal, by the definition of selection matrixΨ(λ) and E(uu′) = σ2INT .

From equation (6), it can be clearly seen that, to test H0: ϕ = 1, the bias adjusted estimator ϕ̂(λ) − b̂(λ)

d̂(λ)

have noticed that the performance of the GMM estimator of ϕ, compared to LS estimator ϕ̂(λ), may deteriorate in small samples
due to the inaccurate estimation of its weighting matrix. Furthermore, recently Han and Phillips (2013) have find pathologies
of the first difference maximum likelihood with a high impact on both small sample and asymptotic performance (see also our
discussion in the introduction).
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relies on the sample moments of the zero elements of matrix Γ, i.e., E(uituis) = 0, for all s 6= t. The following

theorem provides the panel data unit root test statistic and its limiting distribution based on ϕ̂(λ) − b̂(λ)

d̂(λ)
.

Theorem 1 Let Assumption A hold. Then, under H0: ϕ = 1 and λ known, we have

Z(λ) ≡ V (λ)−1/2d̂(λ)
√
N

(
ϕ̂(λ) − b̂(λ)

d̂(λ)
− 1

)
d−→ N (0, 1) (7)

as N →∞, where b̂(λ)

d̂(λ)
is a consistent estimator of the asymptotic bias of ϕ̂(λ), with b̂(λ) = 1

N σ̂
2tr(Ψ(λ)) and

d̂(λ) = 1
N y
′
−1Q

(λ)y−1, and

V (λ) =
1

N
2σ4tr(F (λ)F (λ)) (8)

is the variance of the limiting distribution ϕ̂(λ) − b̂(λ)

d̂(λ)
, where F (λ) = 1

2 (Λ′Q(λ) +Q(λ)Λ−Ψ(λ) −Ψ(λ)′).

The test statistic Z(λ), given by Theorem 1, can be easily implemented to test H0: ϕ = 1 based on

the tables of the standard normal distribution. To this end, variance V (λ) can be consistently estimated by

replacing σ2 with σ̂2 = ∆y′Ψ(λ)∆y
tr(Ψ(λ))

.

2.2 Unknown Date of the Break

In this section the assumption of known λ is relaxed. As in the single time series literature, the selection

of the break point λ is viewed as the outcome of minimizing the standardized test statistic Z(λ) over all

possible λ ∈ I, after trimming out the initial and final parts of the time series observations of the panel. The

minimum value of test statistics Z(λ), for all λ ∈ I, denoted as min
λ∈I

Z(λ), will give the least favourable result

on H0: ϕ = 1. Let λ̂min denote break point λ at which the minimum value of Z(λ) is obtained. Then, H0:

ϕ = 1 will be rejected if

Z(λ̂min) < zmin
a , (9)

where zmin
a denotes the size a left-tail critical value of the limiting distribution of statistic min

λ∈I
Z(λ). The

following theorem provides this distribution analytically.

Theorem 2 Let Assumption A hold. Then, under H0: ϕ = 1 and λ unknown, we have

min
λ∈I

Z(λ) d−→ ψ ≡ min
λ∈I

N(0,Σ) (10)

as N →∞, where Σ ≡ [σµs] is the variance-covariance matrix of the test statistics Z(λ), for all λ ∈ I, with

elements σµs given by the following formula:

σµs =
tr(F (µ)F (s))√

tr(F (µ)F (µ))
√
tr(F (s)F (s))

, (11)

where µ and s denote two different break points of the sample that the break can occur.

Theorem 2 implies that critical values of the limiting distribution of the standardized test statistic

min
λ∈I

Z(λ), zmin
a , can be obtained from the distribution of the minimum value of a fixed number of T − 2 cor-
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related normal variables Z(λ) with covariance matrix Σ. This distribution is not directly available. However,

given that min{Z(2), Z(3)..., Z(T−1)} = max{−Z(2),−Z(3)...,−Z(T−1)}, the distribution of the maximum of

normal variables −Z(λ) provides the critical value zmin
a for a significance level a, i.e.,

P (ψ < zmin
a ) = P (−ψ > −zmin

a ) = a. (12)

The integral function P (ψ > −zmin
a ) = a can be calculated numerically based on the probability density

function (pdf) of −ψ. This density function has been recently derived by Arellano-Valle and Genton (2008),

for the more general case of the maximum of absolutely continuous dependent random variables of elliptically

contoured distributions. For the case of normal random variables, it is given as follows:

fψ (x) =
∑
λ

φ(x;µλ,Σλ,λ)Φ(xeT−3;µ−λ,λ,Σ−λ−λ,λ), x ∈ R, (13)

where eT−3 is a (T −3)-column vector of unities, φ(·) and Φ(·) are respectively the pdf and cdf of the normal

distribution with arguments given as follows:

µ−λ,λ(x) = µ−λ + (x− µλ)Σ−λ,λ(Σλ,λ)−1 and Σ−λ−λ,λ = Σ−λ−λ − Σ−λ,λΣ′−λ,λ(Σλ,λ)−1,

where µ = (µ−λ
...µλ)′ and Σ =

 Σ−λ,−λ Σ−λ,λ

Σλ,−λ Σλ,λ

 are respectively the vector of means and the variance-
autocovariance matrix of the (T − 2)× 1 dimension vector Z. This vector consists of random variables Z(λ),

for λ ∈ I, partitioned as Z = (Z(−λ)
...Z(λ))

′, where Z(−λ) is a (T − 3)× 1 dimension vector consisting of the

remaining elements of Z, which exclude Z(λ).

The above pdf of random variable −ψ, defined as fψ (x), is a mixture of normal marginal densities

φ(x;µλ,Σλ,λ) corresponding to all possible break points of the sample λ. These densities are weighed with

the cdf values of the (T −3)-column vector xeT−3, given as Φ(xeT−3;µ−λ,λ(x),Σ−λ−λ,λ). Intuitively, the pdf

formula given by (13) sums up the probabilities that one random variable −Z(λ) takes its maximum value

x (implying that Z(λ) takes its minimum value), while the remaining variables, collected in vector −Z(−λ),

take values smaller than x. After the pdf has been calculated, critical value zmin
a can be easily obtained, by

simple numerical integration.

3 Non-normal, Heterogeneous and Serially Correlated Error Terms

The test statistics presented in the previous section can be extended to allow for non-normal, serially cor-

related, heteroscedastic and heterogeneous across time (t) error terms uit. Due to the finite-T dimension

of model (1) and the allowance for a common structural break in the individual effects α(j)
i , j = 1, 2, the

maximum order of serial correlation of uit, denoted as pmax, of the generalized version of the test statistics

will be a function of T . To derive the limiting distribution of these statistics, next we relax Assumption A.

Assumption B

9



(i) {uit} are random variables independent across i, with E(uit) = 0, for all i and t, and all 4 + ε mixed

moments finite. For all i = 1, ..., N, we have E(uituis) = 0 for t < s and s = t+ p+ 1, ..., T, where p denotes

the order of serial correlation of uit. For p, we have p ≤ pmax =
[
T
2 − 2

]∗
< T , where [.]∗ denotes the greatest

integer function.

(ii) Define ΓiT = E(u∗i u
∗′
i ), where u∗i = (ui1, ..., uiT )′ and let ΓiT be finite, for all i. Then, define

ΓT = 1
N

∑N
i=1 ΓiT for which it holds that limN (NΓT )−1ΓiT = limN

(∑N
i=1 ΓiT

)−1

ΓiT = 0. Finally, assume

that the limit of ΓT , denoted as ΓTu = limN
1
N

∑N
i=1 ΓiT , is finite and positive definite.

Condition (i) of Assumption B is more general than that of Assumption A. It does not require normality

of uit and it allows for serial correlation of uit. The maximum order of serial correlation assumed, i.e.,

pmax =
[
T
2 − 2

]∗
, enables us to implement our tests independently of break date λ. It is chosen so as to

allow for breaks in the beginning, or the end of the sample; if the date of the break is known to be in the

middle of the sample, then larger orders of serial correlation can be considered.5 Although it is assumed

that pmax is common for all i, each cross-section unit i can exhibit a different order of serial correlation

provided that this does not exceed pmax. Condition (ii) of the assumption fulfils the no dominating variance

requirement of the Lindeberg-Feller central limit theorem, as now error terms uit are heterogeneous across

i. In addition to this, this condition allows uit to follow an unknown pattern of heteroscedasticity across t.

The assumption of serial correlation of error terms uit made above complicates the adjustment of LS

estimator ϕ̂(λ) for its inconsistency. This happens because the variance-covariance matrix Γ is no longer

diagonal, i.e., Γ 6= σ2INT ; Lemma A5 shows that the inconsistency of the estimator is still given by (4), i.e.,

p limN

(
ϕ̂(λ) − 1− tr(Λ′Q(λ)Γ)

tr(Λ′Q(λ)ΛΓ)

)
= 0. If errors uit are heteroscedastic and heterogeneous across units i, the

diagonal elements of Γ are not equal with each other. In addition, if uit are serially correlated, then there

will be also non-zero off diagonal elements of Γ. All these nuisance parameters of matrix Γ make a consistent

estimation of it impossible, if T is finite.

However, because to correct for the inconsistency of estimator ϕ̂(λ) a consistent estimator of b(λ) =

tr(Λ′Q(λ)Γ) is required and not of Γ itself, as shown by (4) and (5), the above problem can be resolved by

selecting the non-zero elements of variance-covariance matrix ΓT = 1
N

∑N
i=1E(u∗i u

∗′
i ). These elements are

defined as follows: E(uituis) 6= 0, for all s = 1, 2, ..., p and t < s. The matrix which selects the non-zero

elements of ΓT , denoted as Ψ
(λ)
T , will be defined as one which has in its main diagonal, and its p-lower and

p−upper diagonals the corresponding elements of matrix Λ′Q(λ), and zero otherwise. Then, inference about

unit roots can be conducted based on the remaining, zero-mean elements of ΓT , i.e., E(uituis) = 0, for all

s = t+ p+ 1, ..., T , where p ≤ pmax. These elements exist by the assumption that there is an upper bound

in the order of correlation of uit, given by condition pmax < T . To consistently estimate matrix ΓT , we can

rely on the following nonparametric estimator (see Lemma A7 for a proof):

Γ̂T =
1

N

N∑
i=1

∆y∗i ∆y∗′i ,

5Note that, for single time series unit root tests, pmax is assumed to increase with T with an order of o(T 1/2), see Chang
and Park (2002).
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where ∆y∗i = (∆yi1, ...,∆yiT )′ and ∆yit = uit under H0: ϕ = 1. Using the property that the trace function

tr : RNT×NT → R is a linear map which is not 1− 1, it can be shown that, under H0: ϕ = 1, we have

p lim
N

[
1

N
tr(Ψ(λ)Γ̂)− 1

N
tr(Ψ(λ)Γ)

]
= 0, (14)

where Γ̂ = Γ̂T ⊗IN and Ψ(λ) = Ψ
(λ)
T ⊗IN .6 Note that this result holds despite the fact that Γ̂ an inconsistent

estimator of Γ (see Remarks A3 and A4 in the appendix for a further discussion). The above justify the use

of

b̂(λ) =
1

N
tr(Ψ(λ)Γ̂) (15)

as a consistent estimator of b(λ) = tr(Λ′Q(λ)Γ), when adjusting ϕ̂(λ) for its inconsistency. The following

theorem provides the asymptotic distribution of the adjusted for its bias estimator ϕ̂(λ) − b̂(λ)

d̂(λ)
.

Theorem 3 Let Assumption B hold. Then, under H0: ϕ = 1 and λ known, we have

Z(λ) ≡ V (λ)−1/2d̂(λ)
√
N

(
ϕ̂(λ) − b̂(λ)

d̂(λ)
− 1

)
d−→ N (0, 1) (16)

as N → ∞, where d̂(λ) = 1
N y
′
−1Q

(λ)y−1, b̂(λ)

d̂(λ)
is a consistent estimator of the asymptotic bias of ϕ̂(λ), with

b̂(λ) = 1
N tr(Ψ

(λ)Γ̂) where Γ̂ = Γ̂T ⊗ IN and Ψ(λ) = Ψ
(λ)
T ⊗ IN , and

V (λ) =
1

N
2tr(F (λ)ΓF (λ)Γ) (17)

is the variance function of the limiting distribution of the adjusted for its inconsistency estimator ϕ̂(λ)− b̂(λ)

d̂(λ)
,

with F (λ) = 1
2 (Λ′Q(λ) +Q(λ)Λ−Ψ(λ) −Ψ(λ)′).

When the date of the brake λ is unknown, implementation of the test statistic Z(λ) given by Theorem

2 follows similar steps to those described in the previous section, for the case that uit ∼ NIID(0, σ2). The

elements of the variance-covariance matrix of sequential statistic min
λ∈I

Z(λ), Σ ≡ [σµs], can be calculated based

on the following formula:

σµs =
tr(F (µ)ΓF (s)Γ)√

tr(F (µ)ΓF (µ)Γ)
√
tr(F (s)ΓF (s)Γ)

, (18)

where Γ is replaced by its estimate Γ̂ = Γ̂T ⊗ IN . Critical values of the distribution of random variable ψ

can be calculated by replacing the values of σµs in pdf formula (13) with those of σµs, given by (18).

4 Linear Deterministic Trends

In this section, we suggest unit root test statistics based on extensions of model (1) allowing for individual

linear trends, referred to as incidental trends. Two linear trend specifications of model (1) are considered.

The first assumes a common break in these trends is present only under alternative hypothesisH1: ϕ < 1 (see,

6Note that, for Γ = σ2INT , matrix Ψ(λ) reduces to that defined by Theorem 1.
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e.g., Zivot and Andews (1992), Lumsdaine and Papell (1997) and Karavias and Tzavalis (2014b)), while the

second assumes that the break is present under both H0: ϕ = 1 and H1: ϕ < 1 (see, e.g., Lee and Strazicich

(2003) and Kim and Perron (2009)). The first of the above specifications of model (1) is more appropriate

in distinguishing between non-stationary panel data series which exhibit persistence and stationary series

which evolve around broken linear trends. The second case is more suitable when considering more explosive

panel data models under H0: ϕ = 1, which can exhibit both deterministic and random shifts from their

linear trends which are persistent.

4.1 Broken Trends Under the Alternative Hypothesis of Stationarity

Consider the following extension of model (1) under H0: ϕ = 1:

yit = ai + βit+ ζit, for t = 1, ..., T (19)

where ζit is defined in (1) as ζit = ζit−1 + uit, and under H1: ϕ < 1

yit = a
(1)
i + β

(1)
i t+ ζit, for t ≤ λ

yit = a
(2)
i + β

(2)
i t+ ζit, for t > λ,

where β(1)
i and β(2)

i are the slope coeffi cients of individual linear trends before and after the break point λ,

respectively. Under H0: ϕ = 1, the above model assumes that a(1)
i = a

(2)
i = ai and β

(1)
i = β

(2)
i = βi. Using

stacked vector notation, model (19) can be written as

y = eT ⊗ a+ τT ⊗ β + ζ

while under H1: ϕ < 1

y = e
(1)
T ⊗ a

(1) + e
(2)
T ⊗ a

(2) + τ
(1)
T ⊗ β

(1) + τ
(2)
T ⊗ β

(2) + ζ,

where eT is a T × 1 vector of unities, τTt = t for t = 1, ..., T, a(1) and α(2) are the vectors of individual

effects defined in (2), β(1) and β(2) are N × 1 vectors collecting slope coeffi cients β(1)
i and β(2)

i , respectively,

and τ (1)
T and τ (2)

T are T × 1 vectors whose elements are defined as follows: τ (1)
Tt = t if t ≤ λ and 0 otherwise,

and τ (2)
Tt = t if t > λ and 0 otherwise.

For model (19), the annihilator matrix of estimator ϕ̂(λ) becomes Q(λ) = INT −X(λ)(X(λ)′X(λ))−1X(λ),

where matrix X(λ), in addition to vectors e(1) and e(2), also includes the vectors of the linear trends compo-

nents τ (1) and τ (2), with τ (j) = τ
(j)
T ⊗IN , for j = 1, 2, i.e., X(λ) =

[
e(1), e(2), τ (1), τ (2)

]
. Under H0: ϕ = 1, the

above specification of matrix Q(λ), apart from the initial observations of the panel, yi0, renders estimator ϕ̂(λ)

invariant to individual effects βi. As shown in Lemma A8, the inconsistency of this estimator is still given by

relationship (4). However, variance-covariance matrix ΓT can no longer be estimated consistently based on

nonparametric estimator Γ̂T = 1
N

∑N
i=1 ∆y∗i ∆y∗′i , since now∆yit contains individual effects βi underH0: ϕ =

12



1, i.e., ∆yit = βi+uit. In this case, as shown in Lemma A9, we have p limN

[
Γ̂T − ΓT − β2

T eT e
′
T

]
= 0, where

β2
T = 1

N

∑N
i=1E(β2

i ) and consequently p limN

[
1
N tr(Ψ

(λ)Γ̂)− 1
N tr(Ψ

(λ)Γ)
]
6= 0 because tr(Ψ(λ)

T eT e
′
T ) 6= 0.

To adjust ϕ̂(λ) for its bias (following the reasoning of our previous section) we need to find a consistent

estimator of b(λ) = tr(Λ′Q(λ)Γ), based on a selection matrix of the diagonal and serially correlated elements

of ΓT . Let us denote this selection matrix Φ
(λ)
T . Since now ΓT can not be estimated consistently by Γ̂T , due

to individual effects β2
T , this selection matrix must also render the limiting distribution of the adjusted for

its estimator ϕ̂(λ)− b̂(λ)

d̂(λ)
net of effects β2

T (where Ψ
(λ)
T fails). Thus, it must satisfy the following relationship:

p lim
N

[
1

N
tr(Φ(λ)Γ̂)− 1

N
tr(Λ′Q(λ)Γ)

]
= 0.

where Φ(λ) = Φ
(λ)
T ⊗ IN and matrix Φ

(λ)
T is analytically given as follows:

Φ
(λ)
T = Ψ

(λ)
T − tr(Ψ

(λ)
T eT e

′
T )

MT

tr(MT eT e′T )
,

where MT is T × T selection matrix with elements mts = 0 if γtsT 6= 0 and mts = 1 if γtsT = 0. Note that

matrix MT selects the elements of matrix (ΓT + eT e
′
Tβ

2
T ) which contain only E(β2

i ). Based on MT , we can

derive a consistent estimator of β2
T . This is given as

tr(MT Γ̂T )
tr(MT eT e′T ) , i.e., p limN

(
tr(MT Γ̂T )
tr(MT eT e′T ) − β

2
T

)
= 0 (see

Lemma A10 for a proof).

In the above formula of selection matrix Φ
(λ)
T , matrix Ψ

(λ)
T selects the nonzero elements of matrix ΓT

to correct for the inconsistency of the numerator of estimator ϕ̂(λ) due to the serial correlation effects and

the within group transformation of the panel series yit (as in the previous section). The second component

of matrix Φ
(λ)
T , i.e., tr(Ψ(λ)

T eT e
′
T ) MT

tr(MT eT e′T ) , substitutes out nuisance parameter effects β
2
T entering the

limiting distribution of the adjusted estimator ϕ̂(λ) − b̂(λ)

d̂(λ)
, based on their consistent estimator tr(MT Γ̂T )

tr(MT eT e′T ) .

Given the above formulas of selection matrices Φ(λ) and Φ
(λ)
T , next we derive the limiting distribution of a

unit root test based on bias adjusted estimator ϕ̂(λ) − b̂(λ)

d̂(λ)
. This is based on Assumption B, made before,

and Assumption C about βi, given below. Assumption C is necessary because the individual effects appear

in the statistic through the Γ̂ and therefore, they must also obey the Lindeberg-Feller CLT.

Assumption C

β
(1)
i and β(2)

i are random variables which are independent of uit and across i, and have with finite 4 + ε

moments. Also, we have limN
max(E(β

(j)2
i ))

Nβ
(j)2
T

= 0 and p limN β
(j)2
T = p limN

1
N

∑N
i=1E(β

(j)2
i ) = β

(j)2
Tu is finite,

for j = 1, 2.

Theorem 4 Let Assumptions B and C hold. Then, under H0: ϕ = 1 and λ known, we have

Z(λ) ≡ V (λ)−1/2d̂(λ)
√
N

(
ϕ̂(λ) − b̂(λ)

d̂(λ)
− 1

)
d−→ N (0, 1) (20)

as N → ∞, where d̂(λ) = 1
N y
′
−1Q

(λ)y−1, b̂(λ)

d̂(λ)
is a consistent estimator of the asymptotic bias of ϕ̂(λ), with

13



b̂(λ) = 1
N tr(Φ

(λ)Γ̂) where Γ̂ = Γ̂T ⊗ IN and Φ(λ) = Φ
(λ)
T ⊗ IN , and

V (λ) =
1

N
F̃ (λ)′ΘF̃ (λ), (21)

where F̃ (λ) = vec(Q(λ)Λ− Φ(λ)′) and Θ = V ar(∆y∆y′).

Since model (19) under alternative hypothesis H1: ϕ < 1 includes, in addition to individual effects a(j),

j = 1, 2, linear trends, application of the test statistic Z(λ) given by Theorem 4 requires trimming out

two time series observations from the end of the sample, i.e. λ ∈ I = {2, ....., T − 2}. A useful expression

for the estimation of variance V (λ) comes by noticing that V (λ) = 1
N F̃

(λ)′ΘF̃ (λ) = F̃
(λ)′
T ΘT F̃

(λ)
T , where

F̃
(λ)
T = vec(Q

(λ)
T ΛT − Φ

(λ)′
T ), can be written as follows: vec(Q(λ)

T ΛT − Φ
(λ)′
T )′ΘT vec(Q

(λ)
T ΛT − Φ

(λ)′
T ), where

ΘT = 1
N

∑N
i=1 V ar(vec(∆y

∗
i ∆y∗′i )vec(∆y∗i ∆y∗′i )′). An estimator of variance-covariance matrix ΘT is given

as

Θ̂T =
1

N

N∑
i=1

vec(∆y∗i ∆y∗′i )vec(∆y∗i ∆y∗′i )′. (22)

Substituting Θ̂T into vec(Q
(λ)
T ΛT − Φ

(λ)′
T )′ΘT vec(Q

(λ)
T ΛT − Φ

(λ)′
T ) yields a consistent estimator of V (λ) (see

Lemma A12 and Remark A5). To implement the above test statistic in the case of unknown λ, we can follow

an analogous procedure to that suggested in the previous sections. The elements of matrix Σ ≡ [σµs] can be

calculated based on following formula:

σµs =
F̃

(µ)′
T ΘT F̃

(s)
T√

F̃
(µ)′
T ΘT F̃

(µ)
T

√
F̃

(s)′
T ΘT F̃

(s)
T

,

by replacing ΘT with Θ̂T , given in (22).

4.2 Broken Trends under the Null Hypothesis of Unit Roots

To allow for a common break in the individual effects of the panel data model under H0: ϕ = 1, consider

the following extension of AR(1) model (19):

yit = a
(1)
i + β

(1)
i t+ ζit, for t ≤ λ (23)

yit = a
(2)
i + β

(2)
i t+ ζit, for t > λ.

In stacked vector notation, this model becomes

y = e
(1)
T ⊗ a

(1) + e
(2)
T ⊗ a

(2) + τ
(1)
T ⊗ β

(1) + τ
(2)
T ⊗ β

(2) + ζ,

under both H0: ϕ = 1 and H1: ϕ < 1. It constitutes a more general specification than (19) because under

H0: ϕ = 1 restrictions a(1)
i = a

(2)
i and β(1)

i = β
(2)
i no longer apply. The presence of a break under H0: ϕ = 1
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reduces the maximum order of serial correlation of the error terms uit, pmax. This now is given as follows:7

pmax =

 T
2 − 3, if T is even and λ = T

2

min{λ− 2, T − λ− 2} in all other cases of T or λ
(24)

For model (23), LS estimator ϕ̂(λ) is the same with that of model (19), i.e., matrix Q(λ) is defined a

Q(λ) = INT − X(λ)(X(λ)′X(λ))−1X(λ), with X(λ) =
[
e(1), e(2), τ (1), τ (2)

]
. Also, its bias function is given

as before, i.e., p limN

(
ϕ̂(λ) − 1− tr(Λ′Q(λ)Γ)

tr(Λ′Q(λ)ΛΓ)

)
. One complication which arises with the break specifi-

cation of the above AR(1) panel data model is that now we need to correct the liming distribution of

the adjusted for its bias LS estimator ϕ̂(λ) − b̂(λ)

d̂(λ)
for the following nuisance parameter effects: β(1)2

T =

1
N

∑N
i=1E(β

(1)2
i ) and β

(2)2
T = 1

N

∑N
i=1E(β

(2)2
i ), which affect this limiting distribution before and after

break point λ. This happens because, under H0: ϕ = 1, model (23) implies ∆yit = β
(j)
i + uit, j =

1, 2. The presence of effects β(j)
i renders Γ̂T an inconsistent estimator of variance-covariance matrix ΓT ,

p limN

[
Γ̂T − ΓT − β(1)2

T e
(1)
T e

(1)′
T − β(2)2

T e
(2)
T e

(2)′
T

]
= 0. To substitute out β(1)2

T and β(2)2
T from the limiting

distribution of ϕ̂(λ) − b̂(λ)

d̂(λ)
, based on estimator Γ̂T , we need to employ the following selection matrix:

Ω
(λ)
T = Ψ

(λ)
T − tr(Ψ

(λ)
T e

(1)
T e

(1)′
T )

M
(1)
T

tr(M
(1)
T e

(1)
T e

(1)′
T )

− tr(Ψ(λ)
T e

(2)
T e

(2)′
T )

M
(2)
T

tr(M
(2)
T e

(2)
T e

(2)′
T )

,

instead of Φ
(λ)
T , where matricesM (1)

T andM (2)
T select the elements of matrix (ΓT+e

(1)
T e

(1)′
T β

(1)2
T +e

(2)
T e

(2)′
T β

(2)2
T )

consisting of effects β(1)2
T and β(2)2

T , respectively. That is, the elements of matrix M (1) are defined as follows:

m
(1)
ts = 0 if γtsT 6= 0, m(1)

ts = 1 if γtsT = 0 for t, s ≤ λ and m(1)
ts = 0 everywhere for t or s > λ, while those of

M
(2)
T as: m(2)

ts = 0 if γtsT 6= 0, and m2ts = 1 if γtsT = 0 for t, s > λ and m(2)
ts = 0 for t or s ≤ λ. These two

selection matrices provide the tools for estimating nuisance parameter effects β(1)2
T and β(2)2

T consistently,

i.e., p limN

(
tr
(
M

(1)
T Γ̂T

)
tr(M

(1)
T e

(1)
T e

(1)′
T )
− β(1)2

T

)
= 0 and p limN

(
tr
(
M

(2)
T Γ̂T

)
tr(M

(2)
T e

(2)
T e

(2)′
T )
− β(2)2

T

)
= 0, respectively, and then

substituting them out from the limiting distribution of the bias adjusted estimator ϕ̂(λ)− b̂(λ)

d̂(λ)
. Lemmas A13

- A16 prove that the above definition of matrix Ω
(λ)
T implies that

p lim
N

[
1

N
tr(Ω(λ)Γ̂)− 1

N
tr(Λ′Q(λ)Γ)

]
= 0,

where Ω(λ) = Ω
(λ)
T ⊗ IN .

Based on the above formulas of selection matrices Ω(λ) and Ω
(λ)
T , the next theorem gives the limiting

distribution of a unit root test statistic for model (23) based on ϕ̂(λ)− b̂(λ)

d̂(λ)
. This is derived under Assumptions

B and C.

7Again, pmax is chosen so as our testing procedure to allow for some elements of variance-covariance matrix ΓT to be zero,
i.e., E(uituis) = 0, for all s = t+pmax+1, ..., T . This condition means that variance function V (λ) will be different than zero. If
T is even, then pmax=min{λ−2, T−T0−2}, with the exception the case that λ = T

2
where pmax= T

2
−3. To see this more clearly,

consider the following examples. First, T = 10 and T0 = 3, then we have that pmax = min{λ− 2, T − λ− 2} = min{1, 5} = 1.
If λ = T

2
= 5, then pmax becomes pmax = T

2
− 3 = 2. Note that, instead of the above, if we use the results of (24) to determine

pmax, implying pmax = min{λ− 2, T − λ− 2} = min{3, 3} = 3, then Z(λ) could not be applied since V (λ) = 0. If T = 15, then
pmax becomes pmax=min{λ− 2, T − λ− 2}. For λ = 7, this becomes pmax = min{5, 6} = 5.
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Theorem 5 Let Assumptions B and C hold. Then, under H0: ϕ = 1 and λ known, we have

Z(λ) ≡ V (λ)−1/2d̂(λ)
√
N

(
ϕ̂(λ) − b̂(λ)

d̂(λ)
− 1

)
d−→ N (0, 1)

as N → ∞, where d̂(λ) = 1
N y
′
−1Q

(λ)y−1, b̂(λ)

d̂(λ)
is a consistent estimator of the asymptotic bias of ϕ̂(λ), with

b̂(λ) = 1
N tr(Ω

(λ)Γ̂) where Γ̂ = Γ̂T ⊗ IN and Ω(λ) = Ω
(λ)
T ⊗ IN , and

V (λ) =
1

N
F̃ (λ)′ΘF̃ (λ),

where F̃ (λ) = vec(Q(λ)Λ− Ω(λ)′) and Θ = V ar(∆y∆y′).

The variance V (λ) involved in test statistic Z(λ) given by Theorem 5 can be consistently estimated

following analogous steps to those discussed after Theorem 4, for model (19). If break point λ is unknown,

then implementation of this test statistic requires a consistent estimator of λ, in a first step. This can be

obtained under H0: ϕ = 1 based on the first differences of panel data series yit, i.e., ∆yit = β
(j)
i + uit, for

j = 1, 2 (see Bai (2010)). This procedure provides consistent estimates λ converging at o(
√
N) rate.8

5 Non-linear Trends and Multiple Breaks

In this section, we suggest extensions of our tests to allow for the presence of quadratic trends (see, e.g.,

Harvey et al. (2011)) and multiple breaks (see, e.g., Bai and Carrion (2009)) in AR(1) panel data model

(1). Existing panel unit root tests allowing for structural breaks do not consider non-linear trends, like the

quadratic one often assumed in explosive macroeconomic series, in the data generating process. As the time

dimension of the panel T is finite, the number of breaks, the form of non-linearity and the maximum order

of serial correlation allowed by our model (1) will depend on T . Thus, to implement the above extensions of

our tests, a set of regulatory suffi cient conditions are needed.

5.1 Non-linear Individual Trends

Consider the following version of model (1) with linear and quadratic trends and a break under H0: ϕ = 1:

yit = a
(1)
i + β

(1)
i t+ δ

(1)
i t2 + ζit, for t ≤ λ (25)

yit = a
(2)
i + β

(2)
i t+ δ

(2)
i t2 + ζit, for t > λ.

In stacked vector notation, the above model can be written as

y =

2∑
j=1

e
(j)
T ⊗ a

(j) +

2∑
j=1

τ
(j)
T ⊗ β

(j) +

2∑
j=1

τ
(j)
2T ⊗ δ

(j) + ζ,

8Alternatively, we can also exploit break point (date) estimation methods recently proposed in the single time series literature
by Harvey and Leybourne (2013).

16



where τ (j)
2Tt = (τ

(j)
Tt )

2, for all t, and δ(j) = (δ
(j)
1 , ..., δ

(j)
N )′, j = 1, 2. For the above model, the annihilator matrix

of estimator ϕ̂(λ) becomes Q(λ) = INT−X(λ)(X(λ)′X(λ))−1X(λ), whereX(λ) = [e(1), e(2), τ (1), τ (2), τ
(1)
2 , τ

(2)
2 ],

with τ (j)
2 = τ

(j)
2T ⊗ IN , j = 1, 2, and τ (j)

2T are T × 1 dimension vectors with elements τ (j)
2Tt.

The presence of quadratic trends t2 in panel data model (25) requires, in addition to nuisance parameters

β
(j)
i , correction of the limiting distribution of LS estimator ϕ̂

(λ) for the presence of nuisance parameters

associated with these quadratic trends, i.e., δ(j)
i . As for the model with linear trends (23), the bias of

estimator ϕ̂(λ) is given by p limN

(
ϕ̂(λ) − 1− tr(Λ′Q(λ)Γ)

tr(Λ′Q(λ)ΛΓ)

)
(see Lemma A17) and Γ̂T constitutes an incon-

sistent estimator of ΓT , since ∆yit = β
(j)
i + (2t − 1)δ

(j)
i under H0: ϕ = 1, for j = 1, 2. The inconsistency

of Γ̂T is given by p limN

[
Γ̂T − ΓT −

∑2
j=1 β

(j)2
T e

(j)
T e

(j)′
T −

∑2
j=1 δ

(j)2
T ẽ

(j)
T ẽ

(j)′
T

]
= 0 (see Lemma A18), where

ẽ
(j)
T = (2τ

(j)
T − e

(j)
T ) and δ(j)2

T = 1
N

∑N
i=1E(δ

(j)2
i ), for j = 1, 2.

Consistent estimators of the nuisance parameter effects β(j)2
T and δ(j)2

T , defined above, can be obtained

by the following relationships:

p lim
N

 tr
(
J

(j)
T Γ̂T

)
tr(M

(j)
T e

(j)
T e

(j)′
T )

− β(j)2
T

 = 0 and p lim
N

[
tr(L

(j)
T Γ̂T )

tr(L
(j)
T ẽ

(j)
T ẽ

(j)′
T )

− δ(j)2
T

]
= 0, for j = 1, 2,

respectively, where J (j)
T = M

(j)
T − tr(M

(j)
T ẽ

(j)
T ẽ

(j)′
T )

tr
(
L
(j)
T ẽ

(j)
T ẽ

(j)′
T

)L(j)
T . L

(j)
T is a selection matrix whose its k-th line has

values that interchange between −1 and 1 for the non zero elements of matrix M (j)
T (i.e., m(j)

ts 6= 0) and as

long as both values −1 and 1 appear consecutively. This also applies for the k-th column of L(j)
T . Matrix

L
(j)
T enables us to identify the nuisance parameter effects δ(j)2

T , due to the presence of quadratic trends in

(25), from those coming from the presence of the linear trends, i.e., β(j)2
T . Both of these sets of parameters

appear simultaneously in the zero off-diagonal elements of matrix ΓT p limN Γ̂T . To identify them, matrix

L
(j)
T exploits the fact that they appear with different weights in p limN Γ̂T .9 These weights are given by

matrices e(j)
T and ẽ(j)

T = (2τ
(j)
T − e

(j)
T ), respectively.10

9To see more clearly how δ
(j)2
T and β(j)2T can be identified based on the zero off-diagonal elements of matrix p limN Γ̂T ,

consider the following example. For λ = 5 and, for simplicity, p = 0, the upper 5× 5 block of p limN Γ̂T is given as
γ11T + δ

(1)2
T + β

(1)2
T 3δ

(1)2
T + β

(1)2
T 5δ

(1)2
T + β

(1)2
T 7δ

(1)2
T + β

(1)2
T 9δ

(1)2
T + β

(1)2
T

3δ
(1)2
T + β

(1)2
T γ22T + 9δ

(1)2
T + β

(1)2
T 15δ

(1)2
T + β

(1)2
T 21δ

(1)2
T + β

(1)2
T 27δ

(1)2
T + β

(1)2
T

5δ
(1)2
T + β

(1)2
T 15δ

(1)2
T + β

(1)2
T γ33T + 25δ

(1)2
T + β

(1)2
T 35δ

(1)2
T + β

(1)2
T 45δ

(1)2
T + β

(1)2
T

7δ
(1)2
T + β

(1)2
T 21δ

(1)2
T + β

(1)2
T 35δ

(1)2
T + β

(1)2
T γ44T + 49δ

(1)2
T + β

(1)2
T 63δ

(1)2
T + β

(1)2
T

9δ
(1)2
T + β

(1)2
T 27δ

(1)2
T + β

(1)2
T 45δ

(1)2
T + β

(1)2
T 63δ

(1)2
T + β

(1)2
T γ55T + 81δ

(1)2
T + β

(1)2
T


From this, it can be easily seen that parameters δ(1)2T and β(1)2T have different weights given by the matrices e(1)T and ẽ(1)T =

(2τ
(1)
T − e

(1)
T ). If elements (1, 2) and (1, 3) of the above matrix are selected and subtracted from each other, then we obtain

(1)
(

5δ
(1)2
T + β

(1)2
T

)
+ (−1)

(
3δ
(1)2
T + β

(1)2
T

)
= 2δ

(1)2
T . (26)

Thus, δ(1)2T can be identified by exploiting linear combinations of moments. This can be done through selection matrix L(1)T .

Given δ(1)2T , β(1)2T can be found from the off diagonal elements of ΓT .

10As an illustrative example of matrix L(1)T , assume that λ = 4 and p = 1. Then, the upper left block of M(1)
T is given as

0 0 1 1
0 0 0 1
1 0 0 0
1 1 0 0

 while its lower right block is zero. Then, the upper left block matrix L(1)T is given as


0 0 −1 1
0 0 0 0
−1 0 0 0
1 0 0 0

 .
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Given the above estimators of nuisance parameter effects β(j)2
T and δ(j)2

T , the selection matrix which can

be employed to adjust estimator ϕ̂(λ) for its inconsistency due to the with transformation of the data, the

serial correlation effects in error terms uit and the presence of the linear and quadratic trends is given as

follows:

Ξ
(λ)
T = Ψ

(λ)
T −

2∑
j=1

tr
(

Ψ
(λ)
T e

(j)
T e

(j)′
T

)
tr
(
M

(j)
T e

(j)
T e

(j)′
T

)J (j)
T −

2∑
j=1

tr(Ψ
(λ)
T ẽ

(j)
T ẽ

(j)′
T )

tr(L
(j)
T ẽ

(j)
T ẽ

(j)′
T )

L
(j)
T .

Under H0: ϕ = 1, it can be easily shown (see Lemma A19) that matrix Ξ
(λ)
T implies

p lim
N

[
1

N
tr(Ξ(λ)Γ̂)− 1

N
tr(Λ′Q(λ)Γ)

]
= 0,

where Ξ(λ) = Ξ
(λ)
T ⊗ IN , which means that ϕ̂(λ) − b̂(λ)

d̂(λ)
, with b̂(λ) = 1

N tr(Ξ
(λ)Γ̂), constitutes a consistent

estimator of ϕ. Given the above formulas of matrices Ξ
(λ)
T and Ξ(λ), the next theorem derives the limiting

distribution of a unit root test statistic based on ϕ̂(λ) − b̂(λ)

d̂(λ)
. In addition to assumptions B and C, this

derivation also requires the following assumption.

Assumption D

δ
(1)
i and δ(2)

i are random variables which are independent of uit and across i, and have finite 4+ε moments.

Also, we have limN
max(E(δ

(j)2
i ))

Nδ
(j)2
T

= 0 and p limN δ
(j)2
T = p limN

1
N

∑N
i=1E(δ

(j)2
i ) = δ

(j)2
Tu which is finite, for

j = 1, 2.

Theorem 6 Let Assumptions B, C and D hold. Then, under H0: ϕ = 1 and λ known, we have

Z(λ) ≡ V (λ)−1/2d̂(λ)
√
N

(
ϕ̂(λ) − b̂(λ)

d̂(λ)
− 1

)
d−→ N (0, 1)

as N → ∞, where d̂(λ) = 1
N y
′
−1Q

(λ)y−1, b̂(λ)

d̂(λ)
is a consistent estimator of the asymptotic bias of ϕ̂(λ), with

b̂(λ) = 1
N tr(Ξ

(λ)Γ̂) where Γ̂ = Γ̂T ⊗ IN and Ξ(λ) = Ξ
(λ)
T ⊗ IN , and

V (λ) =
1

N
F̃ (λ)′ΘF̃ (λ),

where F̃ (λ) = vec(Q(λ)Λ− Ξ(λ)′) and Θ = V ar(∆y∆y′).

To implement the test statistic Z(λ) given by Theorem 6, variance V (λ) can be estimated following the

same procedure with that of the test statistic given by Theorem 4. The case of test statistic Z(λ) with no

break under H0: ϕ = 1 (see model (19)) can be treated similarly, based on consistent estimators of nuisance

Note that the elements −1 and 1 of matrix L(1)T appear always together so that they subtract the proper moments to identify

nuisance parameters β(j)2i and δ(j)2i , for j = 1, 2 (see also (26)). The elements (2,4) and (4,2) of the upper blocks are non-zero

in M(1)
T , but they cannot be non-zero in L(1)T as there are not enough moments to pair 1 and -1. If λ = 5, then M(1)

T becomes
0 0 1 1 1
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
1 1 1 0 0

 and L(1)T is given as


0 0 −1 1 0
0 0 0 −1 1
−1 0 0 0 0
1 −1 0 0 0
0 1 0 0 0

 .
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parameter effects β2
T = 1

N

∑N
i=1E(β2

i ).and δ
2
T = 1

N

∑N
i=1E(δ2

i ). If the break is unknown, then it must be

estimated under H0: ϕ = 1, as in the case of model (23). If a break occurs only under H1: ϕ < 1, then the

sequential testing procedure suggested for model (19) can be applied. This can be done after trimming out

four time series observations from the end of the sample and three from the start, i.e., λ ∈ I = {3, ....., T − 4}.

5.2 Multiple Breaks

There is always the possibility that more than one breaks occur in a time span, even if the time dimension

of the panel T is small. Structural changes also may not affect all the parameters of the model (see, e.g.,

Bai and Perron (1998)). This section provides extensions of our tests to the above directions. Let Sb be the

number of structural breaks occurring during our sample, then models (1), (23) and (25) can be respectively

rewritten as

y =

Sb+1∑
j=1

e
(j)
T ⊗ a

(j) + ζ

y =

Sb+1∑
j=1

e
(j)
T ⊗ a

(j) +

Sb+1∑
j=1

τ
(j)
T ⊗ β

(j) + ζ and

y =

Sb+1∑
j=1

e
(j)
T ⊗ a

(j) +

Sb+1∑
j=1

τ
(j)
T ⊗ β

(j) +

Sb+1∑
j=1

τ
(j)
2T ⊗ δ

(j) + ζ.

Given Sb, our sequential testing procedure for panel data unit roots described in the previous sections

can be easily extended to the case of mutlibreaks, by appropriately specifying annihilator matrix Q(λ) to

allow for Sb > 1 break points. This matrix will be henceforth denoted as Q(λ1,...,λSb ). For instance, if

Sb = 2 and model (1) constitutes the correct data generating process, then Q(λ1,...,λSb ) can be defined as

Q(λ1,λ2) = INT − X(λ1,λ2)(X(λ1,λ2)′X(λ1,λ2))−1X(λ1,λ2), with X(λ1,λ2) = [e
(1)
T , e

(2)
T , e

(3)
T ] ⊗ IN , e

(1)
Tt = 1 if

t ≤ λ1 and 0 otherwise, e(2)
Tt = 1 if λ1 < t < λ2 and 0 otherwise, and e(3)

Tt = 1 if λ2 < t, and 0 otherwise. Note

that, in the above definitions, the different breaks can happen at any time point of the sample λ1, ..., λSb ,

as long as matrix Q(λ1,...,λSb ) exists, or equivalently X(λ1,...,λSb )′X(λ1,...,λSb ) is invertible. In the model with

intercepts, this assumption permits for consecutive breaks, while in the model with individual linear trends

it does not.11

The above specification of matrix X(λ1,...,λSb ) wipes off the deterministic components of the panel data

series and the theorems of the previous sections for the case of a single break point can be applied. The

within group LS estimator of ϕ will now be defined as

ϕ̂(λ1,...,λSb ) =
[
y′−1Q

(λ1,...,λSb )y−1

]−1 [
y′−1Q

(λ1,...,λSb )y
]
,

while test statistic Z(λ) as Z(λ1,...,λSb ). A notable difference is when the dates of the Sb break points

are unknown. Then, minimization of Z(λ1,...,λSb ) happens over all possible combinations of break points,

11This has been also found by Lumsdaine and Papell (1997) for their single time series unit root tests.
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λ1, ..., λSb ∈ I. The limiting distribution of the minimum value of Z(λ1,...,λSb ) is given as

min
λ1,...,λSb∈I

Z(λ1,...,λSb ) d−→ ψ ≡ min
λ1,...,λSb∈I

N(0,Σ).

To calculate statistic min
λ1,...,λSb∈I

Z(λ1,...,λSb ) for model (1), the number of all possible test statistics Z(λ1,...,λSb )

required will no longer be T −2, but it will be equal to the number of combinations without repetition
(
T−2
Sb

)
.

For all these statistics, pairwise correlations can be computed as before and their asymptotic distribution

can be described by expression (13).

In addition to the invertibility condition of X(λ1,...,λSb )′X(λ1,...,λSb ), mentioned above, implementation of

test statistic minλ1,...,λSb∈I Z
(λ1,...,λSb ) requires that the variance of the limiting distribution of the adjusted

for its bias LS estimator ϕ̂(λ1,...,λSb ), i.e., V (λ1,...,λSb ) exists and is different from zero. The last condition

reflects all serial correlation restrictions and trend induced nuisance parameter identification restrictions

affecting the estimator. Both of the above conditions can be easily checked, since they are based on deter-

ministic matrices which can be defined before inference is conducted. Note however that these conditions

must be checked for all sets of possible break points, separately. Existence of V (λ1,...,λSb ) is mostly important

for specifications of the AR(1) panel data model including trends, i.e., (19), (23) and (25). If there are not

enough moments for identification of the nuisance parameters of these specifications of the dynamic panel

data model, then some of the denominators of selection matrices Φ
(λ)
T , Ω

(λ)
T and Ξ

(λ)
T will become 0. Thus,

these matrices and, hence, variance V (λ1,...,λSb ) will no longer exist. If only intercepts are included in the

model (see, e.g., model (1)), then V (λ1,...,λSb ) can be zero only in the case that the degree of serial correlation

is assumed to be very large to make Λ′TQ
(λ1,...,λSb )

T −Ψ
(λ1,...,λSb )

T = 0.

6 Spatial Dependence

In this section the assumption of cross-sectional independence is relaxed. Besides its significance in regional

data, spatial dependence is also frequently used to capture weaker forms of cross sectional dependence by

considering economic type distances.12 The spill over effects across countries, states and regions can be

captured through a spatial dependence structure. In a motivating paper, Baltagi et al. (2007) conduct

extensive Monte Carlo experiments to show that panel unit root tests which do not take spatial dependence

into account have considerable size distortions. This phenomenon will be further aggravated by ignoring the

existence of structural breaks in the data panel data model.

Widely used forms of spatial dependence include the Spatial Autoregressive model (SAR), which is

considered as a global dependence model, and the local dependence models of Spatial Moving Averages

12Applying methods which assume strong factors in the errors when dependence is weak can lead to misleading results, see
e.g. Sarafidis and Wansbeek (2012). The same is true for the case of structural breaks in the factor loadings which increase
the dimension of the factor space and which also result in the common factors becoming less important (see, e.g., Breitung and
Eickmeier (2011)).
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(SMA) and Spatial Error Components (SEC) (see Anselin (2003, 2007)) defined, respectively, as

SAR: uit = µ

N∑
j=1

wijujt + εit, (27)

SMA: uit = µ

N∑
j=1

wijεjt, + εit, (28)

SEC: uit = µ

N∑
j=1

wijξjt, + εit (29)

where wij are known parameters reflecting economic or geographic distances which can be bundled together

in a N ×N weighting matrix, denoted W .13 Stacking the errors in equations (27)-(29) in the time dimension

results in the following:

ut = µWut + εt = (IN − µW )−1εt (30)

ut = µWεt + εt = (IN + µW )εt (31)

ut = µWξt + εt. (32)

For exposition purposes, our analysis will be focused on SAR and SMA models, as the SEC model cannot be

written in a similar way. However the proposed statistics are valid for this case as well. A major advantage of

our panel unit root tests for the above models is that they are robust to the type of spatial dependence and to

the form of matrix W considered due to the non-parametric estimator Γ̂. Define matrix ΠN = (IN −µW )−1

for the SAR model and ΠN = (IN + µW ) for the SMA model. For weights wij and spatial correlation

parameter µ consider the following assumption:

Assumption E

(i) {εit} are independent random variables across i and t, with E(uit) = 0 and uniformly bounded 4 + ε

moments.

(ii) ξjt are IID error terms with variance σ2
ξ independent of εit, for all i and t.

(iii) The weighting matrix W has zeros in its main diagonal.

(iv) The spatial correlation parameter satisfies µ ∈ (−c1,µ, c2,µ) with −∞ < −cµ < −c1,µ, c2,µ < cµ < µ.

(v) The N ×N matrix ΠN exists and is non-singular for all µ ∈ (−c1,µ, c2,µ).

(vi) The row and column sums of matrices ΠN , for the SAR and SMA models, are bounded uniformly

in absolute value.

Condition (i) implies that error terms εit are independent across i and t, but they are allowed to be

heteroscedastic and heterogeneous. Condition (ii) is standard in the spatial dependence literature (see also

13To see how ignoring a structural break can exacerbate spatial dependence, consider doing so in the model (1) with SAR

errors. Then uit become ŭit = (1− ϕ)a
(2)
i + µ

N∑
j=1

wij ŭjt + εit = (1− ϕ)a
(2)
i + µ

N∑
j=1

wij(1− ϕ)a
(2)
j + µ

N∑
j=1

wijujt + εit. The

term µ

N∑
j=1

wij(1− ϕ)a
(2)
j captures the spatial transmission of the break into neighbourhing units.
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Kelejian and Prucha (2010)). Condition (iii) gives a specific normalization to weight matrix W . Conditions

(iv) and (v) provide conditions for invertibility of ΠN . Condition (vi) implies that there is no dominant

cross section unit in the sample, i.e., an individual unit which is correlated with all remaining units (see also

Sarafidis (2009)).

Under the conditions of Assumption E, it can be seen that E(uu′) = E(Πεε′Π′) = ΠΓεΠ′, where Γε =

E(εε′) and Π = IT ⊗ΠN . The inconsistency of LS estimator ϕ̂(λ) is given as

p lim
N

[
ϕ̂(λ) − 1−

tr
(
Λ′Q(λ)ΠΓεΠ′

)
tr
(
Λ′Q(λ)ΛΠΓεΠ′

)] = 0 (33)

This reduces to that given by (4), if µ = 0. Spatial dependence enters the bias function of ϕ̂(λ) through

matrix Π. To see more clearly how estimator ϕ̂(λ) can be adjusted for its bias, consider model (1) under

the assumption of no serial correlation of error terms uit. The more general specifications of this model,

presented in the previous sections (see, (19), (23) and (25)), can be analyzed along the same lines.

For model (1), first note that the non-parametric variance-covariance estimator Γ̂, defined in the previous

sections as Γ̂ = Γ̂T ⊗ IN , has the following property:

p lim
N

[
1

N
tr(Γ̂)− 1

N
tr (ΠΓεΠ′)

]
= 0. (34)

This means that, under H0: ϕ = 1, the bias coming from the spatially dependent error terms uit can be

captured by the first difference of yit, given as ∆yit = uit, for model (1). This happens because E(∆y∆y′) =

E(uu′) = ΠΓεΠ. This result implies that selection matrix Ψ(λ) (which has non-zero elements in its main

diagonal) can be also employed to adjust LS estimator ϕ̂(λ) for its inconsistency due to spatial correlation

effects. It is straightforward to show that

p lim
N

[
1

N
tr(Ψ(λ)Γ̂)− 1

N
tr
(

Λ′Q(λ)ΠΓεΠ′
)]

= 0.

Analogous results hold for our more general specifications of model (1), mentioned above. For instance,

consider model (19), which allows for serial correlation effects. For this model, we have

E(∆y∆y′) = E[(u+ eT ⊗ β)(u+ eT ⊗ β)′] = E[uu′ + eT e
′
T ⊗ ββ′] = ΠΓεΠ′ + eT e

′
T ⊗ E(ββ′)

and thus,

p lim
N

[
1

N
tr(Γ̂)− 1

N
tr (ΠΓεΠ)− 1

N
tr(eT e

′
T ⊗ E(ββ′))

]
= 0.

The last result indicates that, by employing selection matrix Φ(λ), which annihilates nuisance parameter

effects eT e′T ⊗ E(ββ′), we can have that

p lim
N

[
1

N
tr(Φ(λ)Γ̂)− 1

N
tr
(

Λ′Q(λ)ΠΓεΠ
)]

= 0.
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This means that, for model (19), the mean of the limiting distribution of adjusted LS estimator ϕ̂(λ) − b̂(λ)

d̂(λ)

based on selection matrix Φ(λ) is not only net of incidental parameter effects, but also of spatial correlation

effects.

The next theorem provides the limiting distribution of test statistic Z(λ) for the simple version of model

(1), without serially correlated errors, and the case of a known break point λ. As our analysis above shows,

analogous formulas of this test statistic can be obtained for the more general specifications of model (1), by

choosing appropriately the selection matrix annihilating the nuisance parameters of these models.

Theorem 7 Let Assumption E hold. Then, under H0: ϕ = 1 and λ known, we have

Z(λ) ≡ V (λ)−1/2d̂(λ)
√
N

(
ϕ̂(λ) − b̂(λ)

d̂(λ)
− 1

)
d−→ N (0, 1)

as N → ∞, where b̂(λ)

d̂(λ)
≡

1
N tr(Ψ(λ)Γ̂)
1
N y
′
−1Q

(λ)y−1
is a consistent estimator of the asymptotic bias of ϕ̂(λ), with b̂(λ) =

1
N tr

(
Ψ(λ)Γ̂

)
and d̂(λ) = 1

N y
′
−1Q

(λ)y−1, and

V (λ) =
1

N
2tr(F̃ (λ)ΓεF̃ (λ)Γε),

where F̃ (λ) = 1
2

(
Π′
(
Λ′Q(λ) −Ψ(λ)

)
Π + Π′

(
Q(λ)Λ−Ψ(λ)′)Π

)
.

The results of Theorem 7 imply that the implementation of test statistic Z(λ) is not straightforward

in practice. This happens because the variance function of this limiting distribution, V (λ), can not be

consistently estimated based on estimator Γ̂. As can be seen from (34), Γ̂ cannot estimate Γε, separately,

but the following product of matrices: ΠΓεΠ. Furthermore, F̃ (λ) is not known as in the previous sections,

because it includes Π which contains the spatial correlation parameter µ.

For the above reasons, we suggest implementing test statistic Z(λ) based on the bootstrap method. In

particular, given the cross sectional dependence of error terms uit, a block bootstrap should be applied. The

idea is to resample blocks of units of uit taking into account the spatial dependence between them. There

is a large literature concerning the block bootstrap and its variations, i.e. the block size, whether it is fixed

or random, and whether blocks are overlapping or not (see, e.g., Hall (1985) and Anselin (1990) for spatial

dependence and Basawa et al. (1991)) for unit root tests).

To prove the consistency of the bootstrap method for our test statistic Z(λ), given by Theorem 7, we follow

Horowitz (2001). Define F0 the T−dimensional multivariate cdf from which the data come and let F0 belong

to a family of distributions J . Let GN (π, F0) ≡ P (Z(λ) ≤ π) denote the exact, finite sample cdf of Z(λ)

and let G∞(·, F0) denote its asymptotic distribution. The bootstrap replaces F0 with its estimator FN (such

as the empirical distribution function or a parametric estimator) so the bootstrap estimator of GN (·, F0)

becomes GN (·, FN ). This estimation procedure would be consistent if p limN GN (·, FN ) = G∞(·, F0). Then,

G∞(·, F0) can be used to approximate GN (·, F0).

Theorem 8 Let the sequence {yit} be generated according to model (1) and Assumption E hold. Let PN
denote the joint probability distribution of the sample. Then, under H0: ϕ = 1 and λ known, the bootstrap
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estimator GN (·, FN ) is consistent, i.e., for each δ > 0 and F0 ∈ J , we have

lim
N→∞

PN

[
sup
π
|GN (π, FN )−G∞(π, F0)| > δ

]
= 0.

There are important theoretical advances regarding the specification of the bootstrap (see Horowitz (2001)

for a review). Hall et al. (1995) show that overlapping blocks are more effi cient than non-overlapping. They

also show that, under certain assumptions, the optimal block length when estimating a one sided distribution

function (e.g., PN (Z(λ) ≤ π)) is O(N1/4). Lahiri (1999) shows that the fixed blocks are preferable compared

to random blocks (see Politis and Romano (1994)).

The block bootstrap preserves the spatial structure of the data. First a b × T block is selected, then a

second b × T block and so on, until the final jth block is selected, where j · b = N. All these blocks, put

together, create a bootstrap sample.14 The full bootstrap procedure can be outlined as follows:

1. Use the data to compute test statistic Z(λ), defined by Theorem 7.

2. Generate B bootstrap samples of size N × T where each bootstrap sample is composed by smaller

blocks. Sampling is done with replacement from the residuals uB where uB = ∆y. This applies for all

specifications of the AR(1) panel data model (1) considered.15 Then, generate the bootstrap samples

as

yB−1 = eT ⊗ y0 + ΛuB ,

yB = yB−1 + uB .

where y0 contains the actual initial observations.

3. For each bootstrap sample calculate the following statistic:
(
ZB(λ) − Z(λ)

)
and, based on the repeti-

tions of Step 2, compute the empirical probability of the event
(
ZB(λ) − Z(λ)

)
≤ π.

When the date of λ is unknown, our previous sections’results on the distribution of the minimum of Z(λ)

still hold. The elements of the variance-covariance matrix between two statistics Z(µ) and Z(s), σµs, will be

given as

σµs =
tr(F̃ (µ)ΓεF̃ (s)Γε)√

tr(F̃ (µ)ΓεF̃ (µ)Γε)
√
tr(F̃ (s)ΓεF̃ (s)Γε)

. (35)

The latter however can not be estimated as in previous sections for the reasons mentioned above. The

bootstrap method proposed previously is valid for the following test statistic: minλ∈I
(
ZB(λ) − Z(λ)

)
. This

14Resampling can be done across both the unit and the time dimension as long as it respects the date of the break for the
model with a break under the null. This means that there should be a separate resampling for observations before the break
and separate for observations after the break.
15Notice that uB = u for the version of the model with intercepts, uB = eT ⊗ β + u for that with linear trends and no break

under H0: ϕ = 1 and, finally, uB = e
(1)
T ⊗ β(1) + e

(2)
T ⊗ β(2) + u for the version of the model with a break under H0: ϕ = 1.

Thus, the individual effect information is not lost. The samples are generated under H0: ϕ = 1 in order to maintain their unit
root process behaviour (Basawa et al. (1991)).
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comes from the continuity of the minimum function and the fact that the asymptotics are taken with respect

to N and not T. The bootstrap procedure can be outlined as follows:

1. Use the data to compute Z(λ), for all λ ∈ I.

2. Same as Step 2 for the case of known λ. This step remains the same as before because the bootstrap

samples are based on errors which are estimated by taking the first difference of yit, ∆yit, and not by

using a break dependent estimator. Therefore, the errors uB contain the break information.

3. For each bootstrap sample, calculate test statistic
(
ZB(λ) − Z(λ)

)
, for all λ ∈ I. Then, select the min

of it, i.e., minλ∈I
(
ZB(λ) − Z(λ)

)
. Based on the repetitions of Step 2, then compute the empirical

probability of the event minλ∈I
(
ZB(λ) − Z(λ)

)
.

7 Simulation Results

In this section we present the results of a Monte Carlo study investigating the small sample performance

of the proposed test statistics. For reasons of space, we present results only for the case of unknown break

point λ, as this is more relevant in practice. Sample sizes for N and T are chosen to be N = {50, 100, 200}

and T = {8, 10, 15}, respectively. We consider the following fractions of sample that the break occurs:

λ/T = {0.25, 0.5, 0.75}. All experiments are conducted based on 1000 iterations.

We present size and power performance results for models (1) and (19) allowing for serial correlation of

error terms uit, spatial dependence and two break points, respectively. The nominal size is set at 5% and the

power of the tests is calculated based on this level of size. The extension of the models with serial correlation

assumes that error terms uit follow MA(1) process: uit = εit + θεit−1 with εit ∼ NIID(0, 1), for all i and

t, and θ = {−0.5, 0.0, 0.5}. Spatial dependence is modelled through the global and local dependence models

SAR and SMA, respectively, for µ = {0.4, 0.8}. The spatial dependence weighting matrix W has zeroes in

its main diagonal and is labelled as "2 ahead and 2 behind", with the non-zero elements being equal to 1/4

(see also Baltagi et al. (2007)). The number of bootstrap samples is set to 199 and, for simplicity, a fixed

block length of 5 is chosen where the blocks are allowed to overlap.16 The values of the nuisance parameters

of models (1) and (19) considered in our study, namely the individual effects and/or the slope coeffi cients of

incindental trends are assumed that are driven from the following distributions: α(1)
i ∼ U(−0.5, 0), α(2)

i ∼

U(0, 0.5), α
(3)
i ∼ U(0, 1.5), βi ∼ U(0, 0.05), β(1)

i ∼ U(0, 0.025), β(2)
i ∼ U(0.025, 0.05), β(3)

i ∼ U(0.05, 0.75),

where U(·) stands for the uniform distribution, and yi0 = 0, for all i. These magnitudes of α(j)
i and β(j)

i , for

j = 1, 2, correspond to evidence provided in the empirical literature, see e.g., Hall and Mairesse (2005).

Tables 1 and 2 present the results of our Monte Carlo study for sequential test statistic minλ∈I Z
(λ)

corresponding to models (1) and (19) allowing for serially correlated error terms. These indicate that

minλ∈I Z
(λ) has size which is close to its nominal level 5%, for both models considered. This is true for all

combinations of N and T considered. It is also true even for the case that the MA parameter θ takes a large

16Note that a more sophisticated application of the block bootstrap can be also considered, but it is not pursued, here, as
the main focus is to study the overall performance of the tests.
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negative value, i.e. θ = −0.5. Note that, for this case, single time series unit root tests are critically oversized

(see, e.g., Schwert (1989)). The size of statistic minλ∈I Z
(λ) improves as N increases relative to T . This

can be obviously attributed to the fact that the variance-covariance matrix Γ is more precisely estimated by

estimator Γ̂, as N increases. The above results hold independently on the break point of the sample λ.

Regarding the power of our tests, the results of the table indicate that minλ∈I Z
(λ) has its highest power

for the dynamic panel data model which consists only of individual effects, i.e., model (1). As was expected

from the literature (see, e.g., Karavias and Tzavalis (2014b)), the power of test statistic minλ∈I Z
(λ) for

model (19), considering also incidental trends, is much less than that of model (1). However, for both these

models, the power of the test increases faster with T rather than N . The value of MA parameter θ has

significant impact on the power of statistic minλ∈I Z
(λ), especially for model (1). For this model, the power

of the test increases if θ ≥ 0 and the break is in the middle or towards the end of the sample. Consistently

with the theory, the power of the tests increases also as the value of ϕ moves away from unity.

The size and power results of our simulation exercise for the case that error terms uit are spatially

dependent are presented in Tables 3-6. Tables 3 and 4 present results for model (1) for the cases that

uit follow models SMA and SAR, respectively. For model (19), the corresponding results are presented by

Tables 5 and 6, respectively. Overall, the results of this exercise indicate that minλ∈I Z
(λ) allowing for spatial

dependence has very good size and power performance. For both the above panel data models examined,

the performance of minλ∈I Z
(λ) is better for the SMA model of spatial dependence rather than the SAR.

For the last model of spatial dependence, minλ∈I Z
(λ) has both very good size and power performance for

the smaller value of µ examined, i.e., µ = 0.4. For µ = 0.8, it is oversized. As also argued by Baltagi et al.

(2007), in this case the SAR model assumes a very high degree of dependence. However, our results indicate

that even in this case adjusting unit root test statistics for spatial dependence improves both their size and

power performance. As for the case of serially correlated errors, the performance of statistic minλ∈I Z
(λ)

increases with N and T , but faster with T . The location of the break is not found to affect the size and

power performance of the test significantly.

Finally, Table 7 reports the results of our simulation exercise for the case that there two-breaks in models

(1) and (19). In this exercise, we consider different combinations of break locations and, for exposition

reasons, we assume no serial and cross section dependence. The results of the table indicate that the

performance our test statistic in this case, denoted as minλ∈I Z
(λ1,λ2), is similar to that with one break

point, reported in the previous tables. This happens even for very short time-dimension of the panel, e.g.,

T = 8. Also, the different locations of the breaks do not seem to affect the size and power of our test statistic.

Allowing for serial or spatial correlation does not change these conclusions either.

8 Empirical Application

Below, we illustrate the use of our proposed tests in answering the question if the net real income per

fiscal household for French administrative communes (N = 1000 in number) contains a unit root in its

autoregressive component. Using the same data set, Baltagi et al. (2007) study the impact of spatial
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dependence on panel unit root tests and find that it leads to size distortions if not accounted for. Studying

the net real income per fiscal household per commune, these authors show that the individual panel data

series involved are cross-sectionally correlated. Based on various large-T panel unit root tests, they get

conflicting evidence on whether the individual series of this panel data set constitute unit root processes. It

is notable that in the most relevant case where the panel data model considered allows for linear trends (see

Figure 1), none of the applied tests can reject the null hypothesis of a unit root, whether they account for

cross section dependence, or not. This lacks an economic intuition and can be attributed to the short time

dimension of the panel data involved, i.e., T = 14 yearly observations covering the period 1985-1998, and/or

the existence of a break point in the data generating process.

Figure 1. Net real income per fiscal household for French administrative communes

To address the above question, we implement our test statistic minλ∈I
(
ZB(λ) − Z(λ)

)
, which allows for

spatial dependence across the units of our panel data set. This is done for the auxiliary AR(1) panel data

regression model which considers incidental trends in the data generating process and a break under the

alternative hypothesis. In the implementation of our test (denoted as WGSP), we have chosen the block

length to be 5; this is according to Hall et al. (1995) and to the fact that the block length has to divide N .

The bootstrap samples are chosen to be 1999. For comparison, we also consider the fixed-T panel unit root

tests of Harris and Tzavalis (1999) (denoted HT) and Breitung’s (2000) (denoted BRT), as was extended

by Karavias and Tzavalis (2014) for finite T samples, as well as our test statistic WGSP, but without

allowing for a common break (denoted WGSPNO BREAK). The latter can be implemented by the previous

theorems, after appropriately designing the annihilator and selection matrices without broken deterministic
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components. For the case without spatial correlation the limiting distribution is a standard normal while

for the case with spatial dependence the bootstrap must be applied. The results of these tests are presented

below:

HT = 12.06, BRT = 5.042, WGSPNO BREAK = −0.006, WGSP = −0.0403∗∗∗ (date of break: 1988)

where "***" indicates significance at 1%. These results clearly indicate that only the test which allows for

a break point in the panel data model (see WGSP ) can clearly reject the null hypothesis of unit roots. All

the other tests considered can not reject the this hypothesis, including the version of our test that allows

for cross-dependence, i.e., WGSPNO BREAK . Consistently with the pictorial results of Figure 1, our test

indicates that the break point occurs in year 1988. These results support the view that real income per fiscal

household constitutes stationary series, for all French communes.

9 Concluding Remarks

In this paper new panel unit root tests are proposed for finite (fixed) T panel data models. They allow

for multiple structural breaks, linear and/or nonlinear trends, spatial and temporal (serial correlation) de-

pendence in the error terms of the dynamic panel data model. The finite T assumption of the tests make

them appropriate for short panels, with small time dimensions often employed in microeconomic studies.

The tests do not rely on any distributional assumptions about the initial conditions of the panel, which may

be proved restrictive in practice, and they can be implemented to the case of unknown date breaks. In the

last case, the paper derives the limiting distribution of the tests, analytically, based on recent results on

the distribution of the minimum order statistic. This distribution is a mixture of normals and considerably

facilitates calculation of the critical values of the tests.

The heteroscedasticity, heterogeneity and short term dependence considered by the tests can be of un-

known form. This is due to the fact that asymptotics are taken across the cross section (N) dimension of the

panel. The order of serial correlation is bounded by T . Also, spatial dependence can be considered without

having to specify the weighting matrix of the economic or geographic distance among the cross section units

of the panel. To carry out the tests in the case of spatial dependence, we recommend application of the block

bootstrap method.

To examine the small sample performance of the tests, the paper conducts a Monte Carlo study. The

results of this study clearly demonstrate that the suggested tests have size very close to their nominal level

and very satisfactory power. This happens even under spatial and/or serial correlation of the error terms.

These properties of the tests are valid even for very short panels of T = {8, 10} observations and they

also hold for the case of multiple breaks. When testing the null hypothesis of a unit root in the net real

income per fiscal household for the 1000 largest French administrative communes, we find that only when

we consider both spatial dependence and a structural break there is evidence of stationarity, as is expected
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by the economic theory.
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10 Appendix

In this appendix, we provide proofs of the theorems presented in the main text of the paper. To prove these

theorems, we rely on a number of lemmas and remarks. The appendix is organised as follows. In section A,

we provide some preliminary results (remarks and lemmas) which apply throughout the paper. Sections B,

C, D, E and F provide lemmas and proofs of the theorems of the paper corresponding to Sections 2, 3, 4, 5

and 6, respectively.

Section A (Preliminary matrix algebra results):

Remark A1 (Properties of matrices Q(λ) and ΛT ).

i) Annihilator matrix Q(λ), defined in Section 2 (see equation (3)), is a NT ×NT matrix which can be

written as Q(λ) = Q
(λ)
T ⊗IN where Q

(λ)
T is a T×T matrix defined as Q(λ)

T = IT−X(λ)
T (X

(λ)′
T X

(λ)
T )−1X

(λ)
T . IT is

an identity matrix of dimension T ×T and X(λ)
T =

[
e

(1)
T , e

(2)
T

]
for model (1). It also holds X(λ) = X

(λ)
T ⊗ IN .
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Matrix Q(λ)
T is idempotent and othrogonal to the vectors of matrix X(λ)

T , i.e., Q(λ)
T e

(1)
T = Q

(λ)
T e

(2)
T = 0.

For models (19) and (23), X(λ)
T is given as X(λ)

T =
[
e

(1)
T , e

(2)
T , τ

(1)
T , τ

(2)
T

]
and also satisfies the following

orthogonality conditions: Q(λ)
T e

(1)
T = Q

(λ)
T e

(2)
T = Q

(λ)
T τ

(1)
T = Q

(λ)
T τ

(2)
T = 0. These properties of Q(λ)

T also hold

for X(λ)
T = [e

(1)
T , e

(2)
T , τ

(1)
T , τ

(2)
T , τ

(1)
2T , τ

(2)
2T ] (see model 25), as well as for X(λ1,...,λSb ) employed in the panel

model allowing for multiple breaks. Using the Kronecker product properties, it can shown that

Q(λ)(e
(1)
T ⊗ a

(1)) = (Q
(λ)
T ⊗ IN )(e

(1)
T ⊗ a

(1)) = Q
(λ)
T e

(1)
T ⊗ INa

(1) = 0 and

Q(λ)X(λ)(a(1)′, a(2)′)′ = 0.

(ii) Matrix ΛT , which naturally arises in presentations of stacked vectors of AR(1) models, is defined as

(ΛT )r,c = 1, if r > c and 0 otherwise. Define Λ = ΛT ⊗ IN . Then, the following properties hold for Λ:

tr(ΛT ) = 0,

Q
(λ)
T ΛT eT = Q

(λ)
T ΛT e

(1)
T = Q

(λ)
T ΛT e

(2)
T = 0, for X(λ)

T =
[
e

(1)
T , e

(2)
T , τ

(1)
T , τ

(2)
T

]
, or equivalently,

Q(λ)Λ (eT ⊗ β) = Q(λ)Λ
(
e

(1)
T ⊗ β

(1)
)

= Q(λ)Λ
(
e

(2)
T ⊗ β

(2)
)

= 0, for X(λ) =
[
e(1), e(2), τ (1), τ (2)

]
,

Q
(λ)
T ΛT

(∑2
j=1 β

(j)
i e

(j)
T +

∑2
j=1 δ

(j)
i (2τ

(j)
T − e

(j)
T )
)

= 0, for X
(λ)
T = [e

(1)
T , e

(2)
T , τ

(1)
T , τ

(2)
T , τ

(1)
2T , τ

(2)
2T ].

Remark A2. This remark justifies the use of variance-covariance matrix formulas employed in proofs of

the paper. Based on Lemma A1 of Kelejian and Prucha (2010), it can be shown that, for a zero mean random

vector ζ = (ζ1, ..., ζNT )′ with positive definite variance-covariance matrix Γζ = SS′ and for a NT × NT

non-stochastic matrix Aζ for which the elements (S′AζS)jj are equal to 0, the following results hold:

E(ζ ′Aζζ) = tr(S′AζS) = tr(AζΓζ) = 0 and V ar(ζ ′Aζζ) = 2tr(AζΓζAζΓζ).

The important difference of these results from those on standard quadratic forms (see e.g. Schott (1996)) is

that the form of a variance-covariance matrix does not contain higher than second order terms despite the

fact that ζ may not be normally distributed.

If (S′AζS)jj 6= 0, for some j, then define η = S−1ζ. Assuming that the elements of η are independently

distributed with finite fourth moments E(η4
j ), the following results holds for S

′AζS:

V ar(ζ ′Aζζ) = 2tr(AζΓζAζΓζ) +

NT∑
j=1

(S′AζS)jj
[
E(η4

j )− 3
]
. (36)

The latter is also provided by Lemma A1 of Kelejian and Prucha (2010).

The following two lemmas provide the relationship between quadratic forms employing NT ×1 and T ×1

vectors, respectively. This relationship is frequently used in the proofs of lemmas presented below and, to

our knowledge, has not been previously used in the literature.

Lemma A1. If Aζ = A∗ζ ⊗ IN where A∗ζ is a T × T matrix, ζ = (ζ ′1, ..., ζ
′
T )′ where ζt = (ζ1t, ..., ζNt)

′,
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then we have

ζ ′Aζζ =

N∑
i=1

ζ∗′i A
∗
ζζ
∗
i (37)

where ζ∗i = (ζi1, ..., ζiT )′ are T × 1 random vectors.

Proof: Define the N × 1 vector e(i)
N which has 1 at place i and zeros everywhere else. Then, we have

ζ =
∑N
i=1 ζ

∗
i ⊗ e

(i)
N and, hence,

ζ ′Aζζ =

(
N∑
i=1

ζ∗i ⊗ e
(i)
N

)′
(A∗ζ ⊗ IN )

(
N∑
i=1

ζ∗i ⊗ e
(i)
N

)

=

(
N∑
i=1

ζ∗′i A
∗
ζ ⊗ e

(i)′
N

)(
N∑
i=1

ζ∗i ⊗ e
(i)
N

)
=

N∑
i=1

ζ∗′i A
∗
ζζ
∗
i ,

since e(i)′
N e

(j)
N = 1, for i = j, and 0, for i 6= j.

Lemma A2. If Aζ = A∗ζ ⊗Π where A∗ζ is a T × T matrix and Π is a N ×N matrix, then we have

ζ ′Aζζ =

N∑
i=1

π2
iiζ
∗′
i A
∗
ζζ
∗
i +

∑
i6=j

π2
ijζ
∗′
i A
∗
ζζ
∗
i (38)

where ζ∗i = (ζi1, ..., ζiT )′ are T × 1 random vectors.

Proof: This can be proved based on the arguments of the proof of Lemma A1 and noticing that

e
(i)′
N Π′Πe

(i)
N = π2

ii and e
(i)′
N Π′Πe

(j)
N = π2

ij .

The following two remarks discuss some key properties between selection matrices of dimension NT×NT

and T × T employed in our test statistics. These matrices apply to variance-covariance matrices Γ =

E(uu′) and ΓT = 1
N

∑N
i=1E(u∗i u

∗′
i ), or their estimators given as Γ̂ and Γ̂T , respectively, to select the

elements of them which affect the bias of estimator ϕ̂(λ).

Remark A3. The selection matrices employed in our test statistics are defined, first, as T×T dimension

matrices to gain intuition. Their functioning is the same even though they are considered in their NT ×NT

dimension forms, applied to Γ̂. For instance, matrix Ψ
(λ)
T selects all elements of Γ̂T in the main and the

p-upper and p-lower diagonals and assigns them weights in accordance to Λ′TQ
(λ)
T . The elements in these

diagonals are non-zero, and thus can capture the inconsistency of LS estimator ϕ(λ). The NT×NT dimension

form of matrix Ψ
(λ)
T is given as Ψ(λ) = Ψ

(λ)
T ⊗IN . It selects all the elements of Γ̂ which exist on the main Np-

upper and Np-lower diagonals and assigns them weights in accordance to Λ′Q(λ). This result holds because

matrices Γ = E(uu′) and ΓT ⊗ IN have their non-zero elements at the same places, even though they are

not equal (see also Remark A4, below). Similar arguments hold for selection matrices MT and M , or F (λ)

and F (λ)
T , etc.

Remark A4. For model (1), it can be shown that

p lim
N

[
Γ̂− (ΓT ⊗ IN )

]
= 0T ,
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where Γ̂ = Γ̂T ⊗ IN and Γ̂T = 1
N

∑N
i=1 ∆y∗i ∆y∗′i , since p limN (Γ̂T − ΓT ) = 0T . However, as noted before,

Γ = E(uu′) 6= (ΓT ⊗ IN ) meaning that p limN

[
Γ̂− Γ

]
6= 0NT and, thus, Γ̂ is not a consistent estimator

of Γ. This can be easily seen by deriving an analytic form of Γ = E(uu′) using u =
∑N
i=1 u

∗
i ⊗ e

(i)
N , where

E(uu′) = E
[
(
∑N
i=1 u

∗
i ⊗ e

(i)
N )(

∑N
i=1 u

∗′
i ⊗ e

(i)′
N )
]

= E
(∑N

i=1 u
∗
i u
∗′
i ⊗ e

(i)(i)′
NN

)
=
∑N
i=1 ΓiT ⊗ e

(i)(i)′
NN . At the

same time, note that (ΓT ⊗ IN ) = 1
N

∑N
i=1 ΓiT ⊗ IN , but e(i)(i)′

NN 6= IN .

Despite the fact that Γ = E(uu′) 6= (ΓT ⊗ IN ), matrices Γ and ΓT have non-zero elements at the same

places, as mentioned before. This implies that tr(ΓT ) = 1
N tr(Γ) and tr(Γ̂T ) = 1

N tr(∆y∆y′), and thus

tr(Ψ(λ)Γ̂) = tr(Ψ(λ)∆y∆y′).

To show this, write tr(Ψ(λ)Γ̂) = Ntr(Ψ
(λ)
T Γ̂T ) = N 1

N

∑N
i=1 ∆y∗′i Ψ

(λ)
T ∆y∗i . By Lemma A1,

∑N
i=1 ∆y∗′i Ψ

(λ)
T ∆y∗i

can be written as
∑N
i=1 ∆y∗′i Ψ

(λ)
T ∆y∗i = ∆y′Ψ(λ)∆y = tr(Ψ(λ)∆y∆y′), which proves the above result.

Section B (Lemmas and Theorem Proofs for Section 2): The following lemmas prove various

claims made in the text and they are needed for the proofs of Theorems 1 and 2.

Lemma A3. Under Assumption A, the within group LS estimator of ϕ, ϕ̂(λ), for model (1) under H0:

ϕ = 1 is inconsistent, with its inconsistency given by p limN

(
ϕ̂(λ) − 1− tr(Λ′Q(λ))

tr(Λ′Q(λ)Λ)

)
= 0.

Proof: Model (1) implies

y = e
(1)
T ⊗ a

(1) + e
(2)
T ⊗ a

(2) + ζ and y−1 = e
(1)
T ⊗ a

(1) + e
(2)
T ⊗ a

(2) + ζ−1.

By multiplying the second equation with ϕ and subtracting it from the first equation yields

y = ϕy−1 + (1− ϕ)(e
(1)
T ⊗ a

(1)) + (1− ϕ)(e
(2)
T ⊗ a

(2)) + u. (39)

Consider the last equation under H0: ϕ = 1, i.e.,

y = y−1 + u, (40)

Substituting this relationship backwards yields

y−1 = eT ⊗ y0 + Λu. (41)

Using the above relationships, we can write

ϕ̂(λ) − 1 =
y′−1Q

(λ)y

y′−1Q
(λ)y−1

− 1 =
y′−1Q

(λ) (y−1 + u)

y′−1Q
(λ)y−1

− 1 =
y′−1Q

(λ)u

y′−1Q
(λ)y−1

=
(u′Λ′ + e′T ⊗ y′0)Q(λ)u

(u′Λ′ + e′T ⊗ y′0)Q(λ) (eT ⊗ y0 + Λu)
=

1
N u
′Λ′Q(λ)u

1
N u
′Λ′Q(λ)Λu
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By applying standard properties for quadratic forms, the numerator of the last relationship has E( 1
N u
′Λ′Q(λ)u) =

1
N σ

2tr(Λ′Q(λ)) and V ar( 1
N u
′Λ′Q(λ)u) = 2σ4tr(AnAn) , where An = 1

2 (Λ′Q(λ) +Q(λ)Λ). The trace of matrix

AnAn is given as

tr(AnAn) = 1
4 tr((Λ

′Q(λ) +Q(λ)Λ)(Λ′Q(λ) +Q(λ)Λ))

= 1
4 tr(Λ

′Q(λ)Λ′Q(λ) +Q(λ)ΛΛ′Q(λ) + Λ′Q(λ)Q(λ)Λ +Q(λ)ΛQ(λ)Λ)

= 1
4 tr(Λ

′
TQ

(λ)
T Λ′TQ

(λ)
T ⊗ IN +Q

(λ)
T ΛTΛ′TQ

(λ)

T ⊗ IN + Λ′TQ
(λ)
T Q

(λ)
T ΛT ⊗ IN +Q

(λ)
T ΛTQ

(λ)
T ΛT ⊗ IN )

= 1
4 tr
[(

Λ′TQ
(λ)
T Λ′TQ

(λ)
T +Q

(λ)
T ΛTΛ′TQ

(λ)

T + Λ′TQ
(λ)
T Q

(λ)
T ΛT +Q

(λ)
T ΛTQ

(λ)
T ΛT

)
⊗ IN

]
= 1

4 tr(Λ
′
TQ

(λ)
T Λ′TQ

(λ)
T +Q

(λ)
T ΛTΛ′TQ

(λ)

T + Λ′TQ
(λ)
T Q

(λ)
T ΛT +Q

(λ)
T ΛTQ

(λ)
T ΛT )tr(IN ).

Using the following results:

tr(Λ′TQ
(λ)
T Λ′TQ

(λ)
T +Q

(λ)
T ΛTΛ′TQ

(λ)

T + Λ′TQ
(λ)
T Q

(λ)
T ΛT +Q

(λ)
T ΛTQ

(λ)
T ΛT ) = O(T ) ,

tr(IN ) = O(N) and, hence,

tr(AnAn) = O(TN),

it can be easily seen that V ar( 1
N u
′Λ′Q(λ)u) = O( 1

N2 )O(TN) = O( TN ) = o(1). By Chebyshev’s in-

equality P (
∣∣ 1
N u
′Λ′Q(λ)u− E( 1

N u
′Λ′Q(λ)u)

∣∣ > ε) ≤ V ar( 1
N u
′Λ′Q(λ)u)

ε2 → 0, we have that 1
N u
′Λ′Q(λ)u

p−→
1
N σ

2tr(Λ′Q(λ)), as N →∞.

Following similar steps to the above, we can show that the numerator of ϕ̂(λ) − 1 scaled by N , given

as 1
N u
′Λ′Q(λ)Λu, has E( 1

N u
′Λ′Q(λ)Λu) = 1

N σ
2tr(Λ′Q(λ)Λ) and V ar( 1

N u
′Λ′Q(λ)Λu) = 1

N2 2σ4tr(AdnAdn),

where Adn = 1
2 (Λ′Q(λ)Λ + Λ′Q(λ)Λ) and 1

N u
′Λ′Q(λ)u

p−→ 1
N σ

2tr(Λ′Q(λ)Λ). Combining the above results

on the numerator and denominator of ϕ̂(λ)−1 implies that p limN (ϕ̂(λ)−1− σ2tr(Λ′Q(λ))
σ2tr(Λ′Q(λ)Λ)

) = 0, which proves

the inconsistency of ϕ̂(λ) under H0: ϕ = 1.

Lemma A4. Under Assumption A and H0: ϕ = 1, σ̂2 = ∆y′Ψ(λ)∆y
tr(Ψ(λ))

is consistent estimator of σ2.

Proof: To prove this, write σ̂2 as

σ̂2 =
1

tr(Ψ(λ))
∆y′Ψ(λ)∆y =

1

tr(Ψ(λ))
tr(∆y′Ψ(λ)∆y) =

1

tr(Ψ(λ))
tr(Ψ(λ)uu′).

Based on Lemma A1, u can be written as u =
∑N
i=1 u

∗
i ⊗ e

(i)
N and uu′ as

uu′ =
(∑N

i=1 u
∗
i ⊗ e

(i)
N

)(∑N
i=1 u

∗′
i ⊗ e

(i)′
N

)
=
∑N
i=1 u

∗
i u
∗′
i ⊗ e

(i)
N e

(i)′
N +

∑
i 6=j u

∗
i u
∗′
j ⊗ e

(i)
N e

(j)′
N .

Using this relationship, it can be shown that

tr(Ψ(λ)uu′) = tr
[(

Ψ
(λ)
T ⊗ IN

)(∑N
i=1 u

∗
i u
∗′
i ⊗ e

(i)
N e

(i)′
N +

∑
i 6=j u

∗
i u
∗′
j ⊗ e

(i)
N e

(j)′
N

)]
= tr

(∑N
i=1 Ψ

(λ)
T u∗i u

∗′
i ⊗ e

(i)
N e

(i)′
N +

∑
i 6=j Ψ

(λ)
T u∗i u

∗′
j ⊗ e

(i)
N e

(j)′
N

)
= tr(

∑N
i=1 Ψ

(λ)
T u∗i u

∗′
i ⊗ e

(i)
N e

(i)′
N ) + tr(

∑
i 6=j Ψ

(λ)
T u∗i u

∗′
j ⊗ e

(i)
N e

(j)′
N ).

Using properties of trace, the last relationship gives

tr(
∑
i 6=j Ψ

(λ)
T u∗i u

∗′
j ⊗ e

(i)
N e

(j)′
N ) =

∑
i 6=j tr(Ψ

(λ)
T u∗i u

∗′
j )tr(e

(i)
N e

(j)′
N ) = 0, since tr(e(i)

N e
(j)′
N ) = 0 for i 6= j,

and
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tr(
∑N
i=1 Ψ

(λ)
T u∗i u

∗′
i ⊗ e

(i)
N e

(i)′
N ) =

∑N
i=1 tr

(
Ψ

(λ)
T u∗i u

∗′
i

)
tr
(
e

(i)
N e

(i)′
N

)
=
∑N
i=1 tr

(
Ψ

(λ)
T u∗i u

∗′
i

)
, since

tr
(
e

(i)
N e

(i)′
N

)
= 1 for all i.

Based on the above results, it can be shown that

σ̂2 =
1

tr(Ψ(λ))
∆y′Ψ(λ)∆y =

1

tr(Ψ(λ))

N∑
i=1

tr
(

Ψ
(λ)
T u∗i u

∗′
i

)
=

1

tr(Ψ
(λ)
T )N

N∑
i=1

u∗′i Ψ
(λ)
T u∗i .

For T finite, Assumption A implies E(u∗′i Ψ
(λ)
T u∗i ) = tr(Ψ

(λ)
T E(u∗i u

∗′
i )) = σ2tr(Ψ

(λ)
T ) < ∞, for all i, and

V ar(u∗′i Ψ
(λ)
T u∗i ) = 2σ4tr(AΨAΨ) < ∞, where AΨ = 1

2 (Ψ
(λ)
T + Ψ

(λ)′
T ). Then, by applying Khinchine’s Weak

Law of Large Numbers follows: p limN
1

tr(Ψ
(λ)
T )N

∑N
i=1 u

∗′
i Ψ

(λ)
T u∗i = σ2, which proves the consistency of σ̂2.

Proof of Theorem 1: For model (1), test statistic Z(λ) can be written under H0: ϕ = 1 as follows:

d̂(λ)
√
N

(
ϕ̂(λ) − 1− b̂(λ)

d̂(λ)

)

=

(
1

N
y′−1Q

(λ)y−1

)√
N

(
y′−1Q

(λ)u

y′−1Q
(λ)y−1

−
1
N∆y′Ψ(λ)∆y
1
N y
′
−1Q

(λ)y−1

)

=
√
N

(
1

N
y′−1Q

(λ)u− 1

N
∆y′Ψ(λ)∆y

)
=

1√
N
u′(Λ′Q(λ) −Ψ(λ))u,

using (40) and (41). By Lemma A1, we have the following results:

u′(Λ′Q(λ) −Ψ(λ))u =
∑N
i=1 u

∗
i (Λ
′
TQ

(λ)
T −Ψ

(λ)
T )u∗i and

E
[
u∗i (Λ

′
TQ

(λ)
T −Ψ

(λ)
T )u∗i

]
= tr

[
(Λ′TQ

(λ)
T −Ψ

(λ)
T )E (u∗i u

∗′
i )
]

= tr
[
(Λ′TQ

(λ)
T −Ψ

(λ)
T )σ2IT

]
= σ2tr

(
Λ′TQ

(λ)
T −Ψ

(λ)
T

)
= 0.

Also by Remark A2, we have V ar
[
u∗i (Λ

′
TQ

(λ)
T −Ψ

(λ)
T )u∗i

]
= 2σ4tr(F

(λ)
T F

(λ)
T ) = 1

N 2σ4tr(F (λ)F (λ)). Since

T is finite, Assumption A implies that 2σ4tr(F
(λ)
T F

(λ)
T ) <∞, for all i. Using the above results, we can show

that
1√
N
u′(Λ′Q(λ) −Ψ(λ))u =

1√
N

N∑
i=1

u∗i (Λ
′
TQ

(λ)
T −Ψ

(λ)
T )u∗i

d−→ N
(

0, 2σ4tr(F
(λ)
T F

(λ)
T )

)
,

by the Lindeberg-Levy Central Limit Theorem. Note that the above limiting distribution can also be

written in terms of tr(F (λ)F (λ)), i.e., using selection matrix F (λ). This can be done by noticing that
1
N tr(F

(λ)F (λ)) = 1
N tr(F

(λ)
T F

(λ)
T ⊗ IN ) = tr(F

(λ)
T F

(λ)
T ).

Proof of Theorem 2: The proof of this theorem follows as an extension of Theorem 1, by applying

the continuous mapping theorem to the joint limiting distribution of standardized test statistic Z(λ), for all

λ ∈ I. The elements of the variance-covariance matrix of random variables Z(µ) and Z(s), for all µ 6= s
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(denoted as Σ ≡ [σµs]), can be derived by writing

Z(µ)Z(s) = V (µ)−1/2d̂(µ)
√
N

(
ϕ̂(µ) − 1− b̂(µ)

d̂(µ)

)
V (s)−1/2d̂(s)

√
N

(
ϕ̂(s) − 1− b̂(s)

d̂(s)

)

=
d̂(µ)d̂(s)

√
V (µ)V (s)

N

(
ϕ̂(µ) − 1− b̂(µ)

d̂(µ)

)(
ϕ̂(s) − 1− b̂(s)

d̂(s)

)

=
1√

V (µ)V (s)

1

N
u′(Λ′Q(µ) −Ψ(µ))uu′(Λ′Q(s) −Ψ(s))u

using results d̂(µ)
(
ϕ̂(µ) − 1− b̂(µ)

d̂(µ)

)
= 1

N u
′(Λ′Q(µ)−Ψ(µ))u and d̂(s)

(
ϕ̂(s) − 1− b̂(s)

d̂(s)

)
= 1

N u
′(Λ′Q(s)−Ψ(s))u

from the proof of Theorem 1. Since E
(
u′(Λ′Q(µ) −Ψ(µ))u

)
= 0 and E

(
u′(Λ′Q(s) −Ψ(s))u

)
= 0 (see also

proof of Theorem 1), the following result holds:

1

N
E
(
u′(Λ′Q(µ) −Ψ(µ))uu′(Λ′Q(s) −Ψ(s))u

)
=

1

N
Cov(u′(Λ′Q(µ) −Ψ(µ))u;u′(Λ′Q(s) −Ψ(s))u)

=
1

N
2σ4tr(F (µ)F (s))

Hence, the elements of Σ ≡ [σµs] can be written analytically as

σµs =
1√

V (µ)V (s)
E

(
1

N
u′(Λ′Q(µ) −Ψ(µ))uu′(Λ′Q(s) −Ψ(s))u

)
=

tr(F (µ)F (s))√
tr(F (µ)F (µ))

√
tr(F (s)F (s))

.

Section C (Lemmas and Theorem Proofs for Section 3): The following lemmas are needed for

the proof of Theorem 3.

Lemma A5. Under Assumption B, the inconsistency of ϕ̂(λ) for model (1) under H0: ϕ = 1 is given by

p limN (ϕ̂(λ) − 1− tr(Λ′Q(λ)Γ)
tr(Λ′Q(λ)ΛΓ)

) = 0.

Proof: Based on Lemma A3, it can be shown that ϕ̂(λ) − 1 =
1
N u
′Λ′Q(λ)u

1
N u
′Λ′Q(λ)Λu

, with 1
N u
′Λ′Q(λ)u =

1
N

∑N
i=1 u

∗′
i Λ′TQ

(λ)
T u∗i (see Lemma A1 and Remark A1). The numerator of the last relationship has

E( 1
N u
′Λ′Q(λ)u) = 1

N tr
[
Λ′Q(λ)E(uu′)

]
= 1

N tr
[
Λ′Q(λ)Γ

]
and

V ar( 1
N u
′Λ′Q(λ)u) = 1

N2

∑N
i=1 V ar(u

∗′
i Λ′TQ

(λ)
T u∗i ) = o(1),

by Condition (i) of Assumption B. Similarly, we can find the mean and variance of the denominator of

ϕ̂(λ) − 1, 1
N u
′Λ′Q(λ)Λu. The inconsistency of ϕ̂(λ) can be proved by applying Chebyshev’s inequality, as in

the proof of Lemma A3. Note that, under Assumption B, error terms uit are not normal and Remark A2

does not hold for Λ′TQ
(λ)
T . Therefore, V ar(u∗′i Λ′TQ

(λ)
T u∗i ) is a function of the fourth moments of uit.

Lemma A6. For model (1) with Γ = E(uu′) 6= σ2INT , the following result holds:

1
N tr(Ψ

(λ)Γ) = tr(Ψ
(λ)
T ΓT ).
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Proof: Write 1
N tr(Ψ

(λ)Γ) = 1
N tr(Ψ

(λ)E(uu′)) = E
[

1
N tr(u

′Ψ(λ)u)
]
. Using Lemma A1, the last relation-

ship can be written as follows:

E

[
1

N
tr(

N∑
i=1

u∗′i Ψ
(λ)
T u∗i )

]
=

1

N
tr

[
N∑
i=1

E(u∗′i Ψ
(λ)
T u∗i )

]
=

1

N

N∑
i=1

tr(Ψ
(λ)
T E(u∗i u

∗′
i ))

=
1

N

N∑
i=1

tr(Ψ
(λ)
T ΓiT ) = tr(Ψ

(λ)
T ΓT ).

Lemma A7. For model (1) with Γ = E(uu′), we have p limN (Γ̂T − ΓT ) = 0T , where 0T is a T × T

matrix of zeros.

Proof: Under H0: ϕ = 1, model (1) implies ∆y∗i = u∗i and thus, Γ̂T can be written as

Γ̂T =
1

N

N∑
i=1

∆y∗i ∆y∗′i =
1

N

N∑
i=1

u∗i u
∗′
i .

This is matrix which has elements of the form 1
N

∑N
i=1 uiµuiv, for µ, ν = 1, ..., T , with E(uiµuiν)=γiµνT ,

where γiµνT is the (µ, ν) element of matrix ΓiT = E(u∗i u
∗′
i ). Also by Assumption B, V ar(uiµuiν) is finite.

Then, by Chebyshev’s Weak Law of Large Numbers it can be shown that p limN

[
1
N

∑N
i=1(uiµuiν − γiµνT )

]
=

0, for all µ, ν = 1, ..., T , which means that p limN (Γ̂T − ΓT ) = 0T .

Proof of Theorem 3: As in Theorem 1, write Z(λ) under H0: ϕ = 1 as

d̂(λ)
√
N

(
ϕ̂(λ) − b̂(λ)

d̂(λ)
− 1

)
=

(
1

N
y′−1Q

(λ)y−1

)√
N

(
y′−1Q

(λ)u

y′−1Q
(λ)y−1

−
1
N tr(Ψ

(λ)Γ̂)
1
N y
′
−1Q

(λ)y−1

)

=
1√
N

[
u′Λ′Q(λ)u− tr(Ψ(λ)Γ̂)

]
By Remark A4, tr(Ψ(λ)Γ̂) can be written as tr(Ψ(λ)Γ̂) = tr(Ψ(λ)∆y∆y′) = ∆y′Ψ(λ)∆y. Since under H0 :

ϕ = 1 we have ∆y = u, 1√
N

[
u′Λ′Q(λ)u− tr(Ψ(λ)Γ̂)

]
can be written as follows:

1√
N

[
u′Λ′Q(λ)u− tr(Ψ(λ)Γ̂)

]
=

1√
N
u′(Λ′Q(λ) −Ψ(λ))u =

1√
N

N∑
i=1

u∗i (Λ
′
TQ

(λ)
T −Ψ

(λ)
T )u∗i ,

with E
[
u∗i (Λ

′
TQ

(λ)
T −Ψ

(λ)
T )u∗i

]
= tr

[(
Λ′TQ

(λ)
T −Ψ

(λ)
T

)
ΓiT

]
= 0 by construction. By Remark A2, we have

V ar
[
u∗i (Λ

′
TQ

(λ)
T −Ψ

(λ)
T )u∗i

]
= 2tr

(
F

(λ)
T ΓiTF

(λ)
T ΓiT

)
. Then, under Assumption B the Lindeberg-Feller CLT

implies

1√
N

N∑
i=1

u∗i (Λ
′
TQ

(λ)
T −Ψ

(λ)
T )u∗i

d−→ N
(

0, 2tr
(
F

(λ)
T ΓTuF

(λ)
T ΓTu

))
,

which can prove the theorem. By virtue of Lemma A6, we have 2tr
(
F

(λ)
T ΓTuF

(λ)
T ΓTu

)
= 1

N 2tr
(
F (λ)ΓF (λ)Γ

)
and thus either 2tr

(
F

(λ)
T Γ̂TF

(λ)
T Γ̂T

)
or 1

N 2tr
(
F (λ)Γ̂F (λ)Γ̂

)
can be employed in estimating the variance of

the above limiting distribution. Both of these estimators will be numerically equivalent.
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Section D (Lemmas and Theorem Proofs for Section 4): The following lemmas are required for

the proofs of Theorems 4 and 5.

Lemma A8. Under Assumption B, the inconsistency of estimator ϕ̂(λ) for model (19) under H0: ϕ = 1

is given by p limN (ϕ̂(λ) − 1− tr(Λ′Q(λ)Γ)
tr(Λ′Q(λ)ΛΓ)

) = 0.

Proof: Following the same algebraic transformation used in Lemma A.3, relationship (19) can be written

as:

y = y−1 + eT ⊗ β + u under H0: ϕ = 1 (42)

and y = ϕy−1 + ϕ(e
(1)
T ⊗ β

(1) + e
(2)
T ⊗ β

(2)) + (1− ϕ)(e
(1)
T ⊗ a

(1) + e
(2)
T ⊗ a

(2))

+(1− ϕ)(τ
(1)
T ⊗ β

(1) + τ
(2)
T ⊗ β

(2)) + u under H1: ϕ < 1

Then, write

ϕ̂(λ) − 1 =
y′−1Q

(λ)y

y′−1Q
(λ)y−1

− 1 =
y′−1Q

(λ) (y−1 + eT ⊗ β + u)

y′−1Q
(λ)y−1

− 1 =
y′−1Q

(λ)u

y′−1Q
(λ)y−1

,

since Q(λ) (eT ⊗ β) = 0T (see also Remark A1). By substituting backwards, y−1 can be written under H0:

ϕ = 1 as

y−1 = eT ⊗ y0 + Λ (eT ⊗ β) + Λu, (43)

and, thus, y′−1Q
(λ)u = (eT ⊗ y0 + Λ (eT ⊗ β) + Λu)

′
Q(λ)u = u′Λ′Q(λ)u, since Q(λ) [eT ⊗ y0 + Λ (eT ⊗ β)] =

0T by Remark A1. Using (43), it can be shown that y′−1Q
(λ)y−1 = u′Λ′Q(λ)Λu. Then, following similar

arguments to those for the proof of Lemma A3 it can be shown p limN (ϕ̂(λ) − 1− tr(Λ′Q(λ)Γ)
tr(Λ′Q(λ)ΛΓ)

) = 0.

Lemma A9. For model (19), under Assumptions B and C we have p limN

[
Γ̂T − ΓT − β2

T eT e
′
T

]
= 0.

Proof: Under H0: ϕ = 1, model (42) implies ∆y = eT ⊗ β + u, or ∆y∗i = βieT + u∗i . Then, Γ̂T can be

written as

Γ̂T =
1

N

N∑
i=1

∆y∗i ∆y∗′i =
1

N

N∑
i=1

(βieT + u∗i )(βieT + u∗i )
′

=
1

N

N∑
i=1

(
β2
i eT e

′
T + βieTu

∗′
i + βiu

∗
i e
′
T + u∗i u

∗′
i

)
.

The last relationship shows that matrix Γ̂T has elements of the form 1
N

∑N
i=1

(
β2
i + βiuiµν + βiuiνµ + u2

iµν

)
,

where E
[
β2
i + βiuiµν + βiuiνµ + u2

iµν

]
= E(β2

i ) + γiµνT . Also by Assumptions B and C, it can be shown

that V ar(β2
i + βiuiµν + βiuiνm + u2

iµν) is finite. Then, by Chebyshev’s Weak Law of Large Numbers we can

obtain the following result:

p lim
N

[
1

N

N∑
i=1

(
β2
i + βiuiµν + βiuiνm + u2

iµν − E(β2
i )− γiµνT

)]
= 0,

which implies p limN (Γ̂T − ΓT − β2
T eT e

′
T ) = 0T , where β

2
T = 1

N

∑N
i=1E(β2

i ).
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Lemma A10. For model (19), under Assumptions B and C we have p limN

[
tr(MT Γ̂T )
tr(MT eT e′T ) − β

2
T

]
= 0.

Proof: First, write tr(MT Γ̂T ) = 1
N

∑N
i=1 ∆y∗′i MT∆y∗i . Next, note that

E(∆y∗′i MT∆y∗i ) = tr [MTE(∆y∗i ∆y∗′i )] and

E(∆y∗i ∆y∗′i ) = E(β2
i eT e

′
T + βieTu

∗′
i + βiu

∗
i e
′
T + u∗i u

∗′
i ) = E(β2

i )eT e
′
T + ΓiT

and, by Assumptions B and C. These results imply that tr [MTE(∆y∗i ∆y∗′i )] = E(β2
i )tr(MT eT e

′
T ), since

tr(MTΓiT ) = 0. The latter holds, for all i, by the assumption that the maximum order of serial correlation,

pmax, is less than T . Also, note that the variances of ∆y∗i ∆y∗′i are finite, for all i. Then, by Chebyshev’s

Weak Law of Large Numbers we can prove the following result: p limN

[
tr(MT Γ̂T )− β2

T tr(MT eT e
′
T )
]

= 0.

The result of the lemma follows by dividing the last relationship with tr(MT eT e
′
T ).

Lemma A11. For model (19), under Assumptions B and C the following result holds:

p limN

[
1
N tr(Φ

(λ)Γ̂)− 1
N tr(Λ

′Q(λ)Γ)
]

= 0.

Proof: First, write 1
N tr(Λ

′Q(λ)Γ) = 1
N tr(Λ

′Q(λ)E(uu′)) = 1
NE(u′Λ′Q(λ)u). By Lemma A1, we have

1

N
u′Λ′Q(λ)u =

1

N

N∑
i=1

u∗′i Λ′TQ
(λ)
T u∗i =

1

N

N∑
i=1

tr(Λ′TQ
(λ)
T u∗i u

∗′
i )

and thus, E
[

1
N

∑N
i=1 tr(Λ

′
TQ

(λ)
T u∗i u

∗′
i )
]

= tr(Λ′TQ
(λ)
T ΓT ). Also, write Φ(λ) = Φ

(λ)
T ⊗ IN , where Φ

(λ)
T =

Ψ
(λ)
T − tr(Ψ

(λ)
T eT e

′
T ) MT

tr(MT eT e′T ) . Then, it can be easily seen that

1

N
tr(Φ(λ)Γ̂) = tr(Φ

(λ)
T Γ̂T ) =

1

N

N∑
i=1

∆y∗′i Φ
(λ)
T ∆y∗i , with

E(∆y∗′i Φ
(λ)
T ∆y∗i ) = tr[Φ

(λ)
T

(
E(β2

i )eT e
′
T + ΓiT

)
] = tr(Φ

(λ)
T ΓiT ), (44)

since tr(Φ(λ)
T eT e

′
T ) = tr

[
Ψ

(λ)
T eT e

′
T − tr(Ψ

(λ)
T eT e

′
T )

M
(λ)
T eT e

′
T

tr(MT eT e′T )

]
= tr(Ψ

(λ)
T eT e

′
T )− tr(Ψ(λ)

T eT e
′
T )

tr(MT eT e
′
T )

tr(MT eT e′T ) =

0.

To show that tr(Φ(λ)
T ΓiT ) = tr(Λ′TQ

(λ)
T ΓiT ), note that tr(Φ(λ)

T ΓiT ) can be written as

tr(Φ
(λ)
T ΓiT ) = tr(Ψ

(λ)
T ΓiT − tr(Ψ(λ)

T eT e
′
T )

MTΓiT
tr(MT eT e′T )

) = tr(Ψ
(λ)
T ΓiT ),

since tr(MTΓiT ) = 0. By the definition of matrixΨ
(λ)
T (see Theorem 3), we have tr(Ψ(λ)

T ΓiT ) = tr(Λ′TQ
(λ)
T ΓiT ),

and thus tr(Φ(λ)
T ΓiT ) = tr(Ψ

(λ)
T ΓiT ) = tr(Λ′TQ

(λ)
T ΓiT ). Then, it follows that E(∆y∗′i Φ

(λ)
T ∆y∗i ) = tr(Λ′TQ

(λ)
T ΓiT )

by (44). The result of the lemma follows immediately by applying Chebyshev’sWLLN to 1
N

∑N
i=1 ∆y∗′i Φ

(λ)
T ∆y∗i

(see also Lemma A10).
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Proof of Theorem 4: Under H0: ϕ = 1 and Lemma A8, test statistic Z(λ) can be written as

d̂(λ)
√
N

(
ϕ̂(λ) − 1− b̂(λ)

d̂(λ)

)
= d̂(λ)

√
N

(
1
N y
′
−1Q

(λ)y

d̂(λ)
− 1−

1
N tr(Φ

(λ)Γ̂)

d̂(λ)

)
=
√
N

(
1

N
u′Λ′Q(λ)u− 1

N
tr(Φ(λ)Γ̂)

)
.

By Remark A4, the last relationship can be written as follows:

√
N

(
1

N
u′Λ′Q(λ)u− 1

N
tr(Φ(λ)Γ̂)

)
=

1√
N

(
u′Λ′Q(λ)u−∆y′Φ(λ)∆y

)
Substituting into this ∆y′Λ′Q(λ)∆y = (u′+ e′T ⊗β

′)Λ′Q(λ)(u+ eT ⊗β) = u′Λ′Q(λ)u, which holds under H0:

ϕ = 1, yields

1√
N

(
u′Λ′Q(λ)u−∆y′Φ(λ)∆y

)
=

1√
N

(
∆y′Λ′Q(λ)∆y −∆y′Φ(λ)∆y

)
=

1√
N

(∆y′(Λ′Q(λ) − Φ(λ))∆y).

By Lemma A1, the last relationship can be written as

1√
N

(∆y′(Λ′Q(λ) − Φ(λ))∆y) =
1√
N

N∑
i=1

∆y∗′i (Λ′TQ
(λ)
T − Φ

(λ)
T )∆y∗i

and it has

E
[
∆y∗′i (Λ′TQ

(λ)
T − Φ

(λ)
T )∆y∗i

]
= tr

[
(Λ′TQ

(λ)
T − Φ

(λ)
T )E(∆y∗i ∆y∗′i )

]
= 0,

since E(∆y∗i ∆y∗′i ) = E[(u∗i+βieT )(u∗i+βieT )] = ΓiT+E(β2
i )eT e

′
T and tr

[
(Λ′TQ

(λ)
T − Φ

(λ)
T )(ΓiT + E(β2

i )eT e
′
T )
]

=

0 (see also Lemma A.11). The variance of ∆y∗′i (Λ′TQ
(λ)
T − Φ

(λ)
T )∆y∗i is given as

V ar
[
∆y∗′i (Λ′TQ

(λ)
T − Φ

(λ)
T )∆y∗i

]
= V ar

{
tr
[
(Λ′TQ

(λ)
T − Φ

(λ)
T )E(∆y∗i ∆y∗′i )

]}
= vec(Q

(λ)
T ΛT − Φ

(λ)′
T )′V ar(vec(∆y∗i ∆y∗′i ))vec(Q

(λ)
T ΛT − Φ

(λ)′
T )

By Assumptions B and C, and by the Lindeberg-Feller CLT it follows that

1√
N

N∑
i=1

∆y∗′i (Λ′TQ
(λ)
T − Φ

(λ)
T )∆y∗i

d−→ N
(

0, vec(Q
(λ)
T ΛT − Φ

(λ)′
T )′ΘTuvec(Q

(λ)
T ΛT − Φ

(λ)′
T )

)
,

where ΘTu = p limN ΘT = p limN
1
N

∑N
i=1 V ar(vec(∆y

∗
i ∆y∗′i )). The vec(.) (stacked vector) notation of the

variance of the above limiting distribution comes by noticing that

V ar
[
∆y′(Λ′Q(λ) − Φ(λ))∆y

]
= V ar

{
tr
[
(Λ′Q(λ) − Φ(λ))E(∆y∆y′)

]}
= vec(Q(λ)Λ− Φ(λ)′)′V ar(vec(∆y∆y′))vec(Q(λ)Λ− Φ(λ)′).

The next lemma provides a consistent estimator of ΘT , entering the above variance function.

Lemma A12. Under Assumptions B and C, the following result holds for model (19) under H0: ϕ = 1:

p limN

[
Θ̂∗T −ΘT

]
= 0, where
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Θ̂∗T = 1
N

∑N
i=1 vec(∆y

∗
i ∆y∗′i )vec(∆y∗i ∆y∗′i )′ − 1

N

∑N
i=1 vec(∆y

∗
i ∆y∗′i ) 1

N

∑N
i=1 vec(∆y

∗
i ∆y∗′i )′.

Proof: First, notice that

V ar(vec(∆y∗i ∆y∗′i )) = E [vec(∆y∗i ∆y∗′i )vec(∆y∗i ∆y∗′i )′]− E [vec(∆y∗i ∆y∗′i )]E [vec(∆y∗i ∆y∗′i )′] .

Then, the proof of the lemma follows immediately, by showing element by element convergence as in Lemma

A7.

Remark A5. Note that the estimator Θ̂T = 1
N

∑N
i=1 vec(∆y

∗
i ∆y∗′i )vec(∆y∗i ∆y∗′i )′, suggested in the

main text (see (22)), is a consistent estimator of 1
N

∑N
i=1E [vec(∆y∗i ∆y∗′i )vec(∆y∗i ∆y∗′i )′], not of ΘT , i.e.,

p lim
N

[
1

N

N∑
i=1

vec(∆y∗i ∆y∗′i )vec(∆y∗i ∆y∗′i )′ − 1

N

N∑
i=1

E [vec(∆y∗i ∆y∗′i )vec(∆y∗i ∆y∗′i )′]] = 0.

This can be proved following similar arguments to those for the proof with Lemma A12. However, when

Θ̂T is plugged in the variance, it makes F̃
(λ)′
T Θ̂T F̃

(λ)
T a consistent estimator of variance V (λ), used by test

statistic Z(λ) (see (20)). To see this, note that, under the assumption that the order of serial correlation

p ≤ pmax is the same for all i, we have:

vec(Q
(λ)
T ΛT − Φ

(λ)′
T )′V ar(vec(∆y∗i ∆y∗′i ))vec(Q

(λ)
T ΛT − Φ

(λ)′
T )

= vec(Q
(λ)
T ΛT − Φ

(λ)′
T )′E [vec(∆y∗i ∆y∗′i )vec(∆y∗i ∆y∗′i )′] vec(Q

(λ)
T ΛT − Φ

(λ)′
T )

since vec(Q(λ)
T ΛT −Φ

(λ)′
T )′E [vec(∆y∗i ∆y∗′i )] = tr

[
(Λ′TQ

(λ)
T − Φ

(λ)
T )(ΓiT + E(β2

i )eT e
′
T )
]

= 0 by Lemma A11.

The last result indicates that we only need to estimate E [vec(∆y∗i ∆y∗′i )vec(∆y∗i ∆y∗′i )′]. Θ̂T and Θ̂∗T can be

both used to consistently estimate V (λ), but Θ̂T may be preferred since it is computationally less demanding.

Lemma A13. For model (23), under Assumption B we have p limN (ϕ̂(λ) − 1− tr(Λ′Q(λ)Γ)
tr(Λ′Q(λ)ΛΓ)

) = 0.

Proof: As in Lemma A.3, write (23) as

y = ϕy−1 + ϕ(e
(1)
T ⊗ β

(1) + e
(2)
T ⊗ β

(2)) + (1− ϕ)(e
(1)
T ⊗ a

(1) + e
(2)
T ⊗ a

(2))

+(1− ϕ)(τ
(1)
T ⊗ β

(1) + τ
(2)
T ⊗ β

(2)) + u

Under H0: ϕ = 1 the last relationship yields

y = y−1 + e
(1)
T ⊗ β

(1) + e
(2)
T ⊗ β

(2) + u. (45)

Using this, ϕ̂(λ) − 1 can be written as follows:

ϕ̂(λ) − 1 =
y′−1Q

(λ)y

y′−1Q
(λ)y−1

− 1 =
y′−1Q

(λ)
(
y−1 + e

(1)
T ⊗ β

(1) + e
(2)
T ⊗ β

(2) + u
)

y′−1Q
(λ)y−1

− 1 =
y′−1Q

(λ)u

y′−1Q
(λ)y−1

,
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since Q(λ)
(
e

(1)
T ⊗ β

(1)
)

= Q(λ)
(
e

(2)
T ⊗ β

(2)
)

= 0T by construction (see also Remark A1). Substituting

backwards y−1 gives

y−1 = eT ⊗ y0 + Λ
(
e

(1)
T ⊗ β

(1)
)

+ Λ
(
e

(2)
T ⊗ β

(2)
)

+ Λu. (46)

Using this result, y′−1Q
(λ)u can be written as

y′−1Q
(λ)u =

(
eT ⊗ y0 + Λ

(
e

(1)
T ⊗ β

(1)
)

+ Λ
(
e

(2)
T ⊗ β

(2)
)

+ Λu
)′
Q(λ)u = u′Λ′Q(λ)u,

since Q(λ)
[
eT ⊗ y0 + Λ

(
e

(1)
T ⊗ β

(1)
)

+ Λ
(
e

(2)
T ⊗ β

(2)
)]

= 0NT by Remark A1. Following similar steps to

the above, it can be shown that the numerator of ϕ̂(λ)−1 can be written as y′−1Q
(λ)y−1 = u′Λ′Q(λ)Λu. Given

the above results, it can be proved that p limN (ϕ̂(λ) − 1− tr(Λ′Q(λ)Γ)
tr(Λ′Q(λ)ΛΓ)

) = 0, following analogous arguments

to those for the proof of Lemma 3.

Lemma A14. For model (23), under Assumptions B and C the following result holds:

p limN

[
Γ̂T − ΓT − β(1)2

T e
(1)
T e

(1)′
T − β(2)2

T e
(2)
T e

(2)′
T

]
= 0.

Proof: First, note that, under H0: ϕ = 1 , model (45) implies that ∆y = e
(1)
T ⊗ β

(1) + e
(2)
T ⊗ β

(2) + u,

or ∆y∗i = β
(1)
i e

(1)
T + β

(2)
i e

(2)
T + u∗i . Then, Γ̂T can be written as

Γ̂T =
1

N

N∑
i=1

∆y∗i ∆y∗′i =
1

N

N∑
i=1

(β
(1)
i e

(1)
T + β

(2)
i e

(2)
T + u∗i )(β

(1)
i e

(1)
T + β

(2)
i e

(2)
T + u∗i )

′.

Based on the last relationship, the lemma can be proved following the same arguments with those for the

proof of Lemma A9.

Lemma A15. For model (23), under Assumptions B and C the following results hold:

p limN

[
tr(M

(1)
T Γ̂T )

tr(M
(1)
T e

(1)
T e

(1)′
T )
− β(1)2

T

]
= 0 and p limN

[
tr(M

(2)
T Γ̂T )

tr(M
(2)
T e

(2)
T e

(2)′
T )
− β(2)2

T

]
= 0.

Proof: First, write tr(M (1)
T Γ̂T ) = 1

N

∑N
i=1 ∆y∗′i M

(1)
T ∆y∗i , with E(∆y∗′i M

(1)
T ∆y∗i ) = tr

[
M

(1)
T E(∆y∗i ∆y∗′i )

]
.

By Assumptions B and C, we have E(∆y∗i ∆y∗′i ) = E(β
(1)2
i )e

(1)
T e

(1)′
T +E(β

(2)2
i )e

(2)
T e

(2)′
T +ΓiT . Thus, tr

[
M

(1)
T E(∆y∗i ∆y∗′i )

]
can be written as

tr
[
M

(1)
T E(∆y∗i ∆y∗′i )

]
= E(β

(1)2
i )tr(M

(1)
T e

(1)
T e

(1)′
T ),

since tr(M (1)
T ΓiT ) = tr(M

(1)
T e

(2)
T e

(2)′
T ) = 0, for all i, due to condition pmax < T of Assumption B. Also, it can

be easily seen that the variance of ∆y∗i ∆y∗′i is finite, for all i. Given the above results, it can be proved that

p limN

[
tr(M

(1)
T Γ̂T )− β(1)2

T tr(M
(1)
T e

(1)
T e

(1)′
T )

]
= 0, by Chebyshev’s Weak Law of Large Number. By dividing

last relationship with tr(M (1)
T e

(1)
T e

(1)′
T ) proves the lemma.

Lemma A16. For model (23), under Assumptions B and C the following result holds:

p limN

[
1
N tr(Ω

(λ)Γ̂)− 1
N tr(Λ

′Q(λ)Γ)
]

= 0.

Proof: Write Ω(λ) = Ω
(λ)
T ⊗IN , where Ω

(λ)
T = Ψ

(λ)
T −tr(Ψ

(λ)
T e

(1)
T e

(1)′
T )

M
(1)
T

tr(M
(1)
T e

(1)
T e

(1)′
T )
−tr(Ψ(λ)

T e
(2)
T e

(2)′
T )

M
(2)
T

tr(M
(2)
T e

(2)
T e

(2)′
T )

.
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Then, 1
N tr(Ω

(λ)Γ̂) can be written as follows:

1

N
tr(Ω(λ)Γ̂) = tr(Ω

(λ)
T Γ̂T ) =

1

N

N∑
i=1

∆y∗′i Ω
(λ)
T ∆y∗i .

As in Lemma A15, it can be shown that

E(∆y∗′i Ω
(λ)
T ∆y∗i ) = tr[Ω

(λ)
T

(
E(β

(1)2
i )e

(1)
T e

(1)′
T + E(β

(2)2
i )e

(2)
T e

(2)′
T + ΓiT

)
] = tr(Ω

(λ)
T ΓiT ),

using the following two results:

tr(Ω
(λ)
T e

(1)
T e

(1)′
T ) = tr

[
Ψ

(λ)
T e

(1)
T e

(1)′
T − tr(Ψ(λ)

T e
(1)
T e

(1)′
T )

M
(1)
T e

(1)
T e

(1)′
T

tr(M
(1)
T e

(1)
T e

(1)′
T )
− tr(Ψ(λ)

T e
(2)
T e

(2)′
T )

M
(2)
T e

(1)
T e

(1)′
T

tr(M
(2)
T e

(2)
T e

(2)′
T )

]
= tr(Ψ

(λ)
T e

(1)
T e

(1)′
T )− tr(Ψ(λ)

T e
(1)
T e

(1)′
T )

tr(M
(1)
T e

(1)
T e

(1)′
T )

tr(M
(1)
T e

(1)
T e

(1)′
T )
− tr(Ψ(λ)

T e
(2)
T e

(2)′
T )

tr(M
(2)
T e

(1)
T e

(1)′
T )

tr(M
(2)
T e

(2)
T e

(2)′
T )

= 0,

as tr(M (2)
T e

(1)
T e

(1)′
T ) = 0, and

tr(Ω
(λ)
T e

(2)
T e

(2)′
T ) = tr

[
Ψ

(λ)
T e

(2)
T e

(2)′
T − tr(Ψ(λ)

T e
(1)
T e

(1)′
T )

M
(1)
T e

(2)
T e

(2)′
T

tr(M
(1)
T e

(1)
T e

(1)′
T )
− tr(Ψ(λ)

T e
(2)
T e

(2)′
T )

M
(2)
T e

(2)
T e

(2)′
T

tr(M
(2)
T e

(2)
T e

(2)′
T )

]
= tr(Ψ

(λ)
T e

(2)
T e

(2)′
T )− tr(Ψ(λ)

T e
(1)
T e

(1)′
T )

tr(M
(1)
T e

(2)
T e

(2)′
T )

tr(M
(1)
T e

(1)
T e

(1)′
T )
− tr(Ψ(λ)

T e
(2)
T e

(2)′
T )

tr(M
(2)
T e

(2)
T e

(2)′
T )

tr(M
(2)
T e

(2)
T e

(2)′
T )

= 0,

as tr(M (1)
T e

(2)
T e

(2)′
T ) = 0.

Also note that

tr(Ω
(λ)
T ΓiT ) = tr(Ψ

(λ)
T ΓiT − tr(Ψ(λ)

T e
(1)
T e

(1)′
T )

M
(1)
T ΓiT

tr(M
(1)
T e

(1)
T e

(1)′
T )

− tr(Ψ(λ)
T e

(2)
T e

(2)′
T )

M
(2)
T ΓiT

tr(M
(2)
T e

(2)
T e

(2)′
T )

)

= tr(Ψ
(λ)
T ΓiT ),

since tr(M (1)
T ΓiT ) = tr(M

(2)
T ΓiT ) = 0. By the definition of selection matrix Ψ

(λ)
T , we have tr(Ψ(λ)

T ΓiT ) =

tr(Λ′TQ
(λ)
T ΓiT ). Thus, combining the above results yields E(∆y∗′i Ω

(λ)
T ∆y∗i ) = tr(Λ′TQ

(λ)
T ΓiT ). Then, the

lemma can be proved by Chebyshev’s WLLN (see also Lemma A15).

Proof of Theorem 5: The theorem can be proved following similar steps to those for the proof of

Theorem 4.

Section E (Lemmas and Theorem Proofs for Section 5): The following lemmas are required for

the proof of Theorem 6.

Lemma A17. For model (25), under Assumption B the following result hold:

p limN (ϕ̂(λ) − 1− tr(Λ′Q(λ)Γ)
tr(Λ′Q(λ)ΛΓ)

) = 0.

Proof: First, write model (25) as

y = ϕy−1 + ϕ(e
(1)
T ⊗ β

(1) + e
(2)
T ⊗ β

(2)) + ϕ(ẽ
(1)
T ⊗ δ

(1) + ẽ
(2)
T ⊗ δ

(2))

+(1− ϕ)(e
(1)
T ⊗ a

(1) + e
(2)
T ⊗ a

(2)) + (1− ϕ)(τ
(1)
T ⊗ β

(1) + τ
(2)
T ⊗ β

(2))

+(1− ϕ)(τ
(1)
2T ⊗ δ

(1) + τ
(2)
2T ⊗ δ

(2)) + u
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Under H0: ϕ = 1, the last relationship becomes:

y = y−1 + e
(1)
T ⊗ β

(1) + e
(2)
T ⊗ β

(2) + ẽ
(1)
T ⊗ δ

(1) + ẽ
(2)
T ⊗ δ

(2) + u. (47)

Based on this relationship, ϕ̂(λ) − 1 can be written as

ϕ̂(λ) − 1 =
y′−1Q

(λ)y

y′−1Q
(λ)y−1

− 1 =
y′−1Q

(λ)
(
y−1 +

∑2
j=1 e

(j)
T ⊗ β

(j) +
∑2
j=1 ẽ

(j)
T ⊗ δ

(j) + u
)

y′−1Q
(λ)y−1

− 1 =
y′−1Q

(λ)u

y′−1Q
(λ)y−1

,

since Q(λ)
(
e

(j)
T ⊗ β

(j)
)

= Q(λ)
(
e

(j)
T ⊗ δ

(j)
)

= 0T (see Remark A1). Using

y−1 = eT ⊗ y0 +

2∑
j=1

Λ
(
e

(j)
T ⊗ β

(j)
)

+

2∑
j=1

Λ
(
ẽ

(j)
T ⊗ δ

(j)
)

+ Λu,

y′−1Q
(λ)u can be written as

y′−1Q
(λ)u =

eT ⊗ y0 +

2∑
j=1

Λ
(
e

(j)
T ⊗ β

(j)
)

+

2∑
j=1

Λ
(
ẽ

(j)
T ⊗ δ

(j)
)

+ Λu

′Q(λ)u = u′Λ′Q(λ)u, (48)

as Q(λ)
[
eT ⊗ y0 +

∑2
j=1 Λ

(
e

(j)
T ⊗ β

(j)
)

+
∑2
j=1 Λ

(
ẽ

(j)
T ⊗ δ

(j)
)]

= 0T (see Remark A1). Following analo-

gous arguments to the above, we can show that y′−1Q
(λ)y−1 = u′Λ′Q(λ)Λu. Then, it can be easily shown

p limN (ϕ̂(λ) − 1− tr(Λ′Q(λ)Γ)
tr(Λ′Q(λ)ΛΓ)

) = 0 (as in Lemma A3).

Lemma A18. For model (25), under Assumptions B, C and D the following result holds:

p limN

[
Γ̂T − ΓT −

∑2
j=1 β

(j)2
T e

(j)
T e

(j)′
T −

∑2
j=1 δ

(j)2
T ẽ

(j)
T ẽ

(j)′
T

]
= 0.

Proof: Under H0: ϕ = 1, model implies ∆y =
∑2
j=1 e

(j)
T ⊗ β(j) +

∑2
j=1 ẽ

(j)
T ⊗ δ(j) + u and ∆y∗i =∑2

j=1 β
(j)
i e

(j)
T +

∑2
j=1 δ

(j)
i ẽ

(j)
T + u∗i . The proof of the lemma follows, immediately, by substituting the last

relationship of ∆y∗i into Γ̂T = 1
N

∑N
i=1 ∆y∗i ∆y∗′i and following analogous arguments to those for the proof of

Lemma A14.

Lemma A19. For model (23), under Assumptions B, C and D the following results hold:

p limN

[
tr
(
J
(j)
T Γ̂T

)
tr(M

(j)
T e

(j)
T e

(j)′
T )
− β(j)2

T

]
= 0 and p limN

[
tr(L

(j)
T Γ̂T )

tr(L
(j)
T ẽ

(j)
T ẽ

(j)′
T )
− δ(j)2

T

]
= 0, for j = 1, 2.

Proof: First, note that tr(J (j)
T Γ̂T ) = 1

N

∑N
i=1 ∆y∗′i J

(j)
T ∆y∗i . Since E(∆y∗′i J

(j)
T ∆y∗i ) = tr

[
J

(j)
T E(∆y∗i ∆y∗′i )

]
and E(∆y∗i ∆y∗′i ) =

∑2
j=1E(β

(j)2
i )e

(j)
T e

(j)′
T +

∑2
j=1E(δ

(j)2
i )ẽ

(j)
T ẽ

(j)′
T + ΓiT , tr

[
J

(j)
T E(∆y∗i ∆y∗′i )

]
can be writ-
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ten as

tr
[
J

(j)
T E(∆y∗i ∆y∗′i )

]
= tr

M (j)
T −

tr(M
(j)
T ẽ

(j)
T ẽ

(j)′
T )

tr
(
L

(j)
T ẽ

(j)
T ẽ

(j)′
T

)L(j)
T

E(∆y∗i ∆y∗′i )


= tr

M (j)
T −

tr(M
(j)
T ẽ

(j)
T ẽ

(j)′
T )

tr
(
L

(j)
T ẽ

(j)
T ẽ

(j)′
T

)L(j)
T

( 2∑
k=1

E(β
(k)2
i )e

(k)
T e

(k)′
T +

2∑
k=1

E(δ
(k)2
i )ẽ

(k)
T ẽ

(k)′
T + ΓiT

)
Using the following results: tr(M (j)

T ΓiT ) = tr(M
(j)
T e

(k)
T e

(k)′
T ) = 0, tr(M (j)

T e
(k)
T e

(k)′
T ) = tr(M

(j)
T ẽ

(k)
T ẽ

(k)′
T ) =

tr(L
(j)
T ẽ

(k)
T ẽ

(k)′
T ) = 0 and tr(L(j)

T e
(k)
T e

(k)′
T ) = 0, for all j and k, (see Lemma A15), the above relationship of

tr
[
J

(j)
T E(∆y∗i ∆y∗′i )

]
becomes

tr
[
J

(j)
T E(∆y∗i ∆y∗′i )

]
= tr(M

(j)
T e

(j)
T e

(j)′
T )E(β

(j)2
i ) + tr(M

(j)
T ẽ

(j)
T ẽ

(j)′
T )E(δ

(j)2
i )− tr(M

(j)
T ẽ

(j)
T ẽ

(j)′
T )

tr
(
L

(j)
T ẽ

(j)
T ẽ

(j)′
T

) tr(L(j)
T ẽ

(j)
T ẽ

(j)′
T )E(δ

(j)2
i )

= tr(M
(j)
T e

(j)
T e

(j)′
T )E(β

(j)2
i ).

Dividing the last relationship with tr(M (j)
T e

(j)
T e

(j)′
T ) and applying Chebyshev’s WLLN proves the first result

of the lemma. Similarly, we can prove the second result of the lemma. To this end, also notice that

tr
[
L

(j)
T E(∆y∗i ∆y∗′i )

]
= tr

[
L

(j)
T ẽ

(j)
T ẽ

(j)′
T

]
E(δ

(j)2
i ), since tr(L(j)

T ΓiT ) = 0.

Lemma A20. For model (23), under Assumptions B, C and D the following result holds:

p limN

[
1
N tr(Ξ

(λ)Γ̂)− 1
N tr(Λ

′Q(λ)Γ)
]

= 0.

Proof: Write Ξ(λ) = Ξ
(λ)
T ⊗ IN , where Ξ

(λ)
T = Ψ

(λ)
T −

∑2
j=1

tr(Ψ
(λ)
T e

(j)
T e

(j)′
T )J

(j)
T

tr(M
(j)
T e

(j)
T e

(j)′
T )

−
∑2
j=1

tr(Ψ
(λ)
T ẽ

(j)
T ẽ

(j)′
T )L

(j)
T

tr(L
(j)
T ẽ

(j)
T ẽ

(j)′
T )

.

Then, 1
N tr(Ξ

(λ)Γ̂) can be written as

1

N
tr(Ξ(λ)Γ̂) = tr(Ξ

(λ)
T Γ̂T ) =

1

N

N∑
i=1

∆y∗′i Ξ
(λ)
T ∆y∗i .

Using Lemma A19, it can be shown that E(∆y∗′i Ξ
(λ)
T ∆y∗i ) = tr(Λ′TQ

(λ)
T ΓiT ). Then, the proof of the lemma

follows along the lines of that for Lemma A16.

Proof of Theorem 6: It follows by applying analogous arguments to those for the proof of Theorem 4.

Section F (Lemmas and Theorem Proofs for Section 6): The following lemmas are needed for

the proofs of Theorems 7 and 8.
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Lemma A21. Under Assumption E, the inconsistency of the LS estimator of ϕ, ϕ̂(λ), of model (1) under

H0: ϕ = 1 is given by

p limN (ϕ̂(λ) − 1− tr(Λ′Q(λ)ΠΓεΠ)
tr(Λ′Q(λ)ΛΠΓεΠ)

) = 0.

Proof: As in Lemma A3, write ϕ̂(λ) − 1 =
1
N u
′Λ′Q(λ)u

1
N u
′Λ′Q(λ)Λu

. The mean of 1
N u
′Λ′Q(λ)u is given as

E(
1

N
u′Λ′Q(λ)u) =

1

N
tr
[
Λ′Q(λ)E(uu′)

]
=

1

N
tr
[
Λ′Q(λ)E(Πεε′Π′)

]
=

1

N
tr
[
Λ′Q(λ)ΠΓεΠ′

]
and its variance as V ar( 1

N u
′Λ′Q(λ)u) = 1

N2V ar(ε
′Π′Λ′Q(λ)Πε).Quadratic formula (36) implies that V ar(ε′Π′Λ′Q(λ)Πε) =

O(NT ) and, hence, 1
N2V ar(ε

′Π′Λ′Q(λ)Πε) = o(1). Given the above results, the lemma can be proved by

Chebyshev’s inequality, implying P (
∣∣ 1
N u
′Λ′Q(λ)u− 1

N tr
[
Λ′Q(λ)ΠΓεΠ′

]∣∣ > ε) ≤ V ar( 1
N u
′Λ′Q(λ)u)

ε2 → 0, and

by noticing that E( 1
N u
′Λ′Q(λ)Λu) = 1

N tr
[
Λ′Q(λ)ΛΠΓεΠ′

]
. The last result follows by applying analogous

arguments to the above deriving the analytic formula of E( 1
N u
′Λ′Q(λ)u).

Lemma A22. For model (1), under Assumption E the following result holds:

p limN

[
1
N tr(Ψ

(λ)Γ̂)− 1
N tr(Λ

′Q(λ)ΠΓεΠ)
]

= 0.

Proof: First, note that 1
N tr(Ψ

(λ)Γ̂) = tr(Ψ
(λ)
T Γ̂T ), since Γ̂ = Γ̂T ⊗ IN . Based on Remark A4, tr(Ψ(λ)Γ̂)

can be written as tr(Ψ(λ)
T Γ̂T ) = tr(Ψ(λ) 1

N∆y∆y′). Under H0: ϕ = 1, we have ∆y∆y′ = uu′ and u = Πε.

Thus, E
[
tr(Ψ(λ) 1

N∆y∆y′)
]
can be written as follows:

E

[
tr(Ψ(λ) 1

N
∆y∆y′)

]
= tr

[
Ψ(λ) 1

N
E (∆y∆y′)

]
= tr

[
Ψ(λ) 1

N
E (∆y∆y′)

]
=

1

N
tr(Ψ(λ)E (Πεε′Π′)) =

1

N
tr(Ψ(λ)ΠΓεΠ′).

By the definition of matrix Ψ(λ), we have 1
N tr(Ψ

(λ)ΠΓεΠ′) = 1
N tr(Λ

′Q(λ)ΛΠΓεΠ). Note that the last rela-

tionship holds, even if Ψ(λ) has more non-zero diagonals. As in Lemma A21, it can be shown that

V ar(tr(Ψ(λ) 1

N
∆y∆y′)) =

1

N2
V ar(∆y′Ψ(λ)∆y) =

1

N2
V ar(ε′Π′Ψ(λ)Πε) = o(1)

Given the above results on E
[
tr(Ψ(λ) 1

N∆y∆y′)
]
and V ar(tr(Ψ(λ) 1

N∆y∆y′)), the lemma can be proved by

applying Chebyshev’s inequality.

Proof of Theorem 8: First note that test statistic Z(λ) for model (1), with uit defined by (27)-(28),
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can be written as follows:

√
Nd̂(λ)

(
ϕ̂(λ) − 1− b̂(λ)

d̂(λ)

)

=
√
N

(
1

N
y′−1Q

(λ)y−1

)( 1
N y
′
−1Q

(λ)y
1
N y
′
−1Q

(λ)y−1

− 1−
1
N∆y′Ψ(λ)∆y
1
N y
′
−1Q

(λ)y−1

)
(see Remark A4)

=
√
N

(
1

N
y′−1Q

(λ)y−1

)( 1
N y
′
−1Q

(λ)y
1
N y
′
−1Q

(λ)y−1

− 1−
1
N∆y′Ψ(λ)∆y
1
N y
′
−1Q

(λ)y−1

)

=
1√
N

(
u′Λ′Q(λ)u− u′Ψ(λ)u

)
=

1√
N
u′
(

Λ′Q(λ) −Ψ(λ)
)
u =

1√
N
ε′Π′

(
Λ′Q(λ) −Ψ(λ)

)
Πε,

where matrix Π′
(
Λ′Q(λ) −Ψ(λ)

)
Π has zeroes in its diagonals,

E(ε′Π′
(

Λ′Q(λ) −Ψ(λ)
)

Πε) = tr(Π′
(

Λ′Q(λ) −Ψ(λ)
)

ΠΓε) = 0 (49)

and V ar(ε′Π′
(

Λ′Q(λ) −Ψ(λ)
)

Πε) = 2tr(F (λ)ΓεF (λ)Γε),

with F (λ) = 1
2

(
Π′
(
Λ′Q(λ) −Ψ(λ)

)
Π + Π′

(
Q(λ)Λ−Ψ(λ)′)Π

)
by Remark A2. By Theorem A1 of Kelejian

and Prucha (2010), it can be shown that

V (λ)−1/2

[
1√
N
ε′Π′

(
Λ′Q(λ) −Ψ(λ)

)
Πε

]
d−→ N (0, 1) ,

where V (λ)−1/2 = 2tr(F (λ)ΓεF (λ)Γε). Note that Assumption A.2 of Kelejian and Prucha (2010) holds in the

case of Theorem 8 by our Assumption E and the Remark A2 of Kapoor et al. (2007).

Proof of Theorem 9: The proof of this theorem is based on the theorem of Beran and Ducharme

(1991), as presented in Horowitz (2001). In particular, the case of our test is similar to that of the Exam-

ple 2.1 of Horowitz (2001). To prove the theorem, consider the following (unscaled and nonstandardized)

version of our test statistic: d̂(λ)
(
ϕ̂(λ) − 1− b̂(λ)

d̂(λ)

)
under Assumption E. Let GN (π, F0) be GN (π, F0) =

PN

[
d̂(λ)

(
ϕ̂(λ) − 1− b̂(λ)

d̂(λ)

)]
and FN be the empirical distribution function of the data. Then, the bootstrap

for this distribution is given as

√
N

[
d̂B(λ)

(
ϕ̂B(λ) − 1− b̂B(λ)

d̂B(λ)

)
− d̂(λ)

(
ϕ̂(λ) − 1− b̂(λ)

d̂(λ)

)]

This bootstrap is centred around d̂(λ)
(
ϕ̂(λ) − 1− b̂(λ)

d̂(λ)

)
, since the latter is the mean of the distribution

from which the bootstrap sample is drawn. Also notice that E
[
d̂(λ)

(
ϕ̂(λ) − 1− b̂(λ)

d̂(λ)

)]
= 0 by (49) and

that statistic
√
N
[
d̂(λ)

(
ϕ̂(λ) − 1− b̂(λ)

d̂(λ)

)
− E

[
d̂(λ)

(
ϕ̂(λ) − 1− b̂(λ)

d̂(λ)

)]]
= Z(λ). The bootstrap estimator is

GN (π, FN ) = PBN

[
d̂B(λ)

(
ϕ̂B(λ) − 1− b̂B(λ)

d̂B(λ)

)
− d̂(λ)

(
ϕ̂(λ) − 1− b̂(λ)

d̂(λ)

)
≤ π

]
, where PBN is the probability dis-

tribution induced by the sampling process. Based on the arguments of Horowitz (2001), it can be seen that

the conditions of the theorem of Beran and Ducharme (1991) hold in our case, and thus the bootstrap is

consistent. For the case that the date of the break is unknown, the bootstrap of minimum statistic is also
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consistent. This can be proved by similar arguments.

52



Table 1: Size and power of min
λ∈I

Z(λ) in the case of individual intercepts

N 50 50 50 100 100 100 200 200 200

θ λ/T ϕ\T 8 10 15 8 10 15 8 10 15

-0.5 0.25 1 0.034 0.036 0.0465 0.047 0.045 0.0485 0.0365 0.0555 0.0555

0.95 0.044 0.049 0.042 0.0635 0.068 0.054 0.071 0.073 0.064

0.9 0.05 0.048 0.046 0.079 0.065 0.057 0.097 0.010 0.071

0.5 1 0.041 0.039 0.040 0.033 0.051 0.044 0.043 0.042 0.057

0.95 0.0435 0.0415 0.041 0.0625 0.07 0.0415 0.081 0.0775 0.0635

0.9 0.056 0.047 0.0475 0.075 0.0695 0.0415 0.1065 0.072 0.0635

0.75 1 0.033 0.036 0.038 0.0505 0.039 0.0535 0.055 0.0595 0.053

0.95 0.048 0.053 0.0485 0.056 0.0645 0.0415 0.0755 0.0665 0.05

0.9 0.0575 0.0485 0.0455 0.0815 0.0705 0.063 0.097 0.084 0.0645

0 0.25 1 0.0665 0.058 0.049 0.061 0.067 0.063 0.067 0.0575 0.0555

0.95 0.166 0.1935 0.15 0.264 0.2725 0.209 0.424 0.428 0.343

0.9 0.33 0.3 0.234 0.5645 0.4935 0.3565 0.8315 0.7435 0.607

0.5 1 0.0575 0.0585 0.056 0.058 0.055 0.0635 0.0595 0.0525 0.054

0.95 0.182 0.183 0.1335 0.277 0.2775 0.225 0.418 0.4335 0.3325

0.9 0.337 0.302 0.2155 0.5435 0.5235 0.356 0.819 0.779 0.57

0.75 1 0.0585 0.057 0.058 0.057 0.0655 0.059 0.06 0.0515 0.047

0.95 0.1545 0.1875 0.148 0.279 0.282 0.2265 0.416 0.4385 0.3585

0.9 0.335 0.327 0.2415 0.558 0.4975 0.364 0.8075 0.748 0.5865

0.5 0.25 1 0.0285 0.0295 0.0345 0.0375 0.039 0.0395 0.042 0.0355 0.0495

0.95 0.19 0.174 0.1415 0.3225 0.3005 0.259 0.601 0.555 0.423

0.9 0.4205 0.385 0.25 0.743 0.6725 0.454 0.974 0.9365 0.737

0.5 1 0.0315 0.029 0.0435 0.044 0.0385 0.042 0.042 0.0445 0.0465

0.95 0.1675 0.1775 0.151 0.345 0.326 0.2485 0.6035 0.5765 0.414

0.9 0.411 0.3605 0.2445 0.7555 0.67 0.438 0.972 0.939 0.7285

0.75 1 0..031 0.0355 0.0385 0.0375 0.039 0.0475 0.048 0.044 0.0505

0.95 0.182 0.1745 0.137 0.324 0.328 0.242 0.586 0.571 0.413

0.9 0.404 0.373 0.243 0.742 0.6815 0.446 0.9785 0.942 0.7375
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Table 2: Size and power of min
λ∈I

Z(λ) in the case of incidental trends

N 50 50 50 100 100 100 200 200 200

θ λ/T ϕ\T 8 10 15 8 10 15 8 10 15

-0.5 0.25 1 0.0295 0.033 0.041 0.0375 0.0445 0.0495 0.0475 0.0525 0.056

0.95 0.044 0.0475 0.0665 0.0465 0.0525 0.0895 0.0615 0.0685 0.1275

0.9 0.0385 0.0585 0.0985 0.059 0.0935 0.132 0.0735 0.1235 0.2315

0.5 1 0.034 0.0345 0.051 0.044 0.038 0.049 0.039 0.0445 0.05

0.95 0.0345 0.048 0.0575 0.047 0.064 0.0885 0.058 0.0765 0.1025

0.9 0.04 0.0565 0.083 0.0485 0.0775 0.125 0.0695 0.118 0.1815

0.75 1 0.0315 0.0385 0.041 0.048 0.046 0.054 0.042 0.045 0.056

0.95 0.039 0.0495 0.0675 0.0385 0.0535 0.0745 0.0545 0.0685 0.119

0.9 0.04 0.049 0.0725 0.052 0.0795 0.109 0.078 0.1175 0.1645

0 0.25 1 0.058 0.064 0.0785 0.061 0.0595 0.077 0.0455 0.0615 0.0715

0.95 0.0635 0.0715 0.107 0.065 0.0805 0.098 0.074 0.0705 0.123

0.9 0.0785 0.11 0.192 0.11 0.144 0.25 0.116 0.1725 0.361

0.5 1 0.048 0.0625 0.078 0.052 0.0645 0.072 0.059 0.059 0.074

0.95 0.066 0.0855 0.0895 0.072 0.069 0.1115 0.0655 0.081 0.109

0.9 0.086 0.109 0.18 0.0865 0.1215 0.2365 0.1325 0.163 0.3225

0.75 1 0.059 0.059 0.078 0.054 0.0585 0.0705 0.069 0.06 0.0675

0.95 0.055 0.061 0.103 0.06 0.0755 0.111 0.0665 0.0825 0.107

0.9 0.085 0.1145 0.1675 0.0855 0.1305 0.216 0.126 0.171 0.3145

0.5 0.25 1 0.0405 0.0495 0.0645 0.0545 0.0485 0.073 0.046 0.0455 0.054

0.95 0.043 0.047 0.073 0.052 0.0565 0.0905 0.047 0.0705 0.095

0.9 0.06 0.072 0.144 0.0675 0.0985 0.204 0.0815 0.1185 0.3205

0.5 1 0.0485 0.0495 0.05 0.056 0.048 0.06 0.047 0.0505 0.053

0.95 0.038 0.045 0.067 0.0425 0.0465 0.0745 0.0575 0.072 0.0995

0.9 0.05 0.0565 0.1515 0.0685 0.0915 0.2005 0.0765 0.1345 0.3075

0.75 1 0.048 0.05 0.0485 0.0595 0.048 0.0595 0.0505 0.0435 0.06

0.95 0.048 0.0565 0.071 0.054 0.0685 0.0865 0.0565 0.0685 0.112

0.9 0.0575 0.077 0.139 0.0685 0.097 0.1945 0.089 0.1415 0.306
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Table 3: Size and power of min
λ∈I

Z(λ) in the case of individual intercepts and SMA errors

N 50 50 50 100 100 100 200 200 200

µ λ/T ϕ\T 8 10 15 8 10 15 8 10 15

0.4 0.25 1 0.086 0.063 0.065 0.065 0.069 0.079 0.065 0.063 0.062

0.95 0.137 0.152 0.148 0.212 0.203 0.144 0.287 0.292 0.209

0.9 0.246 0.208 0.172 0.343 0.308 0.228 0.557 0.493 0.35

0.5 1 0.075 0.065 0.083 0.064 0.048 0.061 0.059 0.064 0.053

0.95 0.139 0.156 0.123 0.202 0.185 0.178 0.281 0.267 0.221

0.9 0.229 0.24 0.175 0.344 0.311 0.222 0.557 0.531 0.349

0.75 1 0.07 0.065 0.085 0.073 0.075 0.061 0.051 0.059 0.071

0.95 0.18 0.149 0.145 0.208 0.196 0.165 0.261 0.268 0.221

0.9 0.222 0.25 0.164 0.361 0.309 0.245 0.549 0.501 0.364

0.8 0.25 1 0.069 0.071 0.088 0.063 0.091 0.081 0.064 0.07 0.072

0.95 0.178 0.15 0.136 0.19 0.208 0.152 0.243 0.269 0.216

0.9 0.233 0.208 0.159 0.28 0.281 0.221 0.446 0.408 0.356

0.5 1 0.058 0.083 0.064 0.068 0.064 0.079 0.062 0.061 0.085

0.95 0.158 0.159 0.147 0.18 0.163 0.181 0.252 0.263 0.226

0.9 0.227 0.205 0.184 0.296 0.276 0.239 0.467 0.438 0.323

0.75 1 0.073 0.075 0.064 0.068 0.07 0.081 0.065 0.073 0.067

0.95 0.159 0.154 0.146 0.188 0.203 0.179 0.269 0.279 0.214

0.9 0.234 0.201 0.196 0.309 0.297 0.236 0.482 0.445 0.314
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Table 4: Size and power of minZ(λ) in the case of individual intercepts and SAR errors

N 50 50 50 100 100 100 200 200 200

µ λ/T ϕ\T 8 10 15 8 10 15 8 10 15

0.4 0.25 1 0.082 0.068 0.073 0.063 0.072 0.059 0.072 0.054 0.072

0.95 0.163 0.143 0.138 0.181 0.187 0.177 0.29 0.255 0.208

0.9 0.221 0.229 0.16 0.331 0.314 0.216 0.516 0.485 0.361

0.5 1 0.054 0.059 0.073 0.058 0.046 0.073 0.064 0.054 0.071

0.95 0.161 0.172 0.115 0.195 0.197 0.153 0.304 0.3 0.215

0.9 0.221 0.229 0.176 0.333 0.291 0.232 0.56 0.498 0.35

0.75 1 0.07 0.075 0.072 0.058 0.056 0.056 0.064 0.071 0.065

0.95 0.154 0.143 0.146 0.18 0.217 0.153 0.267 0.263 0.212

0.9 0.227 0.224 0.176 0.33 0.314 0.252 0.549 0.497 0.358

0.8 0.25 1 0.129 0.124 0.13 0.106 0.133 0.124 0.121 0.129 0.137

0.95 0.192 0.185 0.216 0.204 0.215 0.231 0.261 0.281 0.27

0.9 0.214 0.222 0.216 0.258 0.28 0.25 0.383 0.373 0.352

0.5 1 0.12 0.123 0.146 0.1 0.14 0.138 0.125 0.146 0.146

0.95 0.165 0.197 0.201 0.208 0.222 0.2 0.254 0.297 0.273

0.9 0.229 0.217 0.219 0.274 0.278 0.273 0.407 0.409 0.369

0.75 1 0.113 0.133 0.148 0.115 0.12 0.133 0.112 0.145 0.137

0.95 0.196 0.176 0.191 0.207 0.221 0.217 0.267 0.294 0.265

0.9 0.234 0.255 0.227 0.288 0.299 0.246 0.377 0.382 0.314
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Table 5: Size and power of min
λ∈I

Z(λ) in the case of incidental trends and SMA errors

N 50 50 50 100 100 100 200 200 200

µ λ/T ϕ\T 8 10 15 8 10 15 8 10 15

0.4 0.25 1 0.074 0.067 0.087 0.05 0.069 0.064 0.058 0.058 0.065

0.95 0.067 0.074 0.113 0.058 0.078 0.105 0.074 0.079 0.116

0.9 0.077 0.101 0.161 0.078 0.103 0.19 0.09 0.149 0.274

0.5 1 0.07 0.063 0.075 0.076 0.074 0.07 0.061 0.062 0.065

0.95 0.083 0.076 0.102 0.053 0.072 0.105 0.064 0.075 0.119

0.9 0.088 0.093 0.148 0.069 0.111 0.176 0.082 0.127 0.233

0.75 1 0.06 0.064 0.07 0.062 0.067 0.057 0.056 0.069 0.06

0.95 0.069 0.09 0.088 0.078 0.073 0.114 0.062 0.066 0.11

0.9 0.074 0.092 0.134 0.089 0.098 0.185 0.115 0.132 0.268

0.8 0.25 1 0.09 0.076 0.103 0.068 0.071 0.070 0.065 0.075 0.072

0.95 0.094 0.089 0.109 0.073 0.09 0.125 0.083 0.094 0.113

0.9 0.088 0.102 0.153 0.094 0.124 0.192 0.118 0.121 0.276

0.5 1 0.076 0.095 0.094 0.078 0.07 0.086 0.072 0.077 0.064

0.95 0.078 0.091 0.114 0.071 0.077 0.106 0.073 0.086 0.136

0.9 0.108 0.097 0.151 0.102 0.118 0.169 0.11 0.143 0.272

0.75 1 0.082 0.092 0.087 0.074 0.082 0.092 0.064 0.08 0.084

0.95 0.053 0.076 0.096 0.087 0.072 0.123 0.071 0.072 0.125

0.9 0.086 0.099 0.152 0.086 0.127 0.193 0.106 0.142 0.261
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Table 6: Size and power of min
λ∈I

Z(λ) in the case of incidental trends and SAR errors

N 50 50 50 100 100 100 200 200 200

µ λ/T ϕ\T 8 10 15 8 10 15 8 10 15

0.4 0.25 1 0.071 0.071 0.085 0.076 0.076 0.08 0.058 0.067 0.073

0.95 0.059 0.086 0.099 0.087 0.093 0.107 0.073 0.093 0.109

0.9 0.082 0.104 0.156 0.079 0.106 0.188 0.097 0.142 0.272

0.5 1 0.053 0.063 0.06 0.068 0.074 0.076 0.059 0.064 0.061

0.95 0.082 0.083 0.085 0.066 0.091 0.098 0.067 0.101 0.133

0.9 0.093 0.119 0.136 0.091 0.121 0.192 0.095 0.112 0.293

0.75 1 0.073 0.082 0.075 0.066 0.06 0.071 0.066 0.063 0.051

0.95 0.086 0.063 0.093 0.081 0.064 0.107 0.062 0.084 0.12

0.9 0.086 0.081 0.129 0.069 0.091 0.184 0.081 0.152 0.268

0.8 0.25 1 0.129 0.133 0.153 0.116 0.124 0.145 0.127 0.135 0.174

0.95 0.134 0.143 0.175 0.128 0.139 0.183 0.126 0.148 0.177

0.9 0.136 0.167 0.235 0.137 0.157 0.259 0.145 0.2 0.334

0.5 1 0.132 0.134 0.152 0.131 0.144 0.16 0.118 0.153 0.162

0.95 0.12 0.129 0.195 0.127 0.14 0.193 0.135 0.148 0.212

0.9 0.14 0.155 0.211 0.112 0.168 0.263 0.155 0.183 0.321

0.75 1 0.128 0.14 0.141 0.121 0.133 0.17 0.125 0.125 0.162

0.95 0.112 0.136 0.17 0.129 0.139 0.198 0.13 0.158 0.218

0.9 0.141 0.14 0.226 0.133 0.142 0.243 0.149 0.179 0.319
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Table 7: Size and power of min
λ∈I

Z(λ1,λ2) with two structural breaks.

N 50 50 50 100 100 100 200 200 200

Model λ1/T, λ2/T ϕ\T 8 10 15 8 10 15 8 10 15

Intercepts 0.25, 0.5 1 0.065 0.074 0.066 0.064 0.065 0.054 0.066 0.056 0.054

0.95 0.2105 0.212 0.1955 0.271 0.287 0.244 0.444 0.4795 0.411

0.9 0.399 0.3685 0.318 0.613 0.596 0.5125 0.856 0.8425 0.7945

0.5, 0.75 1 0.0665 0.0595 0.0605 0.063 0.0625 0.0615 0.059 0.052 0.059

0.95 0.2025 0.1935 0.1855 0.2915 0.286 0.265 0.45 0.465 0.409

0.9 0.424 0.3745 0.3135 0.6025 0.593 0.5125 0.872 0.869 0.799

0.25, 0.75 1 0.0625 0.058 0.0635 0.058 0.0555 0.0525 0.056 0.055 0.055

0.95 0.205 0.212 0.1635 0.273 0.28 0.2595 0.449 0.45 0.415

0.9 0.399 0.391 0.3385 0.592 0.583 0.5125 0.856 0.8455 0.8145

Trends 0.25, 0.5 1 0.057 0.0615 0.0605 0.0495 0.0505 0.05 0.0485 0.0645 0.0465

0.95 0.071 0.0655 0.074 0.057 0.0685 0.0795 0.06 0.064 0.089

0.9 0.076 0.1135 0.158 0.0705 0.1115 0.2135 0.0915 0.147 0.343

0.5, 0.75 1 0.0605 0.0615 0.0565 0.062 0.049 0.056 0.056 0.0615 0.048

0.95 0.0585 0.071 0.083 0.0575 0.056 0.08 0.0565 0.0645 0.0865

0.9 0.0835 0.099 0.1705 0.084 0.1265 0.198 0.0815 0.1295 0.336

0.25, 0.75 1 0.0645 0.067 0.0585 0.0525 0.059 0.061 0.0445 0.0495 0.0485

0.95 0.0625 0.073 0.0905 0.05 0.061 0.0845 0.057 0.067 0.0995

0.9 0.081 0.094 0.162 0.0715 0.129 0.2105 0.0985 0.146 0.333
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