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Abstract

We develop an on-line monitoring procedure to detect a change in a large approxi-
mate factor model. Our statistics are based on a well-known property of the (r + 1)-th
eigenvalue of the sample covariance matrix of the data (having defined r as the number
of common factors): whilst under the null the (r + 1)-th eigenvalue is bounded, under
the alternative of a change (either in the loadings, or in the number of factors itself)
it becomes spiked. Given that the sample eigenvalue cannot be estimated consistently
under the null, we regularise the problem by randomising the test statistic in conjunc-
tion with sample conditioning, obtaining a sequence of i.i.d., asymptotically chi-square
statistics which are then employed to build the monitoring scheme. Numerical evidence
shows that our procedure works very well in finite samples, with a very small probability
of false detections and tight detection times in presence of a genuine change-point.

Keywords: large factor model, change-point, sequential testing, randomised tests.

∗We wish to thank the participants to the International Conference in Memory of Carlo Giannini (Berg-
amo, November 25-26, 2016); to the CMStatistics 2016 conference, (Seville, December 9-11, 2016); to the
ECARES Seminar Series (Bruxelles, February 23, 2017); to the Cass Business School Faculty of Finance
Workshop (London, March 6, 2017); to the LSE Econometrics and Statistics seminar (London, March 10,
2017); to the Department of Economics Seminar Series at the University of Connecticut (March 31, 2017);
to the New York Camp Econometrics XII conference (Syracuse University, April 7-9, 2017); and to the
European Meeting of Statisticians (University of Helsinki, July 24-28, 2017).

1



1 Introduction

In this paper, we investigate the issue of testing for the stability of a large factor model:

Xi,t = a′ift + ui,t, (1)

where {Xi,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T} is a panel of N time series observed for T periods; ai

and ft are latent vectors of loadings and factors, respectively, both of dimension r < N and

representing the “signal” component of the data. In particular, we focus on the sequential

monitoring of the stability of (1) - that is, we propose a test to check whether there are

any breaks in (1) as new data come in. Factor models have been paid significant attention

in virtually all applied sciences, as a tool to reduce dimensionality while preserving the

information content of a large dataset. In particular, in the context of social sciences and

economics, the use of factor models has been popularised by the seminal paper by Cham-

berlain and Rothschild (1983); thereafter, factor models have acquired a huge popularity in

various applications, such as business cycle analysis, asset pricing and economic monitoring

and forecasting - see the review by Stock and Watson (2011) for a comprehensive list of

references.

Model (1) is usually characterized by the identifying assumption that, as N → ∞,

the covariance matrix of {Xi,t}Ni=1 has r spiked eigenvalues diverging to infinity, while the

remaining ones stay bounded for any N . Numerous contributions have developed a full-

fledged inferential theory for (1) under general assumptions, such as weak serial and cross-

correlation of the error terms ui,t. In particular, in the case of stationary data the estimation

by means of principal component analysis of the “signal” part of (1) has been developed

for high-dimensional, i.e. large N , data, e.g. by Bai (2003) and Fan, Liao and Mincheva

(2013). The literature has also produced many results on the determination of the number

of common factors r - see, inter alia, Bai and Ng (2002), Alessi, Barigozzi and Capasso

(2010), Onatski (2010), Ahn and Horenstein (2013), and Trapani (2017). The factors in

equation (1) have also proven to be very effective to forecast large datasets, overcoming the

curse of dimensionality issue - see e.g. Stock and Watson (2002). Extensions to the case in

which the common factors ft are explicitly allowed to have a linear process representation,

have been studied also - see e.g. Forni, Giannone, Lippi and Reichlin (2009).

In comparison with this huge body of literature, the issue of testing for the structural

2



stability of (1) can be still considered underdeveloped, with some notable exceptions. In-

deed, Stock and Watson (2002) and Bates, Plagborg-Møller, Stock and Watson (2013) argue

that, at least in the presence of “small” breaks and a constant number of factors, inference

on the factor space is not hampered, thus making the change-point problem less compelling

than in other contexts. Nevertheless, stylised facts show that in many applications the

assumptions of a negligible break size and a stable number of factors are not, in general,

correct. Most importantly, it has been argued that, in presence of a crisis, co-movements

become stronger, which may suggest that the economy is driven by a different number

of factors than in quieter periods - see e.g. Stock and Watson (2009), Cheng, Liao and

Schorfheide (2016) and Li, Todorov, Tauchen and Lin (2017). In such cases, the impact of

a change-point is bound to invalidate standard inference and subsequent applications such

as forecasting. Recently, the literature has proposed a series of tests for the in-sample detec-

tion of breaks in factor structures: examples include the works by Breitung and Eickmeier

(2011), Chen, Dolado and Gonzalo (2014), Han and Inoue (2015), Corradi and Swanson

(2014), Yamamoto and Tanaka (2015), Baltagi, Kao and Wang (2017), Cheng et al. (2016),

Massacci (2017) and Barigozzi, Cho and Fryzlewicz (2017).

Sequential detection of breaks in (1) is important for at least four reasons. First, the

general motivation put forward by Chu, Stinchcombe and White (1996) holds true in the

context of factor models also: it is important to verify whether a model, which has been

valid thus far, is still capable of adequately approximate the behaviour of new data. Second,

the aforementioned (substantial) empirical evidence that factor structures do tend to change

over time, especially in presence of a crisis, illustrates the importance of a timely detection

of such changes. Third, inference on factor models can be severely marred by the presence

of a break (see the comments in Baltagi et al., 2017), which again shows the importance

of detecting a break in real time, rather than realising this a posteriori after inference has

been carried out and employed, e.g. for the purpose of forecasting. Finally, in the context

economics and finance, data are collected and made available automatically, so that the

cost of monitoring is almost negligible, especially if compared with the potential costs of

employing a model which is no longer valid. Sequential detection of breaks in a univariate

or small dimensional, i.e. finite N , setting has been studied e.g. in Lai (1995), Chu et al.

(1996), Aue and Horváth (2004), Horváth, Hušková, Kokoszka and Steinebach (2004),

Andreou and Ghysels (2006), Horváth, Kokoszka and Steinebach (2007), Brodsky (2010),
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Aue, Hörmann, Horváth, Hušková and Steinebach (2012), Kirch and Tadjuidje Kamgaing

(2015), and Groen, Kapetanios and Price (2013).

1.1 Hypotheses of interest and main results of the paper

There are several possible ways in which model (1) may undergo a change at a point in

time τ ; however, despite such a wide variety, in all cases it may be argued that a change

in the factor structure of the data will result in a change in the covariance matrix of

{Xi,t}Ni=1. More specifically, since common factors determine the presence and number

of spiked eigenvalue of the covariance of {Xi,t}Ni=1 (defined as eigenvalues which are not

bounded, but grow with the dimension of the dataset), it is natural to investigate whether

a change has occurred in the factor structure of (1) by verifying whether changes have

occurred in the spectrum of the covariance matrix. Formally, in this paper we test for the

null hypothesis that the factor structure does not change, viz.:

H0 : Xi,t =
r∑
j=1

aijfj,t + ui,t, 1 ≤ t ≤ T.

As far as alternatives are concerned, we focus on two different possible breaks at a point in

time τ : (1) changes in the loadings attached to one or more common factor:

HA,1 :

 Xi,t =
∑r

j=1 aijfj,t + ui,t

Xi,t =
∑r

j=1 ãijfj,t + ui,t
for

1 ≤ t < τ

τ ≤ t ≤ T
, (2)

where ãij 6= aij for all i and some j, and (2) the appearance of q ≥ 1 new factors:

HA,2 :

 Xi,t =
∑r

j=1 aijfj,t + ui,t

Xi,t =
∑r

j=1 aijfj,t +
∑q

j=1 bijgj,t + ui,t
for

1 ≤ t < τ

τ ≤ t ≤ T
. (3)

Hypothesis HA,1 is the typical case considered in all the above cited literature on change-

points in factor models. On the other hand hypothesis HA,2 has received less attention from

the literature - see for example Cheng et al. (2016) and Barigozzi et al. (2017). Whilst in

this paper we mainly focus on HA,1 and HA,2, other alternatives, as disappearing factors

or less pervasive changes in the loadings, can also be accommodated in our framework - see

the discussion in Section 4.

We show that, under both HA,1 and HA,2, the (r + 1)-th largest eigenvalue of the
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covariance matrix of {Xi,t}Ni=1 becomes unbounded at time τ + 1, passing to infinity as

fast as the sample size N . Conversely, it stays bounded under the null of no break. Thus,

we base our test on the estimated (r + 1)-th eigenvalue of the sample covariance matrix

of {Xi,t}Ni=1. Although using the sample eigenvalues of the sample covariance matrix for

testing is not uncommon in the context of factor models (Onatski, 2010; Trapani, 2017), in

our context such an approach is fraught with difficulties. The main issue is that, under the

null of no break, the (r + 1)-th sample eigenvalue does not have a known distribution, and

indeed it cannot even be estimated consistently: as Wang and Fan (2017) explain, there is

too much noise (due to N being large) to be able to identify the small signal coming from

a bounded eigenvalue.

Given that the only thing we know is that the (r + 1)-th sample eigenvalue may be

bounded or unbounded, we propose to use a randomised test in order to regularize the

problem. Randomisation is a widely employed approach, dating back at least to Pearson

(1950); various authors have employed different ways of introducing randomness into a

statistic - see Corradi and Swanson (2006), Bandi and Corradi (2014), and Trapani (2017),

among others. Our methodology is based on the same approach, but with a different

scope. In essence, the approach which we propose takes, at each t, the (r + 1)-th sample

eigenvalue as input, and returns, as output, an i.i.d. sequence, with known (asymptotic)

distribution, first and second moments that can be approximated with a negligible error,

and finite moments up to any order. Such sequence is then used to replace the (r + 1)-th

sample eigenvalue in the construction of the monitoring process, thus allowing us to use the

standard asymptotic theory already developed for partial sum processes of i.i.d. sequences -

see Horváth et al. (2004) and Kirch and Tadjuidje Kamgaing (2015). Although our results

are derived conditionally on the sample (see the comments in Section 3 on the meaning

of randomisation under sample conditioning), we construct a monitoring procedure which

falsely identifies a break under the null with probability smaller than a prescribed level,

and which identifies a break with probability one when this is present. This is a desirable

feature of sequential testing since as more data come in the probability of type I errors

is anyway likely to increase - see for example the comments in Chapter 9 by Sen (1981).

Indeed, numerical evidence suggests that our procedure works extremely well, with a short

delay in finding breaks. In principle, our test can be applied also under more general

circumstances, including the presence of weak factors or less pervasive loadings changes,
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the case of heteroskedastic idiosyncratic components, and the disappearance of one or more

factors. All these extensions are discussed in Sections 4 and 7.

The rest of the paper is organised as follows. In Section 2 we spell out the main

assumptions, and we study the inference on the (r + 1)-th eigenvalue of the covariance

matrix. Section 3 discusses the construction of the test statistic, including the double

randomisation procedure and all the relevant intermediate results. Some straightforward

extensions of our framework to more general circumstances are discussed in Section 4.

Numerical evidence from Monte Carlo experiments and a real data application on US

industrial production monthly data are given in Sections 5 and 6, respectively. Section 7

discusses further possible extensions and concludes. All proofs are in the Appendix.

NOTATION. We let C0, C1, ... denote generic, finite positive constants that do not

depend on the sample size, and whose value may change from line to line; “→” denotes the

ordinary limit; orders of magnitude for an a.s. convergent sequence (say sT ) are denoted

as O (T ς) and o (T ς) when, for some ε > 0 and T̃ < ∞, P
[
|T−ςsT | < ε for all T ≥ T̃

]
= 1

and T−ςsT → 0 a.s., respectively; IA (x) is the indicator function of a set A.

2 Assumptions and preliminary theory

Recall the factor model in (1), where we now make explicit the possibility of changes over

time in the “signal” component

Xi,t = a′i(t)ft + ui,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T. (4)

We use r (t) to denote the number of factors at a given time t, i.e. the vectors of loadings

ai(t) and of factors ft have dimension r(t). Consider also the matrix form of (4):

Xt = A(t)ft + ut, 1 ≤ t ≤ T, (5)

where, A(t) = [a1(t)|...|aN (t)]′ is the N × r(t) loadings matrix and ut = [u1,t, ..., uN,t]
′ is

the “idiosyncratic” component.

We define the covariance matrix of the data at time t as ΣX (t) = E (XtX
′
t), assuming
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Xt has zero-mean. Consider the (population) rolling covariance matrix

Σm (t) =
1

m

t∑
k=t−m+1

ΣX (k) , m ≤ t ≤ T, (6)

and its sample counterpart

Σ̂m (t) =
1

m

t∑
k=t−m+1

XkX
′
k, m ≤ t ≤ T. (7)

Based on (6) and (7), in what follows m will denote our sample size when estimating the

model; hence, our asymptotics is for m → ∞. We assume that for the first m periods no

change-point is present and we have r factors. Moreover, for simplicity, we also assume that

our monitoring procedure will last until T > m. Therefore, the total number of observations

T includes both the estimation and the monitoring period. Note that, in real applications,

the monitoring may be expected to go on indefinitely, so that T →∞.

We start with the following assumption.

Assumption 1. It holds that (i) E (Xi,t) = 0 for all 1 ≤ i ≤ N and 1 ≤ t ≤ T ; (ii)

E(fj,tui,t) = 0 for all i, j, t; (iii) r(t) = r for 1 ≤ t ≤ m; (iv) r(t) < N for 1 ≤ t ≤ T and

for any N ∈ N.

Parts (i) and (ii) of the assumption are made only for convenience and could be relaxed.

Clearly from part (iii) we have that, in presence of breaks, the change-point location τ is

such that τ > m. Finally, part (iv) is a reasonable requirement for the number of factors

to be finite at any point in time. By Assumption 1 the covariance is decomposed as

ΣX (t) = A (t) ΣF (t)A (t)′ + Σu (t) ,

having defined ΣF (t) = E (ftf
′
t) and Σu (t) = E (utu

′
t). Henceforth, we denote the k-th

largest eigenvalue of Σm (t) as λ(k) (t), the k-th eigenvalue of A (t) ΣF (t)A (t)′ as γ(k) (t);

and, finally, the k-th eigenvalue of Σu (t) as ω(k) (t); similarly, we denote the k-th largest

eigenvalue of Σ̂m (t) as λ̂(k) (t). In order to derive our results on the population and sample

eigenvalues, we make the following assumptions.

Assumption 2. It holds that (i) γ(k) (t) = Ck (t)N for all 1 ≤ k ≤ r (t), some finite

Ck(t) > 0 and for m ≤ t ≤ T ; (ii) ω(k) (t) ≤ C0 for all 1 ≤ k ≤ N and m ≤ t ≤ T .
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Assumption 3. It holds that (i) E |Xi,t|4+ε ≤ C0 for 1 ≤ i ≤ N , 1 ≤ t ≤ T and some

ε > 0; (ii) E

[
maxt0≤t̃≤t0+m−1

∣∣∣∑t̃
t=1Xh,tXj,t − E (Xh,tXj,t)

∣∣∣2] ≤ C1m for 1 ≤ h, j ≤ N

and 1 ≤ t0 ≤ T −m.

Assumption 2 is typical of high-dimensional factor analysis and is analogous to the

assumptions in Chamberlain and Rothschild (1983) and Forni et al. (2009). In particular,

as far as the non-zero γ(k) (t)’s are concerned, part (i) of the assumption requires that

they diverge to positive infinity, as N → ∞, at a rate N . Equivalently, we could follow

Bai and Ng (2002) and Fan et al. (2013) and require that, in addition to ΣF (t) being

positive definite, N−1A (t)′A (t) tends to a positive definite matrix, which is tantamount to

assuming that γ(k) (t) passes to infinity at a rate N . As far as the ω(k) (t)’s are concerned,

in part (ii) of the assumption, the same condition could be derived from the assumptions

in Fan et al. (2013) - see also Bai and Ng (2002). Note also that we do not require the

ω(k) (t)’s to be constant over t: unconditional heteroskedasticity is allowed for, in principle

- see also the comments in Section 4. Assumption 2 determines the behaviour of the

population eigenvalues of Σm (t). In particular, at t = m, by Weyl’s inequality we have

that λ(k) (m) = C0N for 1 ≤ k ≤ r, while λ(k) (m) ≤ C1 for r + 1 ≤ k ≤ N . This condition

allows us to identify r in the pre-break sample.

Assumption 3(ii) is a high-level condition which, in essence, poses a constraint on the

amount of serial correlation that one can have in the process {Xh,tXj,t}Tt=1 and therefore,

albeit indirectly, in {Xi,t}Tt=1. In general, this assumption is satisfied by any linear process

with summable fourth cumulants (see e.g., Hannan, 1970, Theorem 6, page 210). Some

examples under which Assumption 3 holds are reported in Trapani (2017) and include

the case of stationary, causal processes - see Wu (2005). This family of processes in turn

includes several popular examples such as Volterra series and ARCH/GARCH processes,

thus allowing for the case of conditional heteroskedasticity.

Finally, note that Assumptions 2 and 3 allow for some degree of cross-sectional and

serial dependence in the panel of idiosyncratic components, {ui,t, 1 ≤ i ≤ N , 1 ≤ t ≤ T};

thus, (1) defines an “approximate” factor model, as opposed to an “exact” one, which would

require cross-sectionally and serially i.i.d. errors.

The following result characterizes the behaviour of the population eigenvalues of Σm(t).

8



Lemma 1. Under Assumptions 1 and 2, it holds that

λ(r+1) (t) ≤ C0, m ≤ t ≤ T, under H0. (8)

Further, it holds that

λ(r+1) (t)


≤ C0 m ≤ t < τ,

≥ C1 min{ t−τ+1
m , τ+m−t−1m }N τ ≤ t < τ +m,

≤ C0 τ +m ≤ t ≤ T,

under HA,1, (9)

λ(r+1) (t)


≤ C0 m ≤ t < τ,

≥ C1
t−τ+1
m N τ ≤ t < τ +m,

≥ C1N τ +m ≤ t ≤ T,

under HA,2. (10)

The sample counterpart to Lemma 1 is the following result, derived in Trapani (2017).

Lemma 2. Under Assumptions 1 and 3, it holds that

λ̂(r+1) (t) = λ(r+1) (t) +Oa.s.

(
N

m1/2
l (m,N)

)
, m ≤ t ≤ T, (11)

where

l (m,N) = (lnN)1+ε (lnm)
1+ε
2 ,

for some ε > 0.

Lemma 2 provides a strong rate for the estimation error (λ̂(r+1) (t)− λ(r+1) (t)), which

is valid for any combination of N and m, and indeed for all estimated eigenvalues, λ̂(k) (t)

for 1 ≤ k ≤ N . The lemma does not require any assumptions on λ(k) (t): some of these

may be non-distinct, non well-separated, or even equal to zero. Equation (11) states that

the estimation error can be quite large. It is, however, comparatively small for the spiked

eigenvalues, which, by Assumption 2, are of order N . Conversely, the error term in (11)

can be quite large for the bounded eigenvalues; in this case, the rate is probably not the

sharpest one, although it suffices for the construction of the monitoring procedure. The

result of Lemma 2 can also be compared with the results from Random Matrix literature

for spiked covariance models – see e.g. El Karoui (2007), Paul (2007), Johnstone and Lu

(2009), Jung and Marron (2009), Bai and Yao (2012), and Onatski, Moreira and Hallin

(2014).
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3 Testing procedure and asymptotics

In this section, we propose an algorithm to “regularise” the behaviour of the eigenvalues so

as to be able to construct a monitoring procedure. As a consequence of Lemmas 1 and 2, we

are unable to use λ̂(r+1) (t), due to the lack of a known limiting distribution under the null,

and of the dependence structure across t. We therefore propose a randomisation algorithm,

whose output is a sequence of i.i.d. random variables with finite moments of arbitrarily

high order and, under the null, (asymptotically) chi-square distributed. We subsequently

employ (the standardised version of) such random variables to construct a partial sum

process, which we use as the relevant test statistic in an analogous way as Horváth et al.

(2004) and Horváth et al. (2007).

3.1 The randomisation algorithm

Define δ ∈ (0, 1) such that

δ

 > 0

> 1− 1
2
lnm
lnN

according as
N ≤ m1/2

N > m1/2
; (12)

note that the choice of δ is uniquely determined by N and m, with no need to estimate it.

We consider the statistic

φN,m (t) = g

(
N−δλ̂(r+1) (t)
1
N

∑N
k=1 λ̂

(k) (t)

)
, m ≤ t ≤ T, (13)

where g (·) is a monotonically increasing function such that g (0) = 0 and limx→∞ g (x) =∞;

in this paper, we use g(a) = a, but other choices are also possible. The denominator in

(13) makes the argument of g (·) scale invariant.

The quantity δ, defined in (12), plays a very important role in the remainder of the

paper. Based on Lemma 2, it can be expected that λ̂(r+1) (t) may diverge to positive

infinity even when λ(r+1) (t) is bounded; in this case, the divergence rate is O
(
Nm−1/2

)
,

modulo the logarithmic terms. On the other hand, λ̂(r+1) (t) diverges at the faster rate

O (N) under the alternative. The purpose of δ is to annihilate the estimation error: based

on (12), it can be seen that N δ is larger than Nm−1/2l (m,N): thus, under the null of no

break, it can be expected that N−δλ̂(r+1) (t) will drift to zero. Under the alternative, it
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still passes to infinity (since δ < 1), albeit at a slower rate than λ(r+1) (t) itself. Note that

this would hold also for very large values of N : indeed, no restriction is required between

the relative rate of divergence of N and m as they pass to infinity, and one could also allow

for N = exp (m); in this case, after some algebra it can be shown that δ ∈
(
1− 1

2
lnm
m , 1

)
,

which still yields that N−δλ̂(r+1) (t) drifts to zero or diverges to infinity according as the

null or the alternative is true.

On account of the comments above, and of Lemmas 1 and 2, it holds that

lim
N,m→∞

φN,m (t) = g (0) = 0, w.p. 1, when N−δλ(r+1) (t)→ 0,

lim
N,m→∞

φN,m (t) = g (∞) =∞, w.p. 1, when N−δλ(r+1) (t)→∞.

Letting t∗N,m be a point in time such that

lim
N,m→∞

N1−δ

m

(
t∗N,m − τ + 1

)
=∞,

we therefore have that

lim
N,m→∞

φN,m (t) = 0, m ≤ t ≤ T, under H0,

while

lim
N,m→∞

φN,m (t) =


0 m ≤ t < τ,

∞ t∗N,m ≤ t < 2τ +m− 2− t∗N,m,

0 τ +m ≤ t ≤ T,

, under HA,1,

or

lim
N,m→∞

φN,m (t) =

 0 m ≤ t < τ,

∞ t∗N,m ≤ t < τ +m,
, under HA,2;

between τ and t∗N,m, φN,m (t) is growing from 0 to ∞.

Given that the results above entail that we only have rates for φN,m (t), we propose a

to use a randomised version of it, built according to the following steps.

Step A1. At each given t ≥ m, generate an i.i.d. sample
{
ξj(t)

}R
j=1

with common

distribution Gφ such that Gφ(0) 6= 0 or 1.
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Step A2. For any u drawn from a distribution Fφ (u), define

ζj (u; t) = I
[
ξj(t) ≤ uφ−1N,m (t)

]
.

Step A3. Compute

ϑ (u; t) =
1√
R

R∑
j=1

ζj (u; t)−Gφ (0)√
Gφ (0) [1−Gφ (0)]

.

Step A4. Compute

Θt =

∫ +∞

−∞
|ϑ (u; t)|2 dFφ (u) .

Although the details of the behaviour of Θt under the null and the alternative are

spelt out later on, a heuristic preview of the main argument may be helpful. In essence,

under the alternative the Bernoulli random variable ζj (u; t) should be equal to 1 or 0

with probability Gφ (0) and 1 − Gφ (0) respectively, and thus have mean Gφ (0). In this

case, when constructing ϑ (u; t), a Central Limit Theorem holds and therefore we expect

Θt to have a chi-square distribution. On the other hand, under the null ζj (u; t) should be

(heuristically) 0 or 1 with probability 0 or 1 (depending on the sign of u) - thus, its mean

should be different than Gφ (0) (and equal to 0 or 1 depending on the sign of u) and a Law

of Large Numbers should hold. Note that, by construction, conditionally on the sample

the sequence {Θt}Tt=m is independent across t. In order to study Θt, we need the following

assumptions.

Assumption 4. It holds that: (i) Gφ (·) has a bounded density; (ii)
∫ +∞
−∞ u2dFφ (u) <∞.

Assumption 5. It holds that, as min (N,m,R)→∞: (i)

R1/2

[
g

(
N1−δ t− τ + 1

m

)]−1
→ 0,

under HA,1, for t∗N,m ≤ t < 2τ +m− 2− t∗N,m,

under HA,2, for t∗N,m ≤ t ≤ T ;

(ii) R1/2
[
g
(
N1−δ)]−1 → 0 under HA,1, for τ +m ≤ t ≤ T .

Considering Assumption 4, Gφ is usually chosen as the standard normal distribution,

and Fφ as a discrete uniform distribution (see e.g. Bandi and Corradi (2014)).

Let now P ∗ represent the conditional probability with respect to {Xi,t, 1 ≤ i ≤ N ,

1 ≤ t ≤ T}; “
D∗→” and “

P ∗→” denote, respectively, conditional convergence in distribution

12



and in probability according to P ∗.

Theorem 1. Under Assumptions 1-5, as min (N,m,R)→∞, it holds that

Θt
D∗→ χ2

1,
under HA,1, for t∗N,m ≤ t < 2τ +m− 2− t∗N,m,

under HA,2, for t∗N,m ≤ t ≤ T,
(14)

for almost all realisations of {Xi,t, 1 ≤ i ≤ N , 1 ≤ t ≤ T}.

Under Assumptions 1-4, as min (N,m,R)→∞, it holds that

1

R
Θt

P ∗→
∫ +∞
−∞

∣∣I[0,∞) (u)−Gφ (0)
∣∣2 dFφ (u)

Gφ (0) [1−Gφ (0)]
,

under H0, for m ≤ t ≤ T,

under HA,1, for m ≤ t < τ,

and τ +m ≤ t ≤ T,

under HA,2, for m ≤ t < τ,

(15)

for almost all realisations of {Xi,t, 1 ≤ i ≤ N , 1 ≤ t ≤ T}.

Theorem 1 is an intermediate result: in order to be able to construct a test for the

“classical” null of no changes in the factor structure, it is necessary to have a statistic

which diverges under the null and is bounded under the alternative. Several options are

possible, the most obvious one being using 1/Θt. However, we have tried this approach

and results were not satisfactory. Based on those preliminary, unreported simulations, we

propose to randomise Θt, with a second randomisation based on

ψN,m,R (t) = h

(
Θt

l̃ (N,m,R)

)
, m ≤ t ≤ T, (16)

where

l̃ (N,m,R) = (lnN)2+ε (lnm)2+ε (lnR)2+ε ,

for some ε > 0 - in practice, any small value of ε works well.

In (16), the function h (·), similarly to g (·) in (13), is a monotonically increasing function

such that h (0) = 0 and limx→∞ h (x) =∞; again, we use h (a) = a.

Similarly to the case of φN,m (t), Theorem 1 entails that

lim
N,m,R→∞

ψN,m,R (t) =∞, m ≤ t ≤ T, under H0,
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and

lim
N,m,R→∞

ψN,m,R (t) =


∞ m ≤ t < τ,

0 t∗N,m ≤ t < 2τ +m− 2− t∗N,m,

∞ τ +m ≤ t ≤ T,

, under HA,1,

while

lim
N,m,R→∞

ψN,m,R (t) =

 ∞ m ≤ t < τ,

0 t∗N,m ≤ t < τ +m,
, under HA,2;

Consider now the second randomisation.

Step B1. At each given t ≥ m, generate an i.i.d. sample
{
ξ̃j(t)

}W
j=1

with common

distribution Gψ such that Gψ(0) 6= 0 or 1.

Step B2. For any u drawn from a distribution Fψ (u), define

ζ̃j (u; t) = I
[
ξ̃j(t) ≤ uψ−1N,m,R (t)

]
.

Step B3. Compute

γ (u; t) =
1√
W

W∑
j=1

ζ̃j (u; t)−Gψ (0)√
Gψ (0) [1−Gψ (0)]

.

Step B4. Compute

Γt =

∫ +∞

−∞
|γ (u; t)|2 dFψ (u) .

The following assumptions are needed in order to study the asymptotic behavior of Γt;

note their similarity with Assumptions 4 and 5.

Assumption 6. It holds that: (i) Gψ (·) has a bounded density; (ii)
∫ +∞
−∞ u4dFψ (u) <∞.

Assumption 7. It holds that, as min (N,m,R,W )→∞

W 1/2

[
h

(
R

l̃ (N,m,R)

)]−1
→ 0.

As above, in Assumption 6 we can choose Gψ to be the standard normal distribution,

and Fψ to be a discrete uniform distribution. The restrictions in Assumption 7 provide a

selection rule for W ; for most choices of the function h (·), the choice W = R is appropriate.
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Let P † represent the conditional probability with respect to {Xi,t, 1 ≤ i ≤ N , 1 ≤

t ≤ T} and {ξj(t), 1 ≤ j ≤ R, m ≤ t ≤ T}; we use the notation “
D†→” and “

P †→” to define,

respectively, conditional convergence in distribution and in probability according to P †.

Theorem 2. Under Assumptions 1-7, as min (N,m,R,W )→∞, it holds that

Γt
D†→ χ2

1,

under H0, for m ≤ t ≤ T,

under HA,1, for m ≤ t < τ and τ +m ≤ t ≤ T,

under HA,2, for m ≤ t < τ,

(17)

for almost all realisations of {Xi,t, 1 ≤ i ≤ N , 1 ≤ t ≤ T} and {ξj(t), 1 ≤ j ≤ R, m ≤ t ≤

T}.

Under Assumptions 1-5, as min (N,m,R,W )→∞, it holds that

1

W
Γt

P †→
∫ +∞
−∞

∣∣I[0,∞) (u)−Gψ (0)
∣∣2 dFψ (u)

Gψ (0) [1−Gψ (0)]
,

under HA,1, for t∗N,m ≤ t < 2τ +m− 2− t∗N,m,

under HA,2, for t∗N,m ≤ t ≤ T,
(18)

for almost all realisations of {Xi,t, 1 ≤ i ≤ N , 1 ≤ t ≤ T} and {ξj(t), 1 ≤ j ≤ R, m ≤ t ≤

T}.

Theorem 2 is, again, an intermediate result. It states that Γt has (asymptotically) a

chi-square distribution under the null of no breaks; further, by construction the sequence{
Γt
}T
t=m

is independent across t conditional on the sample. We now discuss how these

two basic facts can be employed in order to propose a monitoring scheme for the on-line

detection of breaks in the factor structure.

3.2 Sequential monitoring of factor models

We base our sequential monitoring procedure on the theory developed in Horváth et al.

(2004). Recall that, after collecting m observations, we monitor our model over the period

m + 1 ≤ t ≤ T , which has size denoted as Tm = T −m. We then consider a monitoring

procedure based on the detector

d (k;m) =

∣∣∣∣∣
m+k∑
t=m+1

Γt − 1√
2

∣∣∣∣∣ , 1 ≤ k ≤ Tm, (19)
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which covers the entire monitoring period. In other words our detector is made of the

cumulative sum of the centered and standardized version of the sequence {Γt}Tt=m, obtained

by double randomisation. Other detectors, differing form (19) only with respect to the start

of the monitoring period, could be also suggested, and we refer to Kirch and Weber (2017)

for a discussion.

Given the stopping rule

k̂m =

 inf {1 ≤ k ≤ Tm, such that d (k;m) ≥ ν (k;m)} ,

Tm if the above does not hold in 1 ≤ k ≤ Tm,
(20)

we define the estimated change-point location as τ̂m = k̂m +m. The threshold function in

(20) is defined as (see Horváth et al., 2004 and Horváth et al., 2007)

ν (k;m) = cα,mν
∗ (k;m) , (21)

ν∗ (k;m) = m1/2

(
1 +

k

m

)(
k

k +m

)η
, η ∈

[
0,

1

2

]
, (22)

where cα,m is a critical value corresponding to a pre-specified level α. Depending on the

choice of η, the critical value is defined as

P

(
sup

0≤t≤1

|B (t)|
tη

≤ cα,m
)

= 1− α, for η ∈
[
0,

1

2

)
, (23)

where {B (t) , 0 ≤ t ≤ 1} denotes a standard Wiener process, or

cα,m =
Dm − ln [− ln (1− α)]

Am
, for η =

1

2
, (24)

with Am = (2 ln lnm)1/2 and Dm = 2 ln lnm+ 1
2 ln ln lnm− 1

2 lnπ. Note that in (23) cα,m

does not depend on m, whilst it does in (24).

Note that Chu et al. (1996), albeit in a different context, choose η = 0. It is well known

that tests based on η = 0 have the smallest power, which on the contrary increases as η

increases (see the discussion in Horváth et al., 2004).

In order to derive our main theorem, we also need the following assumptions.

Assumption 8. It holds that (i) Tm = O (mκ) for some κ ≥ 1; (ii) lim infm→∞
Tm
m > 0;

(iii) Tm > τ + C0m
1/2+ε for ε > 0 such that N1−δ

m1/2−ε → C1.
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Assumption 9. It holds that (i)
∫ +∞
−∞ |u|

4+2δ dFψ (u) <∞; (ii)

m1/2+ε

W−1 +W

[
h

(
R

l̃ (N,m,R)

)]−2
+

[
h

(
R

l̃ (N,m,R)

)]−1→ 0,

for some ε > 0.

Assumption 8 is the same as equation (1.12) in Horváth et al. (2007), and it essentially

requires that the monitoring goes on for a sufficiently long time, longer than the initial

training period m. Assumption 9 strengthens Assumption 6(ii), and it is needed to prove

a moment condition for the sequence {Γt}Tt=m which will enable a Central Limit Theory to

hold. Our main result follows.

Theorem 3. Let Assumptions 1-9 hold. Under H0 it holds that, as min (N,m,R,W )→∞

P †
(

max
1≤k≤Tm

d (k;m)

ν∗ (k;m)
≤ x

)
→ P

(
sup

0≤t≤1

|B (t)|
tη

≤ x
)
, for η ∈

[
0,

1

2

)
, (25)

P †
(

max
1≤k≤Tm

d (k;m)

ν∗ (k;m)
≤ x+Dm

Am

)
→ e−e

−x
, for η =

1

2
, (26)

for almost all realisations of {Xi,t, 1 ≤ i ≤ N , 1 ≤ t ≤ T} and {ξj(t), 1 ≤ j ≤ R, m ≤ t ≤

T} and for x ∈ R.

Under HA,1 and HA,2, as min (N,m,R,W ) → ∞, and for a given significance level α, it

holds that

c−1α,m max
1≤k≤Tm

d (k;m)

ν∗ (k;m)

P †→∞, for all η ∈
[
0,

1

2

]
, (27)

for almost all realisations of {Xi,t, 1 ≤ i ≤ N , 1 ≤ t ≤ T} and {ξj(t), 1 ≤ j ≤ R, m ≤ t ≤

T} and for x ∈ R and where cα,m is defined in (23) when η < 1
2 and in (24) when η = 1

2 .

The main implication of Theorem 3 is summarized in the following result:

Corollary 1. Under the assumptions of Theorem 3 it holds that:

lim
min(N,m,R,W )→∞

P † (τ̂m < T ) ≤ α, under H0, (28)

lim
min(N,m,R,W )→∞

P † (τ̂m < T ) = 1, under HA,1 and HA,2, (29)

for almost all realisations of {Xi,t, 1 ≤ i ≤ N , 1 ≤ t ≤ T} and {ξj(t), 1 ≤ j ≤ R, m ≤ t ≤

T}.
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The notion of size implied by (28), in this context, is very different from the one usually

considered in the literature. The purpose of the procedure is to keep the false rejection

probability as little as possible, and therefore (at a minimum) below the threshold α,

rather than making it close to α. This makes the monitoring procedure different from the

standard Neyman-Pearson paradigm (and, in general, from a multiple testing exercise):

given that the monitoring horizon keeps expanding, the purpose of cα,m is to ensure that

the chance of a false break detection is as little as possible - see also similar comments in

Horváth et al. (2007).

4 Applying the test under general circumstances

The purpose of this section is to discuss how the test could be applied under slightly different

assumptions than the ones above, and up to which extent such assumptions can be relaxed.

More substantive extensions, which involve modifications of the test, are briefly discussed

in the concluding remarks in Section 7.

4.1 Detection of breaks

A consequence of our approach is that monitoring for a structural change (despite being

in a high-dimensional set-up) can be treated as in a classical time series framework. In

particular, in addition to the consistency of the procedure, a natural question is how much

would the delay be in detecting a break. In order to formally address this issue, one

can directly use the results by Aue and Horváth (2004); hereafter, we provide a heuristic

discussion of the magnitude of the delay within our setup.

Consider the notation an = Ω (bn) to indicate that the magnitude of the sequence an is

not smaller than that of bn, viz. an > Cbn > 0. Then, by construction, {Γt}Tt=m has, under

the alternative, a “large” shift in the mean after t∗N,m, where t∗N,m is such that

t∗N,m − τ = Ω
( m

N1−δ

)
. (30)

Defining β such that N = mβ, and using (12), it is possible to analyse (30) for various

relative rates of divergence of m and N as they pass to infinity. When β > 1
2 , we have that
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δ = 1− 1
2β + ε for an arbitrarily small value of ε. Thus, by (30)

t∗N,m = τ + Ω
( m

mβ(1−δ)

)
= τ + Ω

(
m1/2+ε′

)
,

where ε′ > 0 is arbitrarily small. Thus, when N is not much smaller than m, or even larger,

the change-point is detected with a delay, t∗N,m− τ , which is of order at least m1/2. By the

same token, whenever β ≤ 1
2 , we have that δ = ε for an arbitrarily small value of ε, so that

t∗N,m = τ + Ω
(
m1−β(1−δ)

)
,

and, by elementary arguments, it follows that m1−β(1−δ) = Ω(m1/2+ε′): the delay, in this

case, will be bigger. This is in line with the intuition that a break will cause Γt - and

consequently the detector - to diverge as fast as N : the lower N , the lower the divergence

rate, and the less effective the detecion of breaks. Finally, it is interesting to consider the

ultra-dimensional case, N = exp (m). By (12), it holds that δ = 1 − (1− ε) lnm
2m for an

arbitrarily small value of ε. Hence, (30) yields

t∗N,m = τ + Ω

(
m

exp ((1− δ)m)

)
= τ + Ω

(
m1/2+ε′

)
,

again. In essence, in all cases considered there is a delay in the detection of breaks which

is greater than C0m
1/2, but smaller than C0m - that is, rescaling the delay by the sample

size, this vanishes.

4.2 Weak factors and local alternatives

The theory developed in this paper - starting from Assumption 2 - implicitly require that,

when a new factor appears as a consequence of a break, this should be a pervasive factor.

Indeed, part (i) of the assumption entails that spiked eigenvalues must diverge at a rate N ,

i.e. a “strong” factor model. However, the literature has also considered cases in which one

or more common factor may be less pervasive, thus leading to a covariance matrix which

has some eigenvalues passing to infinity at a rate Nκ, for κ ∈ (0, 1). A possible example

of weak factors arises when considering jointly macroeconomic data of different countries:

global factors are strong since they are likely to affect all countries; however national factors,

although strong within a given country, will affect only a subset of all variables considered

19



and can be seen as weak - see e.g. the empirical study in Moench, Ng and Potter (2013).

Estimation of factor models in the presence of such “weak” or “local” factors have been

paid considerable attention by the literature - see De Mol, Giannone and Reichlin (2008),

Onatski (2012), in the same setting as ours and, in a slightly different context, Lam and Yao

(2012). The notion of weak factors is intertwined with that of a local alternative hypothesis

where the break does happen but it is “small”, for example when a break is caused by a

change of only some, but not all, loadings. Consistently with the literature on weak factors,

we characterise such situations by the fact that, the (r + 1)-th eigenvalue, behaves as

λ(r+1) (t) = C0N
κ,

under HA,1, for τ ≤ t < τ +m,

under HA,2, for τ ≤ t ≤ T,
(31)

for κ ∈ (0, 1), while it is bounded for all other values of t.

We now discuss heuristically under which conditions such small breaks can be detected;

we consider for simplicity the case η < 1
2 . We know that, based on Theorem 2, a break in

the (r + 1)-th largest eigenvalue enters the sequence {Γt}Tt=m as a shift in its mean: this is

essentially the way in which the monitoring procedure picks up the presence of a break. In

particular, from (18), for any t ≥ t∗N,m for which either HA,1 or HA,2 holds, we have

Γt ≈W
∫ +∞

−∞

∣∣∣Gψ (uψ−1N,m,R (t)
)
−Gψ (0)

∣∣∣2 dFψ (u) ≈ C0Wψ−2N,m,R (t) , (32)

having used a Mean Value argument. Moreover, by analysing the proof of Theorem 1, it

follows that

Θt ≈ R
∫ +∞

−∞

∣∣∣Gφ (uφ−1N,m (t)
)
−Gφ (0)

∣∣∣2 dFφ (u) ≈ C0Rφ
−2
N,m (t) , (33)

for the same values of t ≥ τ for which (32) holds.

Consider the case (also considered in the simulations and in the empirical application)

where W = R = N . Then, letting N = mβ and h(·) in (16) be the identity function,

we have lnN = lnR = β lnm. Moreover, assuming that g (·) in (13) is also the identity
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function, by (31) we have φN,m (t) ≈ Nκ−δ. Therefore, because of (32) and (33)

Γt ≈ ∆N =
(lnN)12+ε

N
N4(κ−δ),

under HA,1, for t∗N,m ≤ t < 2τ +m− 2− t∗N,m,

under HA,2, for t∗N,m ≤ t ≤ T,
(34)

where we denoted by ∆N the magnitude of the shift in the mean of {Γt}Tt=m.

Based on (34) and condition (1.9) in Aue and Horváth (2004), we therefore have a

detectable shrinking break when both ∆N → 0 and m1/2∆N → ∞ hold, which imply the

constraints on κ:
1

4
(1− 1

2β
) + δ < κ <

1

4
+ δ.

4.3 Heteroskedasticity in the idiosyncratic component

The main assumptions in the paper are spelt out with respect to Xi,t, avoiding to make any

comments on the properties of ui,t across time. We now discuss the behaviour of the test

in the presence of heteroskedasticity, which is not explicitly considered (although not ruled

out) by Assumption 2. For the sake of simplicity, we consider the case of an abrupt change

in the covariance matrix of {ui,t}Ni=1, although more general forms of heteroskedasticity

could also be considered.

To illustrate this, we consider a simple example where the covariance matrix E (utu
′
t)

undergoes an abrupt change of size ∆u after a point in time, say τ∗:

E
(
utu
′
t

)
=

 Σu

Σu + ∆u

for
m ≤ t < τ∗,

τ∗ ≤ t ≤ T,

where ∆u affects some or even all covariances. The only condition we require in order for

our test to be applicable is ω(1)
(
m−1

∑t
k=t−m+1E (utu

′
t)
)
≤ C0 for each t ≥ m, where the

notation ω(1) (A) is understood to represent the largest eigenvalue of a matrix A. This

holds, when t < τ∗, as long as ω(1) (Σu) ≤ C0. When t ≥ τ∗, using Weyl’s inequality it

follows that

ω(1)

(
1

m

t∑
k=t−m+1

E
(
utu
′
t

))
≤ ω(1) (Σu) + ω(1) (∆u) , (35)

which is bounded as long as ω(1) (Σu) ≤ C0 and ω(1) (∆u) ≤ C1. In essence, as long as

the perturbation matrix ∆u is not too big, and therefore as long as the changes in the

covariance structure of the idiosyncratic are not too big, our test can still be applied.
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Condition (35) has interesting implications. Consider a break such that ∆u = diag {di},

with 0 ≤ di ≤ C0 for all 1 ≤ i ≤ N . In such a case, where the variances of the error

terms all undergo a change (potentially), but the covariance structure does not change,

it would hold that ω(1) (∆u) ≤ C0: even a huge (but of finite size) break in the vari-

ance of the idiosyncratic components does not alter the structure of the eigenvalues of

E (XtX
′
t), by introducing a spurious spiked eigenvalue. Thus, an interesting question about

the robustness of our procedure is: when is a break in the idiosyncratic component strong

enough to be confused with a break in the factor structure? By the same (heuristic) to-

ken as above, the eigenvalue structure of E (XtX
′
t) would change if, for argument’s sake,

ω(1)
(
m−1

∑t
k=t−m+1E (utu

′
t)
)

= C0N
ε with ε ∈ (0, 1]. By Weyl’s inequality assuming for

simplicity that there is no break in the factor component

ω(1)

(
1

m

t∑
k=t−m+1

E
(
utu
′
t

))
≥ ω(N) (Σu) + ω(1) (∆u) ≥ ω(1) (∆u) . (36)

Therefore, a sufficient condition would be ω(1) (∆u) = C0N
ε. Moreover, given that ω(1) (∆u) ≥

N−1
∑N

i=1

∑N
j=1 {∆u}i,j , then (36) suggests that a break which is “sufficiently pervasive”,

so that it affects not merely the variances of the idiosyncratic components, but also their

covariances (without needing to be necessarily huge), could introduce a spiked eigenvalue

in E (XtX
′
t). In such cases our procedure might detect τ∗ as a change-point even if the

signal component does not change.

4.4 Extensions to consider further alternative hypotheses

So far, we have focused our attention onto two empirically relevant but very specific forms

of alternative hypotheses: a possible change in the loadings - HA,1 - and a possible increase

in the number of factors - HA,2. However, our methodology is sufficiently general to be

adapted (with minor modifications) to other cases also. A leading example is the case in

which q ≥ 1 factors vanish, viz.

HA,3 :

 Xi,t =
∑r

j=1 aijfjt + ui,t

Xi,t =
∑r−q

j=1 ãijfjt + ui,t
for

1 ≤ t < τ

τ ≤ t ≤ T
. (37)

Note that, in (37), we can entertain the possibility that the loadings of the non-vanishing

factors may also be subject to changes, although this is not required. For simplicity consider
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the case q = 1, then under (37), it can be noted that the r-th eigenvalue of the covariance

matrix of Xi,t is spiked before τ , and bounded thereafter. This suggests that testing for

(37) can be based on λ̂(r) (t). Since under the null (in essence, on account of Lemma 2)

N−δλ̂(r) (t)→∞, whereas under the alternative N−δλ̂(r) (t)→ 0, one round of randomisa-

tion is enough to have a sequence of test statistics which behaves like {Γt}Tt=m under the

null - that is, which (conditional on the sample) is i.i.d., has moments that exist up to any

order, and has an asymptotic chi-square distribution, with mean and variance that can be

approximated with a polynomially vanishing error. Hence, monitoring can be again carried

out as proposed in Section 3.

5 Monte Carlo simulations

Under H0 we simulate data according to the stable factor model (4):

Xi,t = a′ift + ui,t, 1 ≤ i ≤ N, 1 ≤ t ≤ T.

In particular, we fix N = 100, and we consider r ∈ {1, 2, 3, 4} factors. As far as the time

dimension is concerned, we consider burn-in periods and thus sample sizes of dimension

m ∈ {50, 75, 100, 125, 150, 175, 200, 225, 250}. We monitor our model for 1000 periods (that

is, we set T = 1000). We simulate each element of the loadings vector ai as i.i.d.N (0, 1);

we assume some time dependence in the common factors through a causal VAR(1) process

ft = Hft−1 + et, 1 ≤ t ≤ T,

where et ∼ i.i.d.N (0, Ir) and the matrix H has maximum absolute value of the eigenvalues

equal to 0.7. The N × T matrix of idiosyncratic components u is generated as u = DεG,

where the NT × 1 vector of stacked columns of ε is i.i.d.N (0, INT ) and D and G are two

N×N and T ×T Toeplitz matrices with entries, in the k-th diagonal place, given by 0.3k−1

and 0.5k−1 respectively. Finally, we have set the signal-to-noise ratio to
V ar(Xi,t)
V ar(ui,t)

= 2 for

all 1 ≤ i ≤ N .

Under the alternative, we consider breaks to occur at the change-point τ = 500 under
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the two schemes:

Xi,t = a′ift I[t < τ ] + ã′ift I[t ≥ τ ] + ut, 1 ≤ i ≤ N, 1 ≤ t ≤ T, (38)

Xi,t = a′ift + bgt I[t ≥ τ ] + ut, 1 ≤ i ≤ N, 1 ≤ t ≤ T. (39)

In (38), we consider the case in which all loadings undergo a change, i.e. HA,1; all the

elements of ai and ãi are generated as i.i.d.N (0, 1). Scheme (39) refers to a break owing

to a new common factor, gt, appearing, i.e. HA,2; the elements in b are generated as

i.i.d.N (0, 1), and we simulate gt as the causal AR(1)

gt = ϕgt−1 + vt, 1 ≤ t ≤ T,

with vt ∼ i.i.d.N (0, 1) and ϕ = 0.7.

All results of the test are computed when setting η = 0.45 and η = 0.5. The critical

values used in the case η = 0.45 are taken from Horváth et al. (2004); in particular, when

the significance level is α = 0.05 the critical value is c0.05 = 2.7992 and when α = 0.1 we

have c0.1 = 2.5437. Regarding the double randomisation, we choose the functions g(·) in

(13) and h(·) in (16) to be the identity, we set W = R = N , the distributions Gφ and Gψ

in steps A1 and B1 are chosen to be standard normals, while Fφ and Fψ in steps A2 and

B2 are chosen to have non-zero and equal mass at u = ±
√

2.

In order to evaluate the performance of our procedure, we repeat simulations 500 times,

and we consider a series of indicators.

(1) In Table 1 we report the fraction of false rejections over the whole monitoring period

(m + 1 ≤ t ≤ T ), when no break is present, i.e. under H0, and when testing at

5% and 10% significance levels. As expected the empirical size is always below the

significance level.

(2) In Tables 2, 3, 4 and 5 we show the fraction of detections for which τ ≤ τ̂m < τ +m,

when a break takes place under HA,1 or HA,2 and when testing at 5% and 10%

significance levels, setting either η = 0.45 or η = 0.5. Results show that the test does

have power versus the two alternative hypotheses considered in this paper. As the

construction of the test and the theory would suggest, the power declines as r, the

original, pre-break number of factors, increases: in essence, the test checks whether
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Table 1: Empirical size - 5% and 10% significance

Fraction of detections in [m+ 1, T ]

m = 50 m = 75 m = 100
η = 0.45 η = 0.5 η = 0.45 η = 0.5 η = 0.45 η = 0.5

r 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
1 0.03 0.05 0.03 0.06 0.04 0.05 0.03 0.05 0.04 0.06 0.03 0.06
2 0.04 0.05 0.04 0.06 0.03 0.04 0.02 0.05 0.04 0.06 0.04 0.06
3 0.03 0.05 0.03 0.05 0.03 0.05 0.03 0.06 0.04 0.06 0.04 0.06
4 0.03 0.05 0.03 0.06 0.02 0.05 0.02 0.06 0.04 0.05 0.03 0.06

m = 125 m = 150 m = 175
η = 0.45 η = 0.5 η = 0.45 η = 0.5 η = 0.45 η = 0.5

r 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
1 0.05 0.06 0.05 0.06 0.04 0.05 0.03 0.05 0.04 0.07 0.04 0.06
2 0.03 0.05 0.03 0.06 0.04 0.05 0.03 0.05 0.05 0.06 0.04 0.07
3 0.03 0.05 0.03 0.05 0.03 0.05 0.03 0.05 0.04 0.08 0.04 0.08
4 0.03 0.06 0.03 0.07 0.04 0.07 0.05 0.08 0.04 0.06 0.05 0.06

m = 200 m = 225 m = 250
η = 0.45 η = 0.5 η = 0.45 η = 0.5 η = 0.45 η = 0.5

r 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
1 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.04 0.07 0.04 0.08
2 0.04 0.05 0.03 0.05 0.04 0.06 0.04 0.07 0.04 0.07 0.04 0.07
3 0.05 0.07 0.04 0.08 0.03 0.04 0.03 0.04 0.03 0.05 0.04 0.05
4 0.04 0.06 0.04 0.06 0.04 0.06 0.04 0.07 0.04 0.07 0.04 0.08

Table 2: Power - loadings change - 5% significance

Fraction of detections in [τ, τ +m)

η = 0.45 m
r 50 75 100 125 150 175 200 225 250
1 0.96 0.95 0.96 0.96 0.96 0.96 0.96 0.95 0.95
2 0.58 0.97 0.97 0.96 0.96 0.96 0.97 0.95 0.98
3 0.01 0.74 0.97 0.97 0.96 0.97 0.96 0.97 0.96
4 0.00 0.03 0.80 0.94 0.96 0.94 0.96 0.96 0.96

η = 0.5 m
r 50 75 100 125 150 175 200 225 250
1 0.96 0.95 0.96 0.96 0.97 0.95 0.96 0.96 0.96
2 0.44 0.97 0.97 0.96 0.96 0.96 0.97 0.95 0.98
3 0.00 0.62 0.97 0.97 0.96 0.96 0.97 0.96 0.97
4 0.00 0.01 0.65 0.95 0.97 0.95 0.96 0.96 0.97

an eigenvalue is large, and the magnitude of the r + 1-th largest eigenvalue declines

with r. Still, even when r = 4, the test has high power when m ≥ 100 in all cases

considered, and, in presence of a new factor appearing (see Tables 4 and 5), even

when m ≥ 50. An interesting feature of the test is the case η = 0.5: although
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Table 3: Power - loadings change - 10% significance

Fraction of detections in [τ, τ +m)

η = 0.45 m
r 50 75 100 125 150 175 200 225 250
1 0.94 0.93 0.95 0.93 0.94 0.93 0.94 0.94 0.93
2 0.66 0.95 0.95 0.93 0.95 0.93 0.94 0.94 0.95
3 0.01 0.81 0.95 0.95 0.94 0.95 0.95 0.94 0.94
4 0.00 0.06 0.87 0.94 0.95 0.92 0.93 0.94 0.94

η = 0.5 m
r 50 75 100 125 150 175 200 225 250
1 0.94 0.93 0.95 0.92 0.93 0.93 0.93 0.93 0.93
2 0.59 0.94 0.95 0.92 0.94 0.93 0.94 0.93 0.95
3 0.01 0.73 0.94 0.95 0.94 0.95 0.94 0.93 0.94
4 0.00 0.03 0.80 0.93 0.94 0.91 0.93 0.94 0.93

Table 4: Power - new factor appears - 5% significance

Fraction of detections in [τ, τ +m)

η = 0.45 m
r 50 75 100 125 150 175 200 225 250
1 0.93 0.93 0.92 0.95 0.92 0.95 0.93 0.93 0.92
2 0.78 0.96 0.97 0.95 0.95 0.96 0.96 0.95 0.96
3 0.10 0.89 0.97 0.98 0.96 0.97 0.95 0.95 0.97
4 0.00 0.27 0.91 0.96 0.96 0.96 0.95 0.95 0.96

η = 0.5 m
r 50 75 100 125 150 175 200 225 250
1 0.95 0.94 0.93 0.96 0.95 0.96 0.95 0.93 0.94
2 0.71 0.96 0.97 0.96 0.95 0.96 0.96 0.96 0.97
3 0.06 0.85 0.97 0.98 0.96 0.98 0.96 0.96 0.98
4 0.00 0.16 0.89 0.96 0.96 0.95 0.95 0.96 0.97

in theory this choice yields the highest power, it is well known that convergence to

the extreme value distribution is very slow, leading to larger than correct critical

values, and, consequently, to lower power (see the comments in Csörgő and Horváth,

1997). However, considering the discrepancy between the power when η = 0.45 and

η = 0.5, this is not always the case: tests based on the choice η = 0.5 have roughly

the same power as for the case η = 0.45 whenever there is a change in the loadings,

and also when there is a new factor appearing (at least for a sample size m ≥ 100).

Last, notice that when considering HA,2 (a new factor appearing), then we could also

detect a change-point when τ +m ≤ t ≤ T , but we do not report results in this case

since power can only increase with respect to what shown in Tables 4 and 5.
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Table 5: Power - new factor appears - 10% significance

Fraction of detections in [τ, τ +m)

η = 0.45 m
r 50 75 100 125 150 175 200 225 250
1 0.89 0.88 0.88 0.90 0.88 0.91 0.92 0.88 0.88
2 0.81 0.94 0.95 0.93 0.91 0.93 0.93 0.93 0.93
3 0.14 0.88 0.94 0.95 0.94 0.95 0.92 0.93 0.95
4 0.00 0.36 0.92 0.94 0.94 0.93 0.93 0.93 0.94

η = 0.5 m
r 50 75 100 125 150 175 200 225 250
1 0.90 0.89 0.88 0.91 0.89 0.92 0.91 0.89 0.89
2 0.76 0.94 0.95 0.92 0.92 0.93 0.93 0.93 0.93
3 0.10 0.86 0.94 0.96 0.94 0.95 0.93 0.93 0.94
4 0.00 0.27 0.89 0.94 0.93 0.93 0.92 0.92 0.94

(3) In Tables 6 and 7 we report the minimum, maximum, the 25th, 50th and 75th percentiles

of the distribution of the estimated change-point locations, whenever under HA,1 or

HA,2 a break is detected at τ̂m such that τ ≤ τ̂m ≤ T and when testing at 10%

significance levels. Given the results in Tables 3 and 5 we report those statistics only

for m = 100, 175, 250. It is evident that the test detects a break with a delay which

increases as r increases - this is in line with the comments in Section 4.2, since, as r

grows, the r-th eigenvalue becomes smaller and smaller, thus being closer to a weak

factor. Interestingly, there are virtually no differences between the cases of η = 0.45

and η = 0.5; similarly, different values of m also do not seem to alter results. Note

that, as expected, the minimum values of the distribution of the estimated locations

are, roughly speaking, of order m1/2 all across the table.

6 An application to US industrial production data

We conclude with an application to a panel of US industrial production indexes. Specifically,

we consider monthly growth rates for N = 224 sectorial indices, over the period from

January 1972 to November 2015, for a total of T = 527 observations. Estimation is based

on a sample of size m = 60, i.e. 5 years. Analysis of the whole dataset using rolling samples

of size m suggests between one and two factors throughout - this result consistently follows

using different procedures - namely, Trapani (2017) testing procedure and the criteria by Bai

and Ng (2002) and Alessi et al. (2010). Therefore, we run our sequential testing procedure
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Table 6: Location distribution - loadings change
(true change-point at τ = 500)

η = 0.45 η = 0.5

m r min 25th 50th 75th max min 25th 50th 75th max
100 1 504 516 520 526 551 505 516 521 526 551

2 507 523 528 533 553 507 524 529 534 554
3 509 529 536 543 573 509 531 538 545 586
4 520 548 559 571 > T 520 553 563 578 > T

175 1 504 516 522 528 550 505 517 523 529 550
2 508 523 529 535 553 509 524 530 537 555
3 507 531 537 543 564 507 532 538 544 566
4 514 536 544 551 580 514 538 546 553 591

250 1 502 518 523 529 551 505 519 524 529 553
2 508 525 531 537 558 508 526 532 538 565
3 508 531 538 547 568 508 533 540 548 570
4 516 538 545 554 581 516 539 547 555 584

Table 7: Location distribution - new factor appears
(true change-point at τ = 500)

η = 0.45 η = 0.5

m r min 25th 50th 75th max min 25th 50th 75th max
100 1 502 514 519 525 547 505 515 520 525 548

2 505 522 530 537 574 506 523 531 538 576
3 513 532 541 550 598 514 534 542 552 598
4 519 546 557 569 648 520 548 560 574 669

175 1 501 515 520 525 546 502 516 521 526 552
2 507 524 531 537 564 507 524 532 539 572
3 508 532 541 550 578 508 534 542 552 579
4 518 543 552 562 598 518 544 555 565 599

250 1 502 514 520 527 552 502 514 521 527 553
2 508 524 531 540 571 508 525 532 541 571
3 510 533 542 551 590 510 534 543 552 589
4 515 542 552 562 600 515 544 553 564 603

monitoring the first four factors, thus accounting both for at most two new factors emerging

and for a change in all loadings. The test is run at 5% significance level and setting η = 0.5,

hence using the critical values in (24).

The monitoring is implemented as follows. We begin at t = m+1; once the first change-

point is detected at τ̂1 ≥ m+ 1, we restart the estimation at t = τ̂1 and after m periods we

restart monitoring at t = τ̂1 +m+ 1. In general, given an estimated change-point τ̂j , with

j ≥ 1, we restart monitoring by computing the detector defined in (19) which in this case
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Figure 1: Estimated change-point locations for US industrial production indexes

 Time
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Black line: cross-sectional median of the data (monthly growth rates on yearly basis); blue lines:

estimated change-point locations; red line: first period used for testing.

is defined as

d(k;m) =

∣∣∣∣∣∣
m+k∑

t=τ̂j+m+1

Γt − 1√
2

∣∣∣∣∣∣ , τ̂j + 1 ≤ k ≤ T −m.

Therefore, the monitoring window after the j-th change-point is of size T − τ̂j − m and

the estimated change-points τ̂j are such that τ̂j+1 − τ̂j ≥ m + 1. We keep restarting the

procedure as long as we have a monitoring window of non-zero length, that is as long as

T− τ̂j > m; this allows the possibility for the last change-point to be detected in the interval

T −m ≤ t ≤ T .

We find evidence of two change-points dated: τ̂1: August, 1983; τ̂2: March, 2008, The

estimated locations are also shown in Figure 1 together with the joint panel of data. The

first estimated change-point (τ̂1) clearly mark the start of the Great Moderation while the

second one (τ̂2) takes place at the start of the Great Financial Crisis.

7 Conclusions

In this paper we develop a a family of monitoring procedures to detect a break in the

signal component of a large factor model; to the best of our knowledge, this is the first

contribution in high-dimensional factor models which proposes a sequential monitoring and
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testing procedure, as opposed to the extant literature where ex-post detection of breaks

is usually considered. Our statistics are based on a well-known property of the (r + 1)-th

eigenvalue of the sample covariance matrix of the data: whilst under the null the (r + 1)-th

eigenvalue is bounded, under the alternative of a break (either in the loadings, or in the

number of factors itself) it becomes spiked. Given that the sample eigenvalue does not have

a known limiting distribution under the null, we regularise the problem by (doubly) ran-

domising the test statistic in conjunction with sample conditioning, obtaining a sequence of

i.i.d., asymptotically chi-square statistics which are then employed to build the monitoring

scheme. Numerical evidence shows that our procedure works very well in finite samples,

with a very small probability of false detections and tight detection times in presence of a

genuine change-point.

Building on the methodology proposed in this paper, there are at least two possible

extensions which could be considered. Firstly, the results and methodology in this paper

could be also used in the context of a non-stationary factor model, similar to the one

considered in Bai (2004), where the factors are allowed to have unit roots. In such case, the

key theoretical result would be to show that in presence of r factors the first r eigenvalues of

the matrix m−2
∑m

t=1XtX
′
t diverge to positive infinity almost surely at some rate, whereas

the remaining factors are a.s. bounded. Secondly, it is possible to extend the theory

developed in this paper to the context of the generalised dynamic factor model by Forni,

Hallin, Lippi and Reichlin (2000) or the factor model by Lam and Yao (2012), which are

based on the asymptotic behavior of the eigenvalues of the spectral density or the long-run

covariance matrices, respectively. By studying the asymptotic behavior of the estimated

eigenvalues of those matrices an appropriate test statistic based on these can be built.

These, and other, extensions are under current investigations by the authors.
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Horváth, L., Hušková, M., Kokoszka, P. and Steinebach, J. (2004), ‘Monitoring changes in

linear models’, Journal of Statistical Planning and Inference 126, 225–251.
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A Technical appendix

A.1 Preliminary lemmas

This section contains technical results which are useful to prove the main theorems in

the paper. Throughout this and the next section, E∗ denotes expectation calculated with

respect to P ∗; similarly, E† and V † denote expectation and variance calculated with respect

to P †. Also, whenever possible, we omit for ease of notation the dependence of ξj (t), and

of related quantities, on t.
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Lemma 3. Let

λN (t) =
1

N

N∑
p=1

λ(p) (t) ; (40)

under Assumptions 1 and 2, it holds that lim supN→∞ λN (t) = λ
sup

(t) <∞

lim infN→∞ λN (t) = λ
inf

(t) > 0
, (41)

for all m ≤ t ≤ T . Further, under Assumptions 1-3, it holds that, as min {N,m} → ∞ lim supN→∞ λ̂N (t) = λ
sup

(t) <∞

lim infN→∞ λ̂N (t) = λ
inf

(t) > 0
.

Proof. See Lemma A.1 in Trapani (2017).

Lemma 4. Under Assumptions 1-4, it holds that, under HA

lim sup
N,m,R→∞

Θt

l̃ (N,m,R)
= 0 a.s.; (42)

under H0, it holds that

l̃ (N,m,R)

R
× Θt

l̃ (N,m,R)
→ C > 0 a.s., (43)

as min (N,m,R)→∞.

Proof. We begin with (42). Define

Un,s,r =

∫ +∞

−∞

∣∣∣∣∣∣r−1/2
r∑
j=1

{
I
[
ξj ≤ uφ−1n,s (t)

]
−Gφ (0)

}∣∣∣∣∣∣
2

dFφ (u) .

We begin by showing that

∞∑
N=1

∞∑
m=1

∞∑
R=1

1

mNR
P ∗
[

max
1≤n≤N,1≤s≤m,1≤r≤R

Un,s,r > εl̃ (N,m,R)

]
<∞; (44)

using the short-hand notation maxn,s,r for max1≤n≤N,1≤s≤m,1≤r≤R, Markov inequality im-
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plies that this follows if

∞∑
N=1

∞∑
m=1

∞∑
R=1

1

mNRl̃ (N,m,R)
E∗
∣∣∣∣max
n,s,r

Un,s,r

∣∣∣∣ <∞. (45)

The maximal inequality contained in Theorem 2 in Moricz (1983) entails that

E∗
∣∣∣∣max
n,s,r

Un,s,r

∣∣∣∣ ≤ C0E
∗ |UN,m,R| (lnN) (lnm) (lnR) . (46)

Further, it holds that

E∗ |UN,m,R| ≤ C0 + C1Rφ
−2
N,m (t) ≤ C2,

where the first inequality follows from the proof of Theorem 1, and the second one from

Assumption 5. Then (44) follows immediately from (45).

Note now that for every triple (N,m,R), there is a triple of positive integers (k1, k2, k3)

such that 2k1 ≤ N < 2k1+1, 2k2 ≤ m < 2k2+1, 2k3 ≤ R < 2k3+1. Further, there is also a

triple of real numbers defined over [0, 1), say (ρ1, ρ2, ρ3), such that N = 2k1+ρ1 , etc... Define

now the short-hand notation

Ak1,k2,k3 =

{
ω : max

1≤k1≤2k1+ρ1 ,1≤k2≤2k2+ρ2 ,1≤k3≤2k3+ρ3
|Uk1,k2,k3 | > εl̃ (k1, k2, k3)

}
.

By (44), it holds that

∞∑
k1=0

∞∑
k2=0

∞∑
k3=0

2k1+12k2+12k3+1

(2k1+1 − 1) (2k2+1 − 1) (2k3+1 − 1)
P ∗ (Ak1,k2,k3) <∞;

thus

∞∑
k1=0

∞∑
k2=0

∞∑
k3=0

P ∗ (Ak1,k2,k3) ≤ (47)

≤
∞∑
k1=0

∞∑
k2=0

∞∑
k3=0

2k1+12k2+12k3+1

(2k1+1 − 1) (2k2+1 − 1) (2k3+1 − 1)
P ∗ (Ak1,k2,k3) <∞.

This result entails that P ∗ (Ak1,k2,k3 i.o.) = 1, which is a conditional result. Let now

Xk1,k2,k3 be the indicator of Ak1,k2,k3 , and note that Ak1,k2,k3 is conditional on the σ-

field Fk1,k2,k3 = {Xi,t, 1 ≤ i ≤ N, 1 ≤ t ≤ m} ∪ {ξj , 1 ≤ j ≤ R}, which is non decreasing.
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Equation (47) implies that

∞∑
k1=0

∞∑
k2=0

∞∑
k3=0

E (Xk1,k2,k3 | Fk1,k2,k3) <∞;

hence, by Theorem 1 in Chen (1978), it holds that

∞∑
k1=0

∞∑
k2=0

∞∑
k3=0

Xk1,k2,k3 <∞ a.s. (48)

We note that result by Chen (1978) is for a series indexed by a single index, but his

arguments can be readily generalised to the case of multi-index series. Equation (48) can

be equivalently rewritten as

∞∑
k1=0

∞∑
k2=0

∞∑
k3=0

P (Ak1,k2,k3) <∞, (49)

which is an unconditional result. From (49), it is easy to see that

maxk1,k2,k3 |Uk1,k2,k3 |
l̃ (k1, k2, k3)

→ 0 a.s.;

this entails that

|UN,m,R|
l̃ (N,m,R)

≤
maxk1,k2,k3 |Uk1,k2,k3 |

l̃ (k1, k2, k3)

l̃ (k1, k2, k3)

l̃ (N,m,R)
≤

maxk1,k2,k3 |Uk1,k2,k3 |
l̃ (k1, k2, k3)

→ 0 a.s.,

so that finally

lim sup
N,m,R→∞

|UN,m,R|
l̃ (N,m,R)

= 0 a.s.,

which proves (42).

Consider now (43); the proof is based on similar passages as the proof of Theorem 3.2

in Horváth and Trapani (2017). Under the null, Lemma 1 entails that

P

{
ω : lim

N,m→∞
φN,m (t) = 0

}
= 1,

so that we can assume henceforth that limN,m→∞ φN,m (t) = 0. Also, by definition it holds
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that E∗I
[
ξj ≤ uφ−1N,m (t)

]
= Gφ

(
uφ−1N,m (t)

)
. Therefore

Gφ (0) [1−Gφ (0)] Θt =

=

∫ +∞

−∞

∣∣∣∣∣∣R−1/2
R∑
j=1

{
I
[
ξj ≤ uφ−1N,m (t)

]
±Gφ

(
uφ−1N,m (t)

)
−Gφ (0)

}∣∣∣∣∣∣
2

dFφ (u) =

=

∫ +∞

−∞

∣∣∣∣∣∣R−1/2
R∑
j=1

{
I
[
ξj ≤ uφ−1N,m (t)

]
−Gφ

(
uφ−1N,m (t)

)}∣∣∣∣∣∣
2

dFφ (u) +

+R

∫ +∞

−∞

∣∣∣Gφ (uφ−1N,m (t)
)
−Gφ (0)

∣∣∣2 dFφ (u) +

+ 2

∫ +∞

−∞
R−1/2

R∑
j=1

{
I
[
ξj ≤ uφ−1N,m (t)

]
−Gφ

(
uφ−1N,m (t)

)} [
Gφ

(
uφ−1N,m (t)

)
+

−Gφ (0)
]
dFφ (u) ,

and note that Gφ

(
uφ−1N,m (t)

)
−Gφ (0) = I[0,∞) (u)−Gφ (0) as N,m → ∞. We can easily

show, following the proof of (42), that

lim sup
N,m,R→∞

∫ +∞
−∞

∣∣∣R−1/2∑R
j=1

{
I
[
ξj ≤ uφ−1N,m (t)

]
−Gφ

(
uφ−1N,m (t)

)}∣∣∣2 dFφ (u)

l̃ (N,m,R)
= 0 a.s.;

equation (43) follows directly from this, Assumption 4(iii) and from the Cauchy-Schwartz

inequality.

Lemma 5. Under Assumptions 1-6 and 9(ii), it holds that, under H0

max
1≤k≤Tm

√
m

k (k +m)

∣∣∣∣∣
m+k∑
t=m+1

(
E† (Γt)− 1

)∣∣∣∣∣ = O
(
m−ε

)
, (50)

max
1≤k≤Tm

√
m

k (k +m)

∣∣∣∣∣
m+k∑
t=m+1

(
V † (Γt)− 2

)∣∣∣∣∣ = O
(
m−ε

)
, (51)

for some ε > 0. Also

E† |Γt|2+δ <∞, (52)

for some δ > 0.
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Proof. We start with equation (50). By construction

E† (Γt)

Gψ (0) [1−Gψ (0)]
=
E†
∫ +∞
−∞ |γ (u; t)|2 dFψ (u)

Gψ (0) [1−Gψ (0)]
=

= E†
∫ +∞

−∞

∣∣∣∣∣∣W−1/2
W∑
j=1

[
ζ̃j (u; t)−Gψ (0)

]∣∣∣∣∣∣
2

dFψ (u) =

= W−1
∫ +∞

−∞
E†
∣∣∣ζ̃j (u; t)−Gψ (0)

∣∣∣2 dFψ (u) ;

by similar passages as in the proof of Theorem 1, it can be shown that

E† (Γt)

Gψ (0) [1−Gψ (0)]
− 1 ≤ C0

[
Wh−2

(
R

lnR

)
+ h−1

(
R

lnR

)]
.

Thus

max
1≤k≤Tm

√
m

k (k +m)

∣∣∣∣∣
m+k∑
t=m+1

(
E† (Γt)− 1

)∣∣∣∣∣ ≤
≤ C0W

(
lnR

R

)2

max
1≤k≤Tm

√
m

k (k +m)
k ≤

≤ C0m
1/2

[
Wh−2

(
R

lnR

)
+ h−1

(
R

lnR

)]
,

which is O (m−ε) on account of Assumption 9(ii).

We now turn to (51). Let γ (0; t) = W−1/2
∑W

j=1

[
ζ̃j (0; t)−Gψ (0)

]
; we have

(∫ +∞

−∞
|γ (u; t)|2 dFψ (u)

)2

−
(∫ +∞

−∞
|γ (0; t)|2 dFψ (u)

)2

= (53)

=

∫ +∞

−∞

∣∣∣∣∣∣W−1/2
W∑
j=1

[
ζ̃j (u; t)− ζ̃j (0; t)

]∣∣∣∣∣∣
2

+

+2W−1
W∑
j=1

[
ζ̃j (u; t)− ζ̃j (0; t)

] W∑
j=1

[
ζ̃j (0; t)−Gψ (0)

]22

dFψ (u) +

+ 2

∫ +∞

−∞
W−1/2

W∑
j=1

[
ζ̃j (0; t)−Gψ (0)

]
×

∣∣∣∣∣∣W−1/2
W∑
j=1

[
ζ̃j (u; t)− ζ̃j (0; t)

]∣∣∣∣∣∣
2

+

+ 2W−1
W∑
j=1

[
ζ̃j (u; t)− ζ̃j (0; t)

] W∑
j=1

[
ζ̃j (0; t)−Gψ (0)

] dFψ (u) .
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By Rosenthal’s inequality

W−2E†

∣∣∣∣∣∣
W∑
j=1

[
ζ̃j (u; t)− ζ̃j (0; t)

]∣∣∣∣∣∣
4

≤ (54)

≤ C0W
−2

∣∣∣∣∣∣
W∑
j=1

E†
(
ζ̃j (u; t)− ζ̃j (0; t)

)∣∣∣∣∣∣
4

+

W∑
j=1

E†
∣∣∣ζ̃j (u; t)− ζ̃j (0; t)

∣∣∣4
 ≤

≤ C0W
−2
[
W 4

∣∣∣E† (ζ̃j (u; t)− ζ̃j (0; t)
)∣∣∣4 + C1W

]
≤

≤ C0W
−2
[
W 4

∣∣∣Gψ (ψ−1N,m,R (t)
)
−Gψ (0)

∣∣∣4 + C1W

]
≤

≤ C0W
−1 + C1W

2u4ψ−4N,m,R (t) ;

the same logic also yields

W−1E†

∣∣∣∣∣∣
W∑
j=1

[
ζ̃j (u; t)− ζ̃j (0; t)

]∣∣∣∣∣∣
2

≤ C0uψ
−1
N,m,R (t) + C1Wu2ψ−2N,m,R (t) ,

E†

∣∣∣∣∣∣W−1/2
W∑
j=1

[
ζ̃j (0; t)−Gψ (0)

]∣∣∣∣∣∣
2

≤ C0.

Repeated applications of the Cr-inequality and of the Cauchy-Schwartz inequality to (53)

yield

E†
(∫ +∞

−∞
|γ (u; t)|2 dFψ (u)

)2

− E†
(∫ +∞

−∞
|γ (0; t)|2 dFψ (u)

)2

≤ C0Wψ−2N,m,R (t) .

Finally, tedious but elementary calculations yield

E†

∣∣∣∣∣∣W−1/2
W∑
j=1

[
ζ̃j (0; t)−Gψ (0)

]∣∣∣∣∣∣
4

= 3 (Gψ (0) [1−Gψ (0)])2 +O
(
W−1

)
.

Putting all together and using (50), it follows that

V † (Γt)− 2 ≤ C0

(
Wψ−2N,m,R (t) +W−1

)
,

whence (51) follows.
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Consider now (52). By convexity

∣∣∣∣∫ +∞

−∞
|γ (u; t)|2 dFψ (u)

∣∣∣∣2+δ ≤ ∫ +∞

−∞
|γ (u; t)|4+2δ dFψ (u) ;

also, applying the Cr-inequality

∫ +∞

−∞
|γ (u; t)|4+2δ dFψ (u) ≤

≤ C0

∫ +∞

−∞

∣∣∣∣∣∣W−1/2
W∑
j=1

[
ζ̃j (u; t)−Gψ

(
uψ−1N,m,R (t)

)]∣∣∣∣∣∣
4+2δ

dFψ (u) +

+ C0

∫ +∞

−∞

∣∣∣∣∣∣W−1/2
W∑
j=1

[
Gψ

(
uψ−1N,m,R (t)

)
−Gψ (0)

]∣∣∣∣∣∣
4+2δ

dFψ (u) .

Note that, by applying Burkholder’s inequality and convexity

∫ +∞

−∞
E†

∣∣∣∣∣∣W−1/2
W∑
j=1

[
ζ̃j (u; t)−Gψ

(
uψ−1N,m,R (t)

)]∣∣∣∣∣∣
4+2δ

dFψ (u) ≤

≤
∫ +∞

−∞
E†

∣∣∣∣∣∣W−1
W∑
j=1

[
ζ̃j (u; t)−Gψ

(
uψ−1N,m,R (t)

)]2∣∣∣∣∣∣
2+δ

dFψ (u) ≤

≤W−1
W∑
j=1

∫ +∞

−∞
E†
∣∣∣∣[ζ̃j (u; t)−Gψ

(
uψ−1N,m,R (t)

)]2∣∣∣∣2+δ dFψ (u) ≤ C0,

since ζ̃j (u; t) has finite moments of any order. Also

∫ +∞

−∞

∣∣∣∣∣∣W−1/2
W∑
j=1

[
Gψ

(
uψ−1N,m,R (t)

)
−Gψ (0)

]∣∣∣∣∣∣
4+2δ

dFψ (u) ≤

≤W 2+δ

∫ +∞

−∞

∣∣∣Gψ (uψ−1N,m,R (t)
)
−Gψ (0)

∣∣∣4+2δ
dFψ (u) ≤

≤W 2+δ

(
mG,ψ

ψN,m,R (t)

)4+2δ ∫ +∞

−∞
|u|4+2δ dFψ (u) ≤ C0,

where mG,ψ is the upper bound of the density of Gψ (·); the final estimate follows from

Assumptions 7 and 9(i). This proves (52).
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A.2 Proofs of main results

Proof of Lemma 1. The proof is similar to that of Lemma 1 in Trapani (2017), and therefore

only the main arguments are reported. Recall the definition

Σm (t) =
1

m

t∑
k=t−m+1

E
(
XkX

′
k

)
;

if t < τ , there is no change in the (r + 1)-th eigenvalue of E (XkX
′
k), and therefore the

proof that λ(r+1) (t) is finite is exactly the same as in Trapani (2017). We begin with the

case of HA,2. When t ≥ τ , consider

Σm (t) =
1

m

τ−1∑
k=t−m+1

E
(
XkX

′
k

)
+

1

m

t∑
k=τ

E
(
XkX

′
k

)
=

τ − t+m− 1

m
Σ(1)
m (t) +

t− τ + 1

m
Σ(2)
m (t) .

Let λ
(r+1)
1 (t) and λ

(r+1)
2 (t) be the (r + 1)-th eigenvalue of Σ

(1)
m (t) and Σ

(2)
m (t) respectively.

In the pre-break period, we have λ
(r+1)
1 (t) < ∞; as far as λ

(r+1)
2 (t) is concerned, this is

equal to C0N . The desired result follows immediately from Weyl’s dual inequality (see Tao

(2012)). The proof for the case of HA,1 is based on exactly the same arguments and is

therefore omitted.

Proof of Lemma 2. The proof follows from combining Lemma 1 and the proof of Lemma 2

in Trapani (2017).

Proof of Theorem 1. Consider (14); its proof follows similar passages as the proof of Theo-

rem 3.1 in Horváth and Trapani (2017), although it is actually a refinement of that result.

In the presence of a break, it follows from Lemmas 1 and 2 that

P

{
ω : lim

N,m→∞
φN,m (t) =∞

}
= 1,

for each t ≥ τ , as long as

N1−δ min{ t− τ + 1

m
,
τ +m− t− 1

m
} → ∞ for τ ≤ t ≤ τ +m− 1,

N1−δ → ∞ for s ≥ τ +m,
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hold. Thus, we can assume from now on that limN,m→∞ φN,m (t) =∞ holds. Note that

R−1/2
R∑
i=1

[ζi(u; t)−Gφ (0)] = R−1/2
R∑
i=1

[I{ξi ≤ 0} −Gφ (0)] +

+R−1/2
R∑
i=1

[
I{ξi ≤ uφ−1N,m (t)} − I{ξi ≤ 0} − (Gφ(uφ−1N,m (t))−Gφ(0))

]
+

+R−1/2
R∑
i=1

[
Gφ(uφ−1N,m (t))−Gφ(0)

]
.

By construction,

E∗ζj(u; t) = Gφ(uφ−1N,m (t)),

E∗(ζj(u; t)− E∗ζj(u; t))2 = Gφ(uφ−1N,m (t))
[
1−Gφ(uφ−1N,m (t))

]
.

Consider now the following passages:

E∗
∫ ∞
−∞

(
R−1/2

R∑
i=1

[
I{ξi ≤ uφ−1N,m (t)} − I{ξi ≤ 0} − (Gφ(uφ−1N,m (t))−Gφ(0))

])2

dFφ(u) =

=

∫ ∞
−∞

E∗
[
I{ξ1 ≤ uφ−1N,m (t)} − I{ξ1 ≤ 0} − (Gφ(uφ−1N,m (t))−Gφ(0))

]2
dFφ(u),

on account of the independence of the ξis. Also, note that the random variable I{ξ1 ≤

uφ−1N,m (t)} − I{ξ1 ≤ 0} has expected value given by Gφ(uφ−1N,m (t)) − Gφ(0), and variance

equal to

E∗
[
I{ξ1 ≤ uφ−1N,m (t)} − I{ξ1 ≤ 0} −Gφ(uφ−1N,m (t))−Gφ(0)

]2
=

=
(
Gφ(uφ−1N,m (t))−Gφ(0)

) [
1−Gφ(uφ−1N,m (t))−Gφ(0)

]
≤

≤ Gφ(uφ−1N,m (t))−Gφ(0).

Hence, we have

∫ ∞
−∞

E∗
[
I{ξ1 ≤ uφ−1N,m (t)} − I{ξ1 ≤ 0} − (Gφ(uφ−1N,m (t))−Gφ(0))

]2
dFφ(u) ≤

≤
∫ ∞
−∞

[
Gφ(uφ−1N,m (t))−Gφ(0)

]
dFφ(u) ≤ mG

φN,m (t)

∫ ∞
−∞
|u|dFφ(u),

where the last passage follows from Assumption 6(i), with mG an upper bound for the
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density of G. Also

∫ ∞
−∞

(
R1/2

[
Gφ(uφ−1N,m (t))−Gφ(0)

])2
dFφ (u) ≤ R

φ2N,m (t)
mG

∫ ∞
−∞

u2dFφ(u).

Hence, using Assumptions 4 and 5, we conclude via Markov’s inequality that

Θt =

∫ ∞
−∞

{
1√

Gφ(0) [1−Gφ(0)]R1/2

R∑
i=1

[I{ξi ≤ 0} −Gφ(0)]

}2

dFφ(u) + oP ∗(1) =

=

{
1√

Gφ(0) [1−Gφ(0)]R1/2

R∑
i=1

[I{ξi ≤ 0} −Gφ(0)]

}2

+ oP ∗(1),

and therefore the result follows from the Central Limit Theorem for Bernoulli random

variables. The proof of (15) follows from exactly the same passages as the proof of (43).

Proof of Theorem 2. The proof of the theorem is exactly the same as that of Theorem 1,

based on Lemma 4.

Proof of Theorem 3. By (50) and (51), we have

max
1≤k≤Tm

√
m

k (k +m)

∣∣∣∣∣
m+k∑
t=m+1

Γt − 1√
2

∣∣∣∣∣ = max
1≤k≤Tm

√
m

k (k +m)

∣∣∣∣∣
m+k∑
t=m+1

Zt

∣∣∣∣∣+O
(
m−ε

)
, (55)

where

Zt =
Γt − E† (Γt)√

V † (Γt)

is an i.i.d. sequence with mean zero, unit variance and finite moments of order 2 + δ.

Consider (25); on account of (55), this holds immediately, following the same passages as

in the proof of Theorem 2.1 in Horváth et al. (2004). As far as (26) is concerned, due to

the polynomial rate of approximation in (55), it suffices to prove that

P †

(
Am max

1≤k≤Tm

√
m

k (k +m)

∣∣∣∣∣
m+k∑
t=m+1

Zt

∣∣∣∣∣ ≥ x+Dm

)
= e−e

−x
,

as min (N,m,R,W ) → ∞. This is a relatively standard exercise, and it is very similar

to the proof of Theorem 1.1 in Horváth et al. (2007); we therefore report only the main
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passages. Let a (m) = (lnm)2; by virtue of (52), it holds that

sup
a(m)≤k<∞

√
m

k (k +m)

∣∣∣∣∣
m+k∑
t=m+1

Zt −B (k)

∣∣∣∣∣ = OP †
(
a (m)

− ε
2(2+ε)

)
, (56)

where {B (t) , 0 ≤ t <∞} is a standard Wiener process - see Komlós, Major and Tusnády

(1975, 1976). We now show that

max
a(m)≤k≤ cm

lnm

B
(

k
k+m

)
√

k
m

= max
a(m)≤k≤ cm

lnm

B
(

k
k+m

)
√

k
k+m

+OP †

(
(ln lnm)1/2

lnm

)
; (57)

given that ∣∣∣∣ km − k

k +m

∣∣∣∣ ≤ ( km
)2

,

using the modulus of continuity of the Wiener process we obtain

max
a(m)≤k≤ cm

lnm

∣∣∣∣∣∣
B
(

k
k+m

)
√

k
m

−
B
(

k
k+m

)
√

k
k+m

∣∣∣∣∣∣ = OP † (1) max
a(m)≤k≤ cm

lnm

k

m

(
ln
m

k

)1/2
,

whence (57) follows. Consequently, the following results hold:

1√
2 ln lnm

max
1≤k≤Tm

B
(

k
k+m

)
√

k
m

P †→ 1, (58)

Am max
1≤k≤a(m)

B
(

k
k+m

)
√

k
m

−Dm
P †→ −∞, (59)

Am max
cm
lnm
≤k≤Tm

B
(

k
k+m

)
√

k
m

−Dm
P †→ −∞; (60)

the results above are shown, for
√

k+m
m B

(
k

k+m

)
, in Lemmas 3.4, 3.5 and (in the proof of)

Lemma 3.6 in Horváth et al. (2007); in (60) we have used the fact that, by Assumption 8,

there exists a c > 0 such that Tm > cm. Combining (56), (58), (59), (60) and (57) together,
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we obtain

P †

(
Am max

1≤k≤Tm

1√
k (k +m)

∣∣∣∣∣
m+k∑
t=m+1

Zt

∣∣∣∣∣ ≥ x+Dm

)
=

= P †

Am max
a(m)≤k≤ cm

lnm

∣∣∣B ( k
k+m

)∣∣∣√
k

k+m

≥ x+Dm

+ o (1) ;

then the desired result follows from Lemma 3.6 in Horváth et al. (2007).

Consider now (27); it is convenient to prove the result under HA,2 first. On account of

(9), Lemmas 1 and 2, Assumption 4(i) and (18), it holds that

Γt = C0W + oP † (W ) , for t ≥ τ + C1m
1/2+ε,

where ε > 0 is such that N1−δ

m1/2−ε → C2 ∈ (0,+∞) and

C0 =

∫ +∞

−∞

|Gψ (u)−Gψ (0)|2

Gψ (0) [1−Gψ (0)]
dFψ (u) .

Thus, standard algebra yields that under HA,2

m+k∑
m+1

Γt − 1√
2

= OP † (1)
[
m+ k −

(
τ + C1m

1/2+ε
)]
W + oP † (W ) ,

whenever k ≥ τ + C1m
1/2+ε. Therefore,

Λm = OP † (1)m1/2W max
1≤k≤Tm

m+ k −
(
τ + C1m

1/2+ε
)

k1/2 (m+ k)1/2
+ oP † (W ) ;

elementary algebra yields

max
1≤k≤Tm

m+ k −
(
τ + C1m

1/2+ε
)

k1/2 (m+ k)1/2
≥ C2 > 0;

thus, Assumption 8 implies (27). Under HA,1 the logic is similar, and therefore only the

main passages are reported. Under HA,1 we have

Γt = C0W + oP † (W ) , for τ + C1m
1/2+ε ≤ t ≤ τ +m− C1m

1/2+ε,
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with the same notation as above; it is then easy to see that

max
1≤k≤Tm

m+ k −
(
τ + C1m

1/2+ε
)

k1/2 (m+ k)1/2
≥ C2 > 0;

the proof is now the same as before.

Proof of Corollary 1. The corollary is an immediate consequence of Theorem 3 and its

proof. Considering (28), note that P † (τ̂m < T ) is monotonically nondecreasing in T ; by

definition

P † (τ̂m < T ) = P

(
max
1≤k≤T

d (k;m)

ν∗ (k;m)
> cα,m

)
≤ P

(
max

1≤k<∞

d (k;m)

ν∗ (k;m)
> cα,m

)
=

= P

(
sup

0≤t≤1

|B (t)|
tη

> cα,m

)
+ o (1) = α,

which proves (25); (26) follows from the same passages. Similarly, as far as (29) is concerned,

note that

P † (τ̂m ≤ T ) = P

(
c−1α,m max

1≤k≤Tm

d (k;m)

ν∗ (k;m)
> 1

)
= 1,

by (27).
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