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Abstract

We study the theoretical properties of the model for fractional cointegration proposed
by Granger (1986), namely the FVECMy . First, we show that the stability of any discrete-
time stochastic system of the type II(L)Y; = ¢ can be assessed by means of the argument
principle under mild regularity condition on IT(L), where L is the lag operator. Second, we
prove that, under stability, the FVECM,; allows for a representation of the solution that
demonstrates the fractional and co-fractional properties and we find a closed-form expres-
sion for the impulse response functions. Third, we prove that the model is identified for
any combination of number of lags and cointegration rank, while still being able to generate
polynomial co-fractionality. Finally, we show that the asymptotic properties of the maxi-
mum likelihood estimator reconcile with those of the FCVAR,; ;, model studied in Johansen
and Nielsen (2012).
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1 Introduction

The concept of equilibrium is central in many economic and financial models. In macroeco-
nomics, equilibrium relations often originate from an economic theory linking agents’ expecta-
tions to the actual outcome variables, as those behind the term structure of the interest rates.
In finance, long-run equilibrium relations are often the result of no-arbitrage constraints, where
deviations from the equilibrium can be interpreted as evidence against the ability of the financial
markets to fully process new information and incorporate it in the asset prices. Depending on
the persistence of the deviations from the no-arbitrage relation, i.e. the strength of the rever-
sion of the system to long-run equilibrium, we might conclude on the extent of the violation
of the market efficient hypothesis. For almost thirty years, the analysis of cointegrated systems
has been the paradigm in the empirical investigation of equilibrium relations between economic
variables. The notion of cointegration, as originally defined in Engle and Granger (1987), en-
tails a long-run relation between variables characterized by highly persistent common stochastic
trends, I(1), with short-memory, I(0), deviations from the equilibrium.

Unfortunately, the classification of I(1) and I(0) variables is very restrictive and does not ac-
commodate the dynamic features of many economic time series. For example, the very persistent
dynamics of inflation can not be described by means of integrated processes, but, consistently
with the price theory of Rotemberg (1987), inflation is best described by a process with a frac-
tional order of integration which arises from the cross-sectional aggregation of simple, possibly
dependent, dynamic micro processes, see Granger (1980) and Zaffaroni (2004), and the recent
contribution of Schennach (2018). In particular, fractionally integrated processes are character-
ized by long range dependence or long-memory; that is a strong relationship between observa-
tions that are distant in time, since the effects of a shock last for many periods and decay slowly
and hyperbolically, see Granger (1980) and Hosking (1981). For this reason, the class of frac-
tionally integrated processes have changed the way in which researchers describe and forecast
macroeconomic and financial series, providing an elegant and parsimonious way of describing
the dynamic features of economic time series with any order of integration. Evidence of long
memory is found in macroeconomic aggregates, such as the consumer prices and inflation (see
Geweke and Porter-Hudak, 1983), interest rates (see Shea, 1991), and in financial series as ex-
change rates (see Baillie and Bollerslev, 1994) and the volatility of stock prices, see, among others,
Baillie et al. (1996) and Andersen and Bollerslev (1997).

In this paper, we study the properties of the multivariate model of Granger (1986) to analyze
the long-run equilibrium relations between series that are integrated of a fractional order. We
show that the the model of Granger (1986) is coherent with the concept of fractional cointegra-
tion or co-fractionality. In particular, fractional cointegration implies that linear combinations
of I(d) processes are I(d — b), with d,b € R, and 0 < b < d, see Robinson and Marinucci (2003)
among others for a formal definition. In other words, the concept of fractional cointegration

involves the existence of common stochastic trends integrated of order d, with short-period de-



partures from the long-run equilibrium integrated of order d — b. Thus the range of applicability
of the concept of cointegration is enormously extended compared to that originally defined by
Engle and Granger (1987).

In his original contribution, Granger (1986, Equation 4.3) already introduces a model for
co-fractionality, the fractional VECM (FVECMy;, henceforth). The FVECM,;, extends the well-
known VECM to the fractional case, which is obtained by setting the parameters d and b to
1. For many years, most of the econometric analysis has been focusing to cases with d and b
restricted to integers. More recently Johansen (2008b) has noted that the characteristic function
of the co-fractional model of Granger (1986) involves a complicated transcendental equation, so
that it is inconvenient to analyze in the sense that the stochastic properties of the solution generated
by the equations are not easily reflected in properties of the coefficients. Hence Johansen (2008b)
proposes a slightly modified version of the FVECM, ;, namely the FCVAR,, and studies the
properties of the new model in terms of conditions for the stability and Granger representation
theorem. The FCVAR,, provides a fully parametric characterization of the long-run relations
between fractional series and it encompasses the VECM analyzed in Johansen (1988), which is
obtained when the parameters d and b are restricted to be equal to one. Johansen (2008b) studies
the properties of the FCVAR;;, in terms of Granger representation, while Johansen and Nielsen
(2012) derive the asymptotic properties of the profile maximum likelihood (ML) estimator of
the FCVAR,, see also Lasak (2010). Although alternative models for fractional cointegration
can be found in Avarucci (2007) and Tschernig et al. (2013), the FCVAR,;, of Johansen (2008b)
is probably the most commonly adopted specification in this context. Empirical applications
of the FCVAR,;, can be found in Rossi and Santucci de Magistris (2013), Caporin et al. (2013),
Bollerslev et al. (2013), Dolatabadi et al. (2015), Dolatabadi et al. (2016) and Nielsen and Shibaev
(2018). Unfortunately, as noted by Johansen and Nielsen (2012) and subsequently by Carlini
and Santucci de Magistris (2017), the FCVAR,, is not identified when the number of lags is over-
specified and the cointegration rank is also unknown. In other words, the FCVAR; ;, can generate
special cases of polynomial fractional cointegration analogous to those studied in Franchi (2010),
when the number of lags is not correctly determined. This problem might have led to a limited
use of the FCVAR ;, in the empirical applications. Indeed, it is often needed to impose restrictions
on the coefficient d or to adopt rather computationally-intensive algorithms (such as grid-search)
to study the shape of the log-likelihood function in different regions of the parameter space, see
the discussion in Nielsen and Popiel (2014).

In this paper, we begin by discussing the stability properties of the FVECM,, in light of the
argument principle, which is a well known result in complex analysis but, to the best of our
knowledge, has never been applied in the context of time-series econometrics. The application
of the argument principle to determine the stability of a dynamic system is a general result that
can be applied in a wide range of circumstances beyond the context of fractional cointegration.
Examples of possible applications of the argument principle are in the field of rational expec-

tation models when assessing the existence of the steady-state in reduced-form systems, see



Binder and Pesaran (1997) and Klein (2000) among others, and when dealing with non-causal
processes like those introduced in Gouriéroux and Zakoian (2017) for explosive bubbles. Under
the stability condition, we derive a number of theoretical results for the FVECM;, of Granger
(1986). First, we show that the model of Granger (1986) admits a Granger representation in the
fractional context. This makes the model suitable for analyzing equilibrium relations between
fractionally integrated series. Furthermore, the impulse response functions of the FVECM,;, are
obtained in closed-form in terms of a recursive formula built upon the type-II fractional differ-
ence operator. Second, we prove that the model is identified for any choice of the number of lags
and cointegration rank. This result is expected to simplify the empirical analysis of fractionally
cointegrated systems compared with the FCVAR,;,. Third, we show that the FVECMy, also al-
lows for a Granger representation under polynomial cofractionality, which is a generalization of
the I(2)-type cointegration to the fractional context. Finally, we complete the theoretical analysis
by studying the asymptotic behavior of the ML estimator of the coefficients of the FVECMy ;.
We show that the conditions for applying the asymptotic results of Johansen and Nielsen (2012)
hold also in the FVECMy;, context, such that consistency and asymptotic distribution of the ML
estimator follow.

The paper is organized as follows. Section 2 presents the FVECM, ;. Section 3 discusses
the conditions for the stability of the system. Section 4 contains the theorem on the Granger
representation of the FVECM,;, and the derivation of the impulse response functions of the
FVECM,. In Section 5 we prove that the FVECMy,, is identified for any combination of lag-
length and cointegration rank. In Section 6 we show that the FVECM,;, allows for polynomial
fractional cointegration, i.e. we provide a Granger representation theorem for I(2)-type frac-
tional processes. Section 7 contains results on the consistency and asymptotic distribution of
the maximum-likelihood estimator of the parameters of the FVECMy ;. Finally, Section 8 con-
cludes. Appendix A contains a discussion of the regularity of the characteristic polynomial,

while the proofs of the theorems are in Appendix B.

2 The fractional VECM of Granger (1986)

In this section, we outline and study the properties of the FVECM,;, of Granger (1986), which is
defined as

k
Her: AX = af APLX, + ) TAX, + &, (1)
j=1
and it is an extension of the well known VECM to the case of fractional cointegration, see also
Davidson (2002). The fractional operator A? in (1) is defined as

00 (d\
A= (1- 1) = (—1)]( .)Lf,
2,



where L is the lag operator, such that LX; = X;_; and d € R. The operator A%? := (1 — L)@?
is defined in an analogous way. The term Ly := 1 — Ab denotes the so called fractional lag
operator. The term X; is a p-dimensional vector, @ and f are p X r matrices, where r defines
the cointegration rank, ¢ is p-dimensional independent and identically distributed with mean
zero and covariance matrix Q > 0, and I, j = 1,...,k, are p X p matrices loading the short-
run dynamics. The coefficient d determines the degree of fractional integration of the series Xj,
while the coefficient b determines the so called cointegration gap, i.e. the degree of fractional
integration of §'X; that is d — b. Model (1) reduces to the classic VECM when d = b = 1.! The
model H,  in (1) has k lags and 0 = {d, b, a, B, 1, ..., I, Q} is the collection of parameters. The

parameter space of the model is
O={a eR,BeR T;eR j=1,....k,de R",beR",d>b>0,Q >0 e R},

where r is the cointegration rank, such that p — r determines the number of common stochastic

trends between the series. When r = p, the model is

k
Hor:  AXy = EAPLX, + ) TAX, + &, 2)
j=1

where = is a p X p matrix with full rank. By adopting the standard tools for the analysis of
the solutions of the FVECMy;, in (1), Johansen (2008b) notes that it is not possible to study the
stability of the system and to obtain a Granger representation for X;. Hence, Johansen (2008b)
proposes an alternative version of the FVECMy;, the FCVAR, . The FCVAR, is defined as

k
AX, = af AL X, + Z LA X, + e, (3)
=1

and it replaces the usual lag operator in the autoregressive polynomial with the fractional lag
operator. In other words, the FVECMy;, in (1) and the FCVAR;, in (3) share the same cointe-
gration component, aff’A4"?L,X;, which, as noted by Johansen (2008b, p.652), arises from the

formulation in terms of common trends and cofractional terms of Breitung and Hassler (2002)

1 As also noted in Johansen (2008b), model (1) is a slightly different version of the original Granger’s model in
(1). Indeed, the original model reported in Granger (1986, Equation 4.3) is

k
AX, = af APLLX, g + Z TAYX, ; +é;.
j=1

Imposing the restriction d = b = 1 leads to

k
AXt = aﬁ'Xt_z + ZI}AXt—] + &,
=

which is not the classic VECM since the error correction term f’X; enters on the right-hand side of (1) lagged by
two periods.



with f/X; = A~%*ty;, and y'X; = A%y, where u, = (uy,,uy,) ~ iidN(0,%), and (B, y’) is a full
rank matrix, with § being a p X r matrix and y a p X (p — r) matrix.

The inclusion of the fractional lag operator in the short term dynamics enables Johansen
(2008Db) to assess the stability of the FCVAR,;, and to prove that the solution of the characteristic
polynomial of the FCVAR;;, exists so that the FCVAR,;, admits a Granger representation. Based
on this result, Johansen and Nielsen (2012) derive the asymptotic theory for the ML estimator of
the parameters of the FCVAR; ;. Recently, Carlini and Santucci de Magistris (2017) highlight the
potential identification issues that emerge when the true lag structure and co-integration rank
of the FCVAR;;, are unknown. The identification problems mostly arise as a consequence of
the presence of the fractional lag operator in the autoregressive part of (3). In the following, we
show that the stability conditions of the FVECMy;, can be studied through the argument principle
and the Granger representation theorem can be obtained by the inversion of the characteristic

function.

3 Stability

We first provide a number of definitions that are useful for the characterization of the properties
of the FVECMd’b.

Definition 3.1. Following Johansen (2008b), we define 7 (0) processes, ¥ (d) processes and frac-

tional cointegration as follows:

(i) If ¥; is a sequence of p X p matrices for which }':2, [[%j]1* < oo with ¥(z) = 220 ¥z,
We call the stationary linear process X; = 32, ¥jé—; fractional of order zero, denoted as
X; ~ F(0), if the spectrum at zero fx(0) = %‘I’(l)Q‘P(l)’ # 0.

(i) We denote 7(0),. the class of processes of the form, X;" = ¥(L), & = Z]t-;(l) Yies_j.
(iii) We say that X; is fractional of order d and write X; ~ 7 (d), if conditionally on the past
{X;,s < 0}, A%X; — iy ~ F(0), for some function y; of the past where

t—1
A%X, = (1- L)X, = Z(—nf (j)Lth (4)
j=0

(iv) If X; ~ F(d) and there exists a vector f so that 'X; ~ F(d — b) for some b, 0 < b < d, we

call X; co-fractional with co-fraction vector f.

For a given r < p and k, the characteristic function of the FVECMy, in (1) is

k
(z) = (1= 2)°, - af (1 - 221 - (1= 2)") - Y T, - 22, 5)
j=1



or by setting II(z) := (1 — z)’~II(z), we have

k
(z) = (1- z)pr —af'(1-(1-2)°) - Z L1 - 2)°7,
=1
with I, being the p X p identity matrix.

A crucial assumption for the stability of the FVECMy;, is that there are only p — r roots of
III(z)] = 0in z = 1, while the others are outside the unit circle. While in the FCVARy of
Johansen (2008b), the trick of substituting y = 1 — (1 —z)? in I1(z) allows to obtain a polynomial
in the fractional lag operator for which the conditions of stability can be easily shown (up to a
remapping to the fractional unit circle), the same can not be done for the FVECMy ;. However,
the analysis of the stability of the FVECM, can be carried out by adopting the general result
in complex analysis known as the argument principle, see Fuchs and Shabat (1964, p.322). Let us
first define the function g(z) = |[I(z)| = 0. Given the cointegration rank r, g(z) can be further
factorized as g(z) = (1 — 2)?®™") f(z), so that we can count the number of zeroes of f(z) inside
the unit circle. Provided that f(z) is a holomorphic function in the unit circle, the number of

zeroes is obtained through the following Cauchy integral

1 [ f®
— dz=N - P, 6
27i f(z) 2=N=P (©)
S
where % is the logarithmic derivative of f(z) in C, and N and P are respectively the number

of zeros and poles in the region § = {z € C s.t. |z| < 1}. In Appendix A we also show that f(z)
does not have poles inside the unit circle (£ = 0) nor zeros and poles on the boundary of S, so
that, by setting z = e’?, the Cauchy integral becomes

21 pry i
zim, O %ieiedHZN. (7)

The integral on the right-hand side admits an analytical solution, which can be approximated
numerically with very high accuracy, see Delves and Lyness (1967).* The following lemma shows
that the stability condition of the FVECM can be equivalently expressed in terms of the principle

of the argument.

Lemma 3.2. Let f(z) be an holomorphic function. Then, N = 0 if and only if |11(z)| = 0 implies
that either z = 1 or z are outside the unit circle. Hence, the FVECM_, is stable.

The lemma is a direct consequence of the Cauchy’s argument principle see Ahlfors (1953).
Appendix A provides a discussion on the regularity properties of f(z) = (1—z)"?®")g(z), that is
f(z) is an holomorphic function in the unit circle. It should be noted that the range of applica-

bility of the Cauchy’s argument principle to assess the stability of a stochastic process extends

2The MATLAB code argument _principle.muses the quadrature method to evaluate the integral, which
is a more accurate alternative than the trapezoidal method studied in Delves and Lyness (1967).



beyond the current application to the FVECMy;, and it can be employed when the standard anal-
ysis of the characteristic function is complicated/unfeasible provided that f(z) is a holomorphic
function in the unit circle. In the following section, we show that the FVECM, ; admits a Granger

representation given that the stability condition of the FVECMy, of Granger (1986) is satisfied.

4 Granger Representation Theorem

In the following, we show that the FVECMy, in (1) is coherent with the notion of fractional
cointegration, as in Definition 3.1-(iv). In other words, the FVECM,;, admits a representation of
the solution that demonstrates the fractional and co-fractional properties. In particular, Theorem
4.1 shows that the FVECMy;, allows for a Granger representation in the fractional context. We
also introduce the variable y = 1 — (1 — z)” and we define I1(z) = II(z, y) as

k
f(z,y) = (1 -yl —af'y - ) L1 -y).
=1
Adding and subtracting a8’z from I1(z, y) we obtain
~ k .
M(z,y) =(1-y) (Ip +af - Z l“jzj) —af.
=1

Theorem 4.1. If N = 0 and o and f§ have rank r < p, and if | Tp.| # 0 with = I, — Zle I;,
then
X, = (LA + A]VY, + 4y, 8)

where C(L) = Bi(,T(L)B.) ', withT(L) = I, — le GL and C(1) = B(a,T(1)BL) 'e,.
The term Y; ~ F(0) with continuous spectrum that at zero frequency is given by c*é)ﬂc* # 0 and

yy = =TI (L) 'TI_(L)X; depends on the initial values. Thus, X, is fractional of order d, whereas AbX,
and B’ X; are fractional of orderd — b.

Proof in Appendix B.1.

Although sharing similarities with the Granger representation of the FCVAR,;, in Johansen
(2008b), the Granger representation of the FVECMy; displays one interesting difference with
its predecessor. Indeed, the loading term of the common stochastic trend is not a reduced rank
matrix as in Johansen (2008b), but it is reduced rank lag-polynomial matrix, C(L). In particular,

the leading term in (8) can be written as

k
CLAY e = B, (- ) GLY) | AT,
i=1

[ee] (o)

. _d id
E NP ja' A% = E L@’ N ey,
j=0 j=0



where 372, ;L = (o, T(L)BL)7", so that

- r Aj—d —(d-b
X = C(OAT e + ) ol Nl + A%, + . (9)
j=1

Equation (9) shows that the process is composed as the sum of two usual terms C(1)A7%; and
A;(d_b)Yt, but the extra term .72, LdDja’lA]:dgt is (in general) fractional of order d — 1, but

perhaps greater than the order of Y;. In any case, we still have that

’ j—d 7 A —(d=b 7 A —(d=b
BX:=p Z BLOja N e + A+( Yo+ B =B A+( Y, + B,
=0
that is f’X; is fractional of order d — b. This means that the FVECM reconciles with the standard
notion of fractional cointegration. Furthermore, under the condition |/ I'(1)3, | # 0, we cannot
have polynomial fractional cointegration because sp(C(L)) = sp(f.), where the sp(A) denotes

the column space of A. Section 6 discusses the case of polynomial fractional cointegration when
o' I'(1)B, has reduced rank.

4.1 Impulse response function

The impulse response functions represent a useful tool to assess the dynamic impact of a shock
of a variable on anther variable in a system. The following lemma contains the recursive formula
to calculate the coeflicients of the impulse response functions for the FVECM,;, obtained by the
vector MA representation of the FVECMy, arising from Theorem 4.1.

Lemma 4.2. Consider the FVECM,, with k lags defined in (1). The impulse responses ©;, j > 0 are

given by the following set of recursions:

Qo = Ip, 0 = —pi(d) + af'(pi(d = b) — p1(d)) + T,
-1
Or =001+ ) WO i1, (=23,...
i=0
J
¥ = af’(pj+1(d = b) — pjs1(d)) + Z Lipj-i(d) — Lpj+i(d), j=1,....,k—1

i=1

k
¥ = af (psr(d = b) = posa(d) + ) Tipsi(d) = Lppsri(d), j=k,...
i=1

where p;(a) = (-1)'(}), a e R*.

Section B.2 in Appendix B reports the derivation of the recursive formulas for the calculation
of the impulse response coefficients. Figure 1 displays an example of IRF for the FVECM,;, when
p =2,r = 1and k = 1. The left panel displays the IRFs of a stable system, which slowly decay

to zero due to the persistent nature of the variables which are fractional of order d = 0.6. The

9



right panel reports the IRFs of an unstable system, which is correctly detected by computing the

Cauchy integral in (6). Under an unstable setup, the IRFs explode as the horizon h increases.

5 Identification

We now study the identification property of the FVECM;, for any choice of the lag, k, and
cointegration rank, r. As shown in Carlini and Santucci de Magistris (2017), there exist several
equivalent parametrization of the FCVAR,, for different values of k and r. First, we introduce

the concept of identification and equivalence between two models as in Johansen (2010).

Definition 5.1. Let {Py, 0 € O} be a family of probability measures, that is, a statistical model.
We say that a parameter function g(0) is identified if g(6;) # g(6,) implies that Py, # Pp,. On the
other hand, if Py, = Py, and g(6,) # g(0,), the parameter function g(6) is not identified. In this

case, the statistical models Py, and Py, are equivalent.

As noted by Johansen (1995, p.177), the product af’ is identified but not the matrices @ and
B because if there was an invertible r X r matrix &, the product ¢’ would be equal to ocgﬂé,
where o = af and f; = p¢'. In the following, we do not discuss the identification of & and
B, that is generally solved by a proper normalization of . The following theorem states that the
parameters of the FVECMy;, in (1) are uniquely identified.

Theorem 5.2. For anyk andr, the parameters of the FVECMy, in (1) are identified, up to rotations
of the vectors a and f5.

Proof in Appendix B.3.

It follows from Theorem 5.2 that the FVECMy, is identified for any choice of k and r. This
means that for each combination of k and r we obtain a model that is distinct from the others.
Hence the following corollary highlights the nesting structure of the FVECMy,, that is a direct

consequence of the identification property.

Corollary 5.3. The nesting structure of the FVECMy, is represented by the following scheme:

Hop < Hon € Hop € -+ C Hog
N N N N

Hiy ¢ Hin ¢ Hip € -+ C Hig
N N N N (10)
N N N N

7‘(1),0 - 7‘(17,1 - 7’(1),2 c --- C Wp,k-

The nesting structure in (10) is a direct consequence of the identification property outlined

in Theorem 5.2. In particular, row-wise we have that, for a given k, the model with full rank

10



nests all models with reduced rank r < p. Column-wise, it is trivial to note that for a given r,
the model with k lags nests models with 0,1,...,k — 1 lags. Finally, by Theorem 5.2, models
Hox and H, 1 are distinct, and a fortiori Hyy and H, _; are also distinct when r < p. The
regular nesting structure of this model facilitates the model selection in the empirical works
with a general-to-specific sequence of LR tests similar to the one adopted in the standard VECM
context and also discussed in Johansen and Nielsen (2012). On the contrary, the FCVAR; of
Johansen (2008b) displays a non-regular nesting structure that makes the model selection more
involved as a consequence of the lack of identification, see Carlini and Santucci de Magistris
(2017).

6 Polynomial cofractionality

In the derivation of Theorem 4.1, we assumed that |a/ I'(1)B,| # 0. This assumption is known
as I(1) condition in the classic VECM framework. In the framework of fractionally cointegrated
VAR systems, Carlini and Santucci de Magistris (2017) denoted it as the " (d) condition” to
signal that under |/ T'(1)f.| # 0 and under correct model specification, there is an unique pair
of parameters d and b such that X; ~ F(d) and f’X; ~ F(d — b). Unfortunately, when the
number of lags in the FCVAR;, is overspecified, Carlini and Santucci de Magistris (2017) show
that violations of the #(d) condition might arise, inducing identification problems associated
with special cases of polynomial cofractionality. For example, there might exist two parameters
di =d—-"b/2and by = b/2 such that X; ~ F(d; + by) and f'X; ~ F(d; — by) when k > k.
Provided that Theorem 5.2 guarantees identification of d and b for a generic lag-length in the
FVECM,,, framework, we can now focus on the cointegration properties of X; when imposing

the restriction )
ay (IP - Z rj) pr=¢n', (11)
j=1

with ¢ and 5 being (p — r) X s matrices with a, and f, such that «’a; = 0 and ', = 0, and
that 0 < b < d. This is the analogous of the I(2) model derived in the VECM, which is obtained
when d = 2 and b = 1, see Johansen (1992). The characteristic function of the FVECM,;, under
(11) is
k
A@) = (1-2)L - af (1 -2 (1= (1-2)") - > (1 - 2)7, (12)
j=1
where A(z) is different from II(z) in (5) since the restriction (11) is imposed. We can define an

equivalent characteristic function as

k
Az) =(1-2"%z) = (1-2)T, —af(1-(1-2)) - Z Ti(1-2)’2.
j=1

The analysis of the stability of the characteristic function can be carried out again the princi-

11



ple of the argument as discussed above. Let us first define the function g*(z) = |A(z)| = 0. Given
the cointegration ranks r and s, g*(z) can be further factorized as g*(z) = (1 — z)?*2®"=9) f(2),
see Johansen (1997, p.437). Hence, we can apply the argument principle as in (7) and count the
number of zeroes of f(z) inside the unit circle. Given the stability of the FVECM system under
the restriction (11), the following theorem provides the Granger representation of the FVECM

under polynomial cofractionality.
Theorem 6.1. If N = 0 and o and  have rank r < p with o (Ip - Z;C:l F]) Bi of ranks <p—r
and if a&}T(1)Ba’T(1)B, is invertible with @ = a(a’a)™, B = BB B) ™", a2 = a &y and fr = Bin.,
then

X; = LA e + CL LA e + ATV 4+, (13)

where ji; = —A,(L)"'A_(L)X; depends on the initial values. The polynomial matrices Co(L) and
Ci(L) are

Co(L)
Ci(L)

B2622(L) "
—pia; + (B1612(L) — Ba'T(L)Bs) O22(L) 'ty +
+B2055(L) ™" (01 (L)a; — a5T(L)Boa) + P2E(L)as,

where a; = al(a{al)'l witha; = a, &, Bl = [31(,81/31)'1 with By = B.n. The process Y; is stationary
with continuous spectrum, and X; is fractional of orderd + b, (f’, 1)’ X; is fractional of order b, and
B'X; — @T(L)AL X, is fractional of order 0.

Proof in Appendix B.4.
In analogy with Theorem 4.1, the loadings C»(L) and C;(L) of the fractional roots of order

d + b and d are matrix polynomials in the lag operator.

7 Inference

As shown in Johansen and Nielsen (2012), the parameters of the FCVAR,;, can be estimated
following a profile likelihood approach. We follow here the same approach for the estimation of
the parameters of the FVECM, ;. For fixed ¢ = (d, b)’, the ML estimator is found by reduced rank
regression of A“X; on AY"’L, X; corrected for {AdLiXt}le, see Anderson et al. (1951) or Johansen
(1995). For fixed ¢ = (d, b)’ in model H,, we define the residuals, R;; (/) for i = 0, 1, of the reduced
rank regression of A?X; on A2L/X; and APLX, on AL/X, for j = 1, .., k, respectively. We also
define the product moment matrices S;;(y/) for i,j = 0,1, that is S;;(yy) = T~} Zthl Rit(tﬁ)R;.t(l//).

Given the product moment matrices, we can express the generalized eigenvalue problem as

det (0)511(‘//) - 510(¢)5601 (¢)501(¢)) ; (14)

whose solutions, w;({) for i = 1,...,p, are sorted in decreasing order. Analogously with the
reduced rank regression in the VECM framework of Johansen (1991), the (profile) log-likelihood
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function for given fixed ¢ is

br () = —log det(Soo(y)) — ) log(1 — wy(¥)). (15)
i=1

Therefore, for a given value of the cointegration rank r = 1,...,p, ML estimates of d and b,
denoted as d and l;, can be calculated by maximizing the profile log-likelihood function, ¢r,, as

a function of ¥ by a numerical optimization procedure, that is

A

Y = arg min trr (). (16)

Finally, given d and l;, the estimates &, B, f‘j, j=1,...,k, and Q are found by reduced rank

regression as in Johansen (1991, 1995).

7.1 Asymptotic properties of the ML estimator

This section discusses the asymptotic properties (consistency and asymptotic distribution) of
the ML estimator of the FVECMg ;. The theorems outlined in this section follow Johansen and
Nielsen (2012) very closely and the proofs are aimed at verifying the conditions under which
the asymptotic results of Johansen and Nielsen (2012) can be extended to the FVECM; context.

Similarly to Johansen and Nielsen (2012), we make the following assumptions
Assumption 7.1. We assume that:
(i) Fork > 0and 0 < r < p, the process X; t = 1,2,...T, is generated by model H, .
(ii) The errors & are i.i.d. (0, Qo) with Q¢ > 0 and E|&|® < co.
(iii) The initial values X_,, n > 0 are uniformly bounded.
(iv) The true parameter value 6, satisfies:

1. (do,by) € ¥, with ¥ = {(d,b) : 0 < b < d < d;} where d; > 0 can be arbitrarily large.
2.0<dy—by<1/2,by#1/2°

3. Tox # 0 (if k > 0), ap and fy are p X r matrices of rank r, agffy # —I,. Furthermore, the
F(d) condition, |a;  To(1)fo..| # 0, with To(1) = I, — Xf; To; holds.

4. If r < p, then |II(z)| = 0 has p — r unit roots and the remaining roots are outside the

unit circle. If k = r = 0, only 0 < dy # 1/2 is assumed.

3This assumption might be restrictive in certain macroeconomic and financial applications. In a recent contri-
bution, Johansen and Nielsen (2018) extend the analysis of the FCVAR, j, to include the possibility that the cointe-
grating vectors are nonstationary, i.e. dy — by > 1/2.
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7.2 Consistency

We first have to characterize the asymptotic behavior of the profile log-likelihood function for

full rank as T — oo, that is

b() = Jim Cry(y), (17)

where .
1y = - logdet (T—l ZRiwa;t(w)) ~ —log det (SSRr(¥)). (18)

t=1

so that (1) is the limit log-likelihood function £7 (). The following theorem states the prop-
erties of the £,(/) and the consistency of the ML estimator of /.

Theorem 7.2. The function {,({/) has a strict maximum at { = vy that is,

GW) < () = —log|Ql, ¢ e¥ (19)

and equality holds if and only if = . Let Assumption 7.1 hold, and assuming that (dy, by) € ¥(n)
with ¥(n) = {(d,b) : n < b <d < d;} C ¥ being a family of compact sets withn > 0, then

erp(0) > —log | Q. (20)

Finally, with probability converging to 1, lﬁ in model H, x forr = 0,1,...,p exists uniquely for
Y € ¥(n) and is consistent.

See proof in Appendix B.5.

The property of identification derived in Theorem 5.2 guarantees that the consistency of
{1 () holds true also when k > ko. Figure 2 reports the surface of the expected profile log-
likelihood function of the FCVAR;; and FVECMy; in the two-dimensional space of (d,b) €
[0.2,0.99]* with d > b when the DGP is a co-fractional model with ky = 0 lags. The plot clearly
highlights the presence of two or three equivalent peaks for the FCVAR,, log-likelihood when
k = 1and k = 2 respectively. Instead, the log-likelihood function of the FVECM,, is always
associated with a unique maximum for any k > ko, as a consequence of the identification prop-
erty of the FVECMy ;. This is relevant in the empirical applications when the true value of k is

unknown and it is normally selected with a general-to-specific approach.

7.3 Asymptotic distribution
Let consider again the FVECMy
k

ALXy = af ATPLX + ) TALX, + &,
j=1
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where 6 = {d,b,a, B, 11, ..., I, Q} is the collection of parameters and 0isa partition of 6 such
that 6\0 denotes all parameters but 6. We want to find an expression for Déet(Qo\é)l 6=, that is
the derivative of et(90\0~) with respect to 0. Let define £(0) as

k
e(0) = ALX, — af ALY, - Y LAY, (21)
j=1

and the log-likelihood function as —2log £(0) = tr {le Zthl et(e)gt(e)’}, with Q = Qy. By
substituting in (21) the Granger representation of X; evaluated in 6, up to the initial conditions

(that asymptotically are negligible), we get

£:(0) :Ai_do(coft + Z ﬁloq)joaLoAjyft + Alio Y;)-
j=1

7 A d—b—d j b
—aﬁ A+ OLb(Coé‘t + Z ﬁJ_OCI)j()O[LoALEt + A+0Yt)—
=1

k )
- Z LAY L) (Coe, + Z Bro®ioariolN, e + ADY,).

i=1 j=1

To derive the asymptotic distribution of 6 it is necessary to characterize the asymptotic be-
havior of the product moments needed to calculate the log-likelihood function. For this purpose,

it is useful to use a local parametrization of the FVECM, ;. We define the following quantities
X1 = (Ad—b _ Ad)Xt X = AGHE Ad+k)Xt X = Ad+kXt,

where i = 0,...,k — 1 and the errors as

k-1
() = Xir — af’ X1 + Z ¥iXir,

i=0
where A = (d, b, a, B, ¥,.) with ¥, = (¥, ..., Pk—1). As in Johansen and Nielsen (2012) we locally
parametrize the likelihood with the following formulation f = f, + fo L(ﬁ_(’) B) = Po+ Pord. Let
Ny, €) ={¢ : |¥ — | < €}. Then for (d,b) € N(Yp,€),e < 1/2withé_; =d -b—-dy < —-1/2
andd+i—dy >
We also introduce the normalized parameter { = B (f — fo)T~1%1/2) = 9T7=(-1+1/2) gych that
B = Bo+ Por (T *1/2 Let us define V; = (X7 1 Bos X k1 X;,) and ¢ = (d, b, @, ¥;) such that

i=0°
A = (¢, ). We can write the error as

—e€ for i > 0. the process ff;, X_1; is the only non-stationary process in &(A).

er(A) = —a T V20 B0 Xy + (—a, W, L)V

When b, > 1/2, the product moments in the conditional likelihood function —2T ! log L1(¢, {) =
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log |Q] + tr (Q_IT_1 Zthl gt(l)et()t)’) are

T / /7
_ T . Z T5 1+1/2ﬁ X—l : T571+1/2ﬁ0J_X—1’t
t=1 Vi Vi

Ar(y) Cr(y)
Cry)y Bry)

Finally we define
T

CST =T71/? Z Tl/z_boﬁ(,u_xgu‘g;’

t=1
where XSU is X_1; with A = Ap. When b, < 1/2, we replace 5_; + 1/2 by zero in the definition of
A), Bi(¢), Ci(¥) and CEOT. The asymptotic behavior of Ar(¥), Br(¥), Cr(y) and their deriva-
tives when 1/2 < by < dy and 0 < by < 1/2 is derived in Theorem 6 in Johansen and Nielsen
(2012).
We can now outline the following theorem, which is analogous to Theorem 10 in Johansen
and Nielsen (2012).

Theorem 7.3. Under Assumption 7.1, with X_, = 0 forn > T" for some v < 1/2, the asymptotic
distribution of the ML estimator of the FVECMy, is as follows:

e Ifby > 1/2 and E|&;|9 < oo for some q > (by — 1/2)71, the asymptotic distribution of the ML
estimatorgig = (cf, l;, a, fj) and/g’ is given by
T 2vec($ — o) N(0, Zo)
bopr (R - 1 ’ o ’ -1 -1
T, (B~ Bo) (i FoFs) i Fo(dGoY (@025 )

where %y > 0, Fy = B, CoWp,—1 with Wy, _y is the (non-standardized) type II fractional
Brownian motion of order by — 1, and Gy = a{,Q'W are independent with W := W, denoting
the Brownian motion generated by ¢;. The two components of the asymptotic distribution are
independent (see Lemma 10 in Johansen and Nielsen, 2010). It follows that the asymptotic

distribution ofvec(TbOB(’u(,BA — Bo)) is mixed Gaussian with conditional variance given by

1 -1
:@“%M@*@(/'ﬂ%w).
0

e If0 < by < 1/2, the estimators (d,b,a ﬂ) are asymptotically Gaussian.
e Ifk =r =0, andd = b the model is A°X, = ¢, and d is asymptotically Gaussian.

Proof. See the proof in Appendix B.7.

7.4 Testing for the cointegration rank

We now focus on the likelihood ratio test for the determination of the co-fractional rank and we

rely on the results of Johansen and Nielsen (2012) to prove its asymptotic distribution. Let us
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first define the model H,  as

k
Hop:  AX, =TIATPL X, + Z LAYLLX, + ¢,
i=1
where the following analysis holds for any given k = ky. We consider the test for the null
hypothesis H, : rank(Il) < r against the alternative H, : rank(Il) < p. We define the LR

statistic as

1S00 (¥ )] TTizy (1 = @:(4))

—2log LR(H,|H,) =T1 - n
% D O S o) TTP, (1 — ox(p)

= T(tr, () = trp(fp).  (22)

The following theorem presents the asymptotic distribution of the LR test.

Theorem 7.4. Under Assumption 7.1, with X_, = 0 forn > T" for some v < 1/2, the asymptotic
distribution of the LR test in (22) is:

e Ifb() > 1/2,
-1

1
/ Bbo—l(dB)/)
0

where B(u) is a (p—r)—dimensional standard Brownian motion and By,_1(u) is the correspond-

1 1
—9 1OgLR(7{r|7{p) i) tr (/ (dB)B;’O_1 (/ Bb0—1B;,0_1du)
0 0

ing standardized type II fractional Brownian motion. The limit distribution is continuous in
by.

e If0 < by <1/2,
—2log LR(H,|H,) 5> 2 ((p = 1)?) .

* Let Py, the probability measure under the alternative Il; = 1] = aff’ + o, where
a1 = (a,a%) and By = (B, B*) are p X (r + r*) matrices of rank ry = r + r* > r, and hence

rank(Ily) > r. Under the Assumption that X, is generated by model ‘H,, then
Pgy
—2log LR(H,|H),) — oo,

under the alternative.

Proof. See the proof of Theorem 11 in Johansen and Nielsen (2012).

In the framework of the FCVAR,, the parameter b is not identified when k = 0 and we
are testing r = 0 (i.e. II = 0). Johansen and Nielsen (2012) suggest to follow the approach of
Lasak (2010) and to adopt a sup-type test, sup, LR(b), where LR(b) = —2log LR(IT = 0|b), where
the supremum is taken over the values of the index b.* In the FVECMy,, the parameter b is

not identified for any k = 0,1,... when testing r = 0. Hence, the sup, LR(b) statistic should be

*Alternatively, Lasak and Velasco (2015) propose a two-step procedure to determine the cointegration rank.
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computed for any choice of k under r = 0. For a given k, the co-fractional rank can be determined
with a sequence of tests for a given nominal size ¢ € (0, 1). The sequence of tests is performed by
considering the null hypothesis H,, forr = 0, 1, . . . in sequence until rejection, and the estimated
co-fractional rank 7 is the last non-rejected value of r. The consistency of the test guarantees
that any test with r < ry, where ry is the true cointegrating rank, will reject with probability 1
as T — oo. Finally, if the asymptotic size is ¢, then P(7 < ry) — ¢, so that P( = rg) —» 1 —¢.
Similarly to MacKinnon and Nielsen (2014), the critical values of the limiting distribution need
to be tabulated.

8 Conclusion

In this paper, we have shown that the multivariate co-fractional model of Granger (1986) is
suitable to carry out inference on the long-run equilibrium relations between series that are in-
tegrated of a fractional order. Indeed, we have proved that the FVECM,;, allows for a Granger
representation theorem and its stability conditions can be studied through the argument prin-
ciple. Notably, the model is always identified for any combination of number of lags and coin-
tegration rank. Finally, the parameters FVECMy; can be estimated by ML in a similar fashion
as in Johansen and Nielsen (2012) and they are associated with the same asymptotic behavior as
those of the FCVARy ;.
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A Regularity of f(z)

In this Appendix, we discuss the regularity properties of f(z) = (1 — z)"*®")g(z) such that the
argument principle can be adopted to count the number of zeroes inside the unit circle. In partic-
ular, we have to show that f(z) is an holomorphic function on the unit circle and it does not have

poles inside. An holomorphic function is defined as a complex-valued differentiable function on
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an open set D of the C. For instance, the functions h;(x) = 1 — (1 — z)® and hy(x) = (1 - z)°
are holomorphic in the unit circle for any b € R*, see Johansen (2008b). A useful property of
holomorphic functions is that the composition of two holomorphic functions is also an holo-
morphic function. It follows from this property that II(z) is an holomorphic matrix function.
Analogously, the determinant g(z) = |II(z)| is holomorphic since the determinant is a contin-
uous function. Hence, f(z) is holomorphic in the unit circle and it does not have any zero on
the contour |z| = 1. Moreover, the function f(z) does not have any pole inside the unit circle

because g(z) does not involve any inverse function of z.

B Proofs

B.1 Proof of Theorem 4.1

To ease the exposition of the proof, we first derive the Granger representation of the model
k
ALX, = afLaXi + ) TAIX, + &,
=1

where d = b. First of all, let us write the characteristic polynomial as

k .

My(z) = (1 - 2", = ) T2 —af (1 - (1-2)). (23)
=1
We introduce the variable y = 1 — (1 — 2)¢ and we write II(z) = IT*(z, y) as
k .
My(z.y) = (1-y)(I, - Y T;7) - apfy.
=1

Following the proof of Theorem 3 of Johansen (2008a) we calculate A'IT’(z, y)B with A = (&, a,)
and B = (B,B.), with @ = a(a’a)™ and f = B(B'S)~! . We compute the Taylor expansion of
[T(z,y)iny =1 (withy =1 < 2z =1) and we get

A'Tl(z,y)B =

-, o)+(o?’(r(z)+aﬁ’)5 a'T(2)p.

0 0 T@f  «T@p. )(1 v

where I'(z) = I, - Zj-‘zl I;z/. Now, we calculate A'IT(z, y)BF(y) where

I 0
F(y)=( 0 -y, )
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and we get

I, @T(z). )+(oz'(r(z)+aﬁ')/§ 0

K(z,y) = AIT}(z,y)BF(y) = ( Or o T(2)f o T(2)f . )(1 - y).

K(z) K(z)

Then
K(z,y)™' = (AT}(z,y)BF(y))"' = K '(2) + K (2)K(2)K"'(2) - (1 - y) + (1 — y)°Hi(z, 1),

Hi(z,y) is the remainder term of the infinite series K(z,y)™! iny = 1, and

Kl(2) = ( ~I, (@T(2)L)(@\T(2)fL)" ),

0 (@' T(2)p)!

which is computed with the formula of the partitioned inverse. We now calculate

F(y)K(z,y)™" = (1 —y)'M_1(2) + My(2) + (1 - y)Ha(z, 1),

with

0 0 0 0
M_i(z) = ( 0 (ail‘(z)ﬁL)_l ) = ( 0 (OfirﬁJ_)_l ) + (1 - z)Hs(2),

whereT' = I, - Z}‘zl [ and || T'B.| # 0 and My(z) contains term of degree 0 in (1 —y). Therefore,
by pre-multiplying by B and post-multiplying by A’, we find that the inverse of IT’(z,y) with

respect to y is

My(z,y)™" = BF(y)NATLy(z,y)BF(y)) A" =
(1-y) 7' pu(@, T(2)B) e, + C*(2) + (1 - y)H(z,y), (24)
and the only pole of (24) is (1 — y) and H(z,y) has zeros in z = 1 and y = 1. The function

H(z,y) = C*(2) + (1 — y)H(z, y) is regular’ in the complex circle with no singularity at y = z = 1.

When b > 0, the function y = 1—(1—2z)? is regular for |z| < 1 and continuous for |z| < 1. Hence,
F(z)=H(1-(1-2%2), |2 <1,

is continuous for |z| < 1 and regular without singularities on the open unit disk |z| < 1. Hence,
the expansion F(z) = 3,7 F.2", |z| < 1 is defined with } 7, |Ea]|? < oo. We define now Y; =

F(L)ey = Y02 Fnér—n as a stationary process with mean zero, finite variance and continuous

5 A regular (or holomorphic) function is defined to be a complex-valued differentiable function on an open (and
arc connected) set D of C, where C denotes the set of complex numbers. For further details see Johansen (2008b).
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spectral density given by
1 . . 1 - . L. 4 4
fr() = —Fe™QF(e"Y = —H(1 - (1-e ™), e )QH(1 - (1 - "), Y,
27 27
and for A = 0 we get
1 ’ 1 -~ 3 1 ® * ’
—F(1)QF(1) = —H(1,1)QH(1,1) = —C*(1)QC"(1)".
2 2 2
Given the inequality
Q- a(d'Qa) o’ = Qay (¢ Qo)) ' Q > 0,

then it follows that
p'C(1HQCT (1) = o,

because f'C*(1)a = —I,. Hence, we have shown that fy(0) # 0, hence Y; ~ #(0). Now, we know
that
I, (2) = C(2)(1 — 2) + F(z),

and applying the operator H;L(L) (defined analogously to the truncated filter in (4)) to the equa-
tion IT4(L)X; = ¢ we find the solution

Xi = C(L)(1 - 2)7¢ + Y = T (DT (D)X,

This means that X; ~ 7(d) because C(1) # 0 and that 'X; = f'Y;" ~ 7(0); because Y; ~ 7(0).
The case d > b can be solved in a similar way by noting that
k
ALXy = af ATPLX + ) AITX + e,
j=1
has the characteristic polynomial given by
k .
M(z) = (1-2)%L, — af'(1-2)"°(1 - (1 - 2)") - Z Ti(1-2)%.

j=1

that can be written as
k
M(z) = (1-2)*" |(1 -2’ —af'(1 - (1 - 2)") - Z T(1-2)"7 .
j=1

The polynomial (1 —z)4~? is trivially invertible and the polynomial [(1— z)pr —af(1-(1-2)") -

Z;‘:l (1 - z)P2/] is the same as in (23) where d = b and we proved is invertible.
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B.2 Proof of Lemma 4.2

To illustrate the steps to obtain the recursion to compute the IRFs, we first consider the following
FVECM,, with one lag,
NX, = af APLLX, + TIAY X,y + &,

which can be written as
A‘in‘ = aﬂ/(Ai_b - Ajl_)Xt + FlAiXt—l + Et.

Now, let us write explicitly X;,t = 1,...,T as a function of &. The first term is X; = ¢ and the
second is given by
Xy — dX1 = (Zﬁ/(—(d - b) + d)Xl + 1 X7 + &,

so that
X, = (d + baﬁ' + F1)€1 + &9.

Let us define ©; := d + baf’ + I, the third recursion is given by

dd-1
Xg-dXz-f- ( )

X1 = bO(ﬁ,Xz + aﬁ'[(d - b)(d -b- 1)/2 - d(d— 1)/2]X1 + 001X, —d-T1 Xy + &3,

and rearranging the terms we get

dd-1
X3:d®1€1— ( )

e1+baf'Ore;+af [(d—b)(d—b—1)/2—d(d—1)/2]e; + 11016, —dT1e; + &3
Hence we can define
0, =[0:0; +af’[(d-b)(d—-b—-1)/2—-b(b—-1)/2] —dl} —d(d — 1)/2] .

Iterating this process, we can get the impulse response coefficients, ®; j = 1,2,..., for the
FVECMyp.

B.3 Proof of Theorem 5.2

We have to show that
Py, = Py, = 6y = 04,

under the condition ¢ ~ N(0,Q), so that the conditional variance of X; is Var(X;|Z;—1) = Q,
where the filtration is the o-field generated as Z;_; = {0, Xo, X1, - .., X;—1}. Hence, the matrix
Q = Var(e;) is identified, so that Q = Qy. We now show that the conditional mean of the process
X; is identified for given k and r, i.e. that the characteristic polynomial is uniquely determined

as a function of the parameters, 6.
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Identification when both k and r are known

Let us consider the two characteristic polynomials

k
Mo(2) = (1= 2)* 1, — aof(1 = 2)*(1 = (1= 2)) = > Tjo(1 - 27,
j=1

and

k
Mi(2) = (1-2)" L, — au (1 - ) (1 = (1= 2)P) = > 41— 22
j=1

We identify the parameters of the model when I1(z) = I1;(z) if and only if 6y = 6;. The following
set of equalities holds under the FVECM,;, when k and r are known and fixed

(1-2)%,=1-2", e dy=4d
afy(1-2)* "1 -(1-2") = fi1-2""(1-(1-2)") < by =b

To(1-2)% =T,(1-2)"2,j=1,....,k & T=TI,

with a; = opé and By = ﬁ0§_1. Hence, d,b,I;,j = 1,...,k are identified as well as & and f up to

rotations, &.

Identification of Hj, when k > k,

Let us consider the following two models
do _ 7 A do—bo do do
7‘[]{0 : A+ Xt = a0ﬂ0A+ LbQXt + F1,0A+ Xt—l + -+ Fk0,0A+ Xt—ko + &ty

and
Hy : A°Xy = aff A7PLy X, + TIAYX, g + - + T AYX, g + 6,

where k is such that k > ky and the rank, r, is known and fixed. The characteristic polynomials
of Hy, and Hj, are

ko
Mg, (2) = (1= 2L, — aofy(1 = %71 = (1= 2)") = ) Tio(1 - 27,
i=1

and

k
Hi(z) = (1= 2)'h ~ af (1 - (1= (1= 2)") - Y L1 - 2)%.
i=1
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By equating ITx,(z) and IIx(z) we get the following set of conditions

(1-2%,=(1-2), & d=d

afi(1-2)0 (1 -(1-2)") =af(1-2"1-1-2" < b=bh
Lio(1— z)dozi =T(1 - z)dzi, i=1,....kg &= Tio=1

0=T(1-2)%, i=ky+1,....k = T =0,

with ag = af and fy = B¢~!. Hence, the model H, is always uniquely identified as a subset of

model Hj associated with the restrictionI; = 0 for i = ko + 1,. .., k (up to rotations ¢ of « and
B)-

Identification when rank and lags are unknown

Let us consider the following two models

k

do,k do,k
?{O,k : A+0 X; = Z I}-’(O’k)Af Xt—j + &,
j=1
d d b = d
k-1 —_ ,k—17"Yp, k-1 ,k—1
Hior : AP X, = By APFTL, L X+ Z Tpa-nAT "X + e,
Jj=1

The goal is to prove that Hy s # H, x—1. The characteristic polynomials are

k
Mok(z) = (1 — 2)™41, - Z T 040)(1 — 2)52,
=1
and
k-1
I k-1(2) = (1 - Z)dp’kfle - Epk-1(1- Z)d”’kfl_b”’k’l(l -(1- Z)stkfl) + Z G pk-1)(1 = z)dP’kflzJ‘
=1

The polynomial IT,, x_;(z) contains the term (1 - 2)%.k17bp.k-1(1 — (1 —z)Pr#-1) that does not appear
in ITy x(z) and there are no restrictions on d, k1, by k-1, Ij (p.k—1) such that Hyx = H, k1. Hence
ﬂo’k ;t ?{p’k_l. |

B.4 Proof of Theorem 6.1

To ease the exposition of the proof, we first derive the Granger representation of the FVECMy
under (11) of

k
AIX, = afLaXi + ) TAIX; + e, (25)
=1
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where d = b and ', (Ip +ap - Zj‘zl 1“]) B. = &n’ with & and 5 being p — r X s matrices with o
and f, such that @’a; = 0 and ', = 0. The characteristic polynomial of (25) is

k
Aaz) = (1= 2L, —af (1 - (1-2)) = > Tj(1 - 2)'2,
j=1
which can be written as
k .
Ayzy) = (-9 —afy - ) T -y)7,
j=1
where y = 1 — (1 — 2)?. Hence

k
Ayz,y) = (1 =y) |l +af = ) L1 -y | -ap.
j=1

I'(z)

Let us define A = (@, &, a;) and B = (B, B1, o), where @ = a(ad’a)™, B = BB'B)", &1 =
al(a{al)_l with @; = a, ¢, 51 = ﬁl(ﬁ;ﬂl)_l with f; = ,B_ﬂ], a, = a, & and fy = Bﬂyl. We can
compute the Taylor expansion of A’A’(z,y)Biny =1 (withy =1 & z=1)as

~I +(1-yaT()p aT(@(1-y) &T(2)p(1~y)

ANz yB=| (1-yaT(z)p (1-y) 0
(1-yaT(z)p 0 0
Let us now define
I 0 (1-y)~'a'T(z)pe
Fiy)=| 0 (1-y)U 0 ;
0 0 (1 - y)_zlp—r—s

and calculate K(z,y) = A’A’(z,y)BF(z) = K(z) + (1 - y)K(z) where

-I, aT(2)p1 aT(2)pa'T(z)p
Kiz)=| o I aT2)pa'T(z)p. |,

0 0 al(2)Ba’T(z)p,
and
aT(z)p 0 0
K(z) = &ir(z)ﬁ_ 00
al(z)p 0 0
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Then, to guarantee that K(z) is invertible, we have to impose that
|l T(DBaT(1)fs| # 0, (26)

which we name ¥ (2b) condition. A necessary condition for (26) to hold is that p < 2r + s. By

inversion of K(z,y), we get
K(z,y)™' = (AAY(z y)BFy) ™" = K~'(2) + (1 = y)K ' (D)K(2)K"'(2) + (1 — y)*Hi(z, y)

where Hj(z,y) is the remainder term of the infinite series K(z,y)™! in y = 1. Assuming that a
d > 0 exists, such that 0 < |z — 1| < §, Hy(z, y) is regular for |1 — y| < §. Hence, by the formula

of the partitioned inverse, we get

—Ir &/F(Z)ﬁJ_ (902(2) — O_I/F(Z)ﬁ_l 012(2)) 022(2)_1
Kl (z)=| o I ~015(2)022(2) ™! ,
0 0 022(2) 7"
where 0,(z) = A, ,T(2)Ba'T(z)Bj, for i,j = 0, 1, 2. It follows that

i+1

F(y) 'Kz, y) ™" = (1= y) *Ma(2) + (1 = y) 7'M (2) + Mo(2) + (1 - y)Ha(2, 1),

with
0 0 0
M_3(z)=]| 0 0 0 ,
0 0 922(2)_1
and
0 0 —a'T(2)f2622(2)"
M-1(z) = 0 —I 012(2)022(2) " ,
~055 o;T(2)f2 02a(2) ™" 021 (2) 2(2)
with

E(z) = 02(2) " )T (2)Pa'T(2)Pa'T(2)p2 — 021(2)012(2) | O22(2)~".

The matrix My(z) is very involved but it has the following form

—I + &'T(2)2022(2) ' T (2)f  *
Mo(z) = * * %

* k%
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Finally, we use

BF(y)(A'A(z,y)BF(y))'A’ = BF(y)K(z) "' A’

1 1
= CZ(Z)W + Gz~ s Co(2) + (1 = y)H(z,y),

Az, y)™!

where H(z, y) is regular for |z — 1| < §, and Cy(z) and C;(z) and Cy(z) are

Co(z) = ,32922(2)_1055
Ci(z) = =B+ (Bi1012(z) — B&'T(2)p2) Oaz(z) ) +
+Ba022(2) " (021(2)a; — 3T (2)Bo) + P2E(2)
BCoz)a = —I +aT(z)CoI(2)B.

The function A*(z,y) = Co(z) + (1 — y)H(z, y) under the condition that the roots of |A(z, 1 —
(1-2)?)| = 0 are outside the unit circle is regular without singularities inside the unit circle. We
define F(z) = A*(z,1 — (1 — z)?) for |z| < 1. By Lemma A.1 in Johansen (2008b) F(z) is regular
for |z| < 1sothatY; = ;7 Fyé&i—p is a stationary process with continuous spectrum, where
F(z) = X070 Faz", |2z| < 1. We find then

Ayzy) ™ = Co2)(1 = 2)F + Ci(2)(1 - 2)" + F(2). (27)
The solution of the equation A(L)X; = ¢ is obtained by taking A;'(L) and find
X, = CUL)AY + ¢, + CLL)AS + &, + Y, — AL (L) 'A_(D)X,. (28)

It is seen that X; ~ 7 (2b) because Co(L) # 0 that (8, f1)’X; ~ F(b). Instead the polynomial
co-fractionality can be obtained by taking f’X; — @'T(L)AX; ~ F(0). To extend to the case

d > b > 0, it is sufficient to consider the case

k
APIAL X, — af'LyX, — Z TAYLX,] = &,
=1

with characteristic polynomial given by
k .
Az =(1-2 (1 -2, —af(1-(1-2)) - Z T(1-2)"7|.
=1

Based on the previous results, this implies that

_ 1 1
Ai bXt = FCZ(L)gt + A—bcl(L)gt + Yt+ + th,

+ +
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where /; = A%t ;. so that

X, = AP0, (L)e; + ALC (L)e + ALY . m

B.5 Proof of Theorem 7.2

The proof of Theorem 7.2 consists of reconciling with the convergence results of the product mo-
ments, S;j (1), as outlined in Appendix A in Johansen and Nielsen (2012). In particular, we have
to prove that the stochastic properties of X; and of the stationary process U; = Cy(L)e; + Aﬁ‘) Y:
for the FVECMy;, are the same as for the FCVAR, ;. In particular, we can define the following

quantities

X—l,t (Ai_b - Ai)Xt, Xk,t = A‘i+kXt,
Xy = (AT -ATRX, i=0,...,k-1

Uiy = A% —AT™U,  Uee = ATF%X,,
Uit (AR - A ATDY, i=0,. . k-1

such that we can determine the class of stationary processes for a given i/ as
Ferat(¥) = {ﬂ(’)U]t for all j, and Uj; for d — dy > —1/2} ) (29)

Fordy < 1/2,d —dy > —dy > —1/2, the set F4 () contains U;; for all i. We next want
to define the probability limit, £,(i/), of the profile likelihood function £7,(¥). The limit of
log det (SSRr(¢)) is infinite if X} ; is non-stationary and is finite if X}, is (asymptotically) sta-
tionary. Let us now focus on the stochastic properties of A2X; = C(L)e, + ALY, up to the initial
conditions that are asymptotically negligible by assumption. We first define an analogous of
the Beveridge-Nelson decomposition for fractional processes similar to that of Definition 2 in
Johansen and Nielsen (2012, p. 2673). In particular, the polynomial C(z) = Z}’io Aj(1—-z) canbe
factorized as

C(z) =C(1) + (1 — 2)C*(2), (30)

with C*(z) = X 12, ¢;z and ¢; defining an absolute summable sequence by the classic Beveridge-

Nelson decomposition. It follows that the process A% X; can be written as
ANX, = Ce+ ALY+ ALY, (31)

where Y, = Akbj Y; and with Y = C*(L)e;. As shown in Lemma B.2 below, the process AﬁXt
belongs to the 7, class. This means that the limit theory for product moments of the stochastic
terms in (31) is the same as Johansen and Nielsen (2012), and that Lemma A.9 and Corollary
A.10 in Johansen and Nielsen (2012) hold also for the FVECM,. Therefore, the concentrated
log-likelihood function ¢7,(1/) = —log |SSR7(y)| has the same limit as in Johansen and Nielsen
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(2012) for the set of intervals for the parameters d and b given in (29). Hence, consistency follows.

B.6 The Z; class

To characterize the asymptotic behaviour of the product moments in the log-likelihood function,

we follow Johansen and Nielsen (2012) and introduce the class of processes Zp, as defined below.

Definition B.1. Following Johansen and Nielsen (2012, p. 2673), we define the class Z; as the

set of stationary processes Z; that can be represented as

Zy = e + Ai Z OnEt—ns (32)

n=0
where . |@n] < 0.
In the following, we show that X; generated by the FCVECM,;, belongs to the class Zp.

Lemma B.2. The process
Z, = NX, = Ce, + A Y] + ALY, (33)

belongs to the class Zp, specified in Definition B.1.

The proof of Lemma B.2 proceeds as follows. Let us define B(z) := o/ I'(z)B.. B(z) is a
stationary process because o' I1(z) B, = ail“(z)ﬁl(l—z)b andI1(z) = ['(z)(1-z)’ —af’(1-(1-2)")
has roots in 1 or outside the unit circle. Given that the #(d) condition holds, B(z) has roots
outside the unit circle and it is an autoregressive process. We want to study the behaviour
of B(z)™! = C(z) = X2, Ciz". It follows from Hamilton (1994, p.263) that the (¢, k) elements
(Crr)i of the matrix C; are such that [(Cgr)i| < M;q|Al', where |A| < 1 where M is an universal
constant that bounds |(Czt);| for any i = 1,2,. .. This means that ||C;|| < M|A|', where |A| < 1,

where || - || denotes a norm defined on the space of matrices. Let us focus on the expansion
C(z) = C(1) + (1 - 2)C*(2). Then C*(z) = 9G-S0 = 32 SEU = 50 ¢, 32 = B2, C)7

where C; = };5; C;. Let us prove that the power series C*(z) is absolutely summable. It follows
that

(o0

NG =M EZ B W = MEZ) o — (L + 1AL+ + A
IA] IA]

i=0 j>i

= MX20 i = 7 = Ziko W17 < o0,
Using the fact that )2, |Ci| < oo if and only if };2 ||Ci|| < oo, see Neusser et al. (2016, p.206),
C*(z) is absolute summable. Hence, Y; = Z}’io Cj‘et_j with Z;io |CJ“5| < o0o. We now turn our
attention to the term ALY, for b > 1, which can be written as ALY} = Aib}Yt**, where Y =
220 Ci" e with 220 |CJ**| < oo, and {b} is defined as {b} = b — |b], where | b| denotes the
greatest integer less than b. Hence, if b > 1, the process Al?1Z, is in the class Z(}, a subset of
the class Z,. m
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B.7 Proof of Theorem 7.3

B.7.1 The asymptotic distribution of ﬁ

Let us first assume that dy, by > 1/2, so that we are in the non-stationary region and normalize
Bas f = Po+ PorJ. Let now set all the other parameters with the exception of J to their true

values. We obtain

er(00\3) =(Coer + Z ﬁJ_O(I)jOOCJ_OAJ-;-gt + Aio Y,)-
j=1

—b, j b
—0(0(,[5'6 + 191183_0)A+ OLbO(CO€t + Z ﬁLOCDjoaJ_OA{FEt + A+0Yt)—
=1

k 00
= > Til/(Corr + ) Bro®ioasolN, e + ALYy).

i=1 =1

Differentiating with respect to ¢, we find

Dyer(00\0) = —ato(d0) BoA:" Ly (Coer + ) Bro®josol,er + ALY, (34)
j=1

In this expression we keep the non-stationary fractional terms of higher order, which determine

the asymptotic behavior of the score function, and find
Doer(00\)]9=0, = —cto(ddY Bo(AL" = 1)Coe,

where d3 denotes the increment on the coefficients . The score function then becomes

T
2T Dy log L(B) = tr{(d8) BLoCoT "2 (AT - Dere o)
t=1

1

d 1Y ) ~—

5 tr{(d8) B,Co / Who—1(dW) Q5 o},
0

where
_ d
St = TOH2(ATY — Der = Whyoi (w),

T T 1
— ’ —bn— — ’ d ’
T! E Srye] = T~ 0o71/2 § (A" = 1)gel S / Wh,—1(dWY,
=1 =1 0

T T 1
- / - -b b , 4 /
T lz;smsm =T ZbOZl{(A+ "~ De HAD - De) S /O Why1 Wy _du.
t= t=
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The information matrix is found as the limit

T 1
_ — ’ d - Y / ’
T 2”"tr{§201 E Dyei(609)Dyer(6y) ) — tr{Qolao(dl‘}) ﬁLOCo/ Wb0-1WbO_1duﬂJ_o(dt9)%}~
0

t=1

Given that the estimator is consistent, we find that for all matrices d&
r{(@d9Y BLoCoT™ . SraciQy ag) ~ —tr{(d9) BLaCoT™ Y 1.8, Cobuo(d — 00}ty o)}
t t

Hence

T T
T?(§ - ) =[foCoT ™ Z S1.457.,.CoProl " BLoCT ™ Z St.6,Qy ao(a0 Qg ) ! =

t=1 t=1

1 -1 1
:[ﬁioco ( / WbO_IWb’O_Idu) C{)ﬁlo] B.,C / Who—1(dW) Qg ot (a0 Q') ™
0 0

1 -1
= [/ F()F(,)du]
0

where Fy = f;, CoWy,—1 and Gy = a(’)leW. When by < 1/2, the right hand side of (34) is
by

1
/ Fo(dGo) ()5 ag) ™
0

a stationary process because A~ is applied to an I(0) process. Hence, standard asymptotics

applies in this case.

B.7.2 The asymptotic distribution of d

Let now assume that all the parameters are set to their DGP values, with the exception of d. The

error term is

£1(00\d) ZAi_do(Coft + Z ﬁm@joam&r& + AZO Y;)—
=

7 ad—dy A —b j b
=oAL AL Ly (Coer + Z ﬁJ_OcDjO(XJ_OAJ-q-gt +AYY)-
=1

k )

d—dy i j b
ri,oA_'_ OLJ(Coé't + Z ﬁJ_O@joaJ_OAJ_'_Et + A+0 Yt)
1 j=1

1

Exploiting that f;Cy = 0, then it follows that

&1(0o\d) :Ai_do(coft + Z ﬂLOq)jOO(LOAigt + Alio Y;)-
=

k 00
d—d, d—dy1i j b
—ao oA L (Yr) — Z LioAL LD (Coey + Z Bro®joarolN, e + ALYy),
i=1 =
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so that the non-stationary fractional terms disappear and the derivative D;e,(6)) is stationary. By
the martingale CLT the score T_%Dd log L(6y) = T otr {ZtT:1 Ddst(Qo)st(Qo)’le} is asymptoti-
cally Gaussian, and the information matrix is found as the limit of the outer product of the gra-
dients, that is T 'tr {Zthl Dger(60)Daer(00) Q, 1}. Thus the asymptotic distribution of T%(cf —do)

is Gaussian.

B.7.3 The asymptotic distribution of b

Let now assume that all the parameters are set to their DGP values, with the exception of b. The
error term is

er(0\b) =(Coer + Z ﬁLO‘DjO(hoA{rft + Aio Y;)-
j=1

’A— j b
By AT Ly(Corr + ) Pro®joctsoNe + AL Yy)-
j=1

k 00
- Z ri,oLj(Coft + Z ,BJ_O(DjOaJ_OA{;-Et + Alio V).
i=1 j=1

Again, we exploit the fact that f,Cy = ;8.0 = 0 and we get

£1(00\b) =(Coe; + Z ﬁmq)joaLoA{rft + Aio Yi)—
j=1

k )
bo—b i j b
—ao oA Ly(Yy) — Z L oL (Cogs + Z Bro®@jocioN e + ALYr).
i=1 =

Taking the derivative with respect to b, we find Dpe;(6p\b)|p=p, = —aoﬂ(’)Db(A;b_bo)n:bo Y;, so
that Dpe;(6,\b) is stationary and the asymptotic distribution of b is Gaussian. The information
is found as the limit of T~ 'tr {Zthl Dbst(QO)Dbst(Go)'le}.

B.7.4 The asymptotic distribution of I},i = 1,...,k

Let now assume that all the parameters are set to their DGP values, with the exception of I;. The

error term is

e1(00\b) =(Coe; + Z ﬁJ_Oq)jOQ'J_OAigt + Aio Y;) - OfoﬁéLbo(Yt)_

j=1
' j b
= D Tol (ot + 3 Pro®ioasoen + ALY,)
J#i j=1

L (Coer + ) Bro®joaiol,e + ALY)).
j=1
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Taking the derivative with respect to I} we get

Dr,ei(0p\I}) = —(dT;)(Coer + Z Bro®iaioN. e + APY)),
j=1

that is stationary and hence the asymptotic distribution of I} is Gaussian. The score T_%Dri log L(6,)
is asymptotically Gaussian and the information is found as the limit of T~ tr{Zthl Dr,&:(60)Dr,e:(60)' '}

B.7.5 The asymptotic distribution of &

Let now assume that all the parameters are set to their DGP values, with the exception of a. The

error term is

&1(0o\ar) =(Coe; + Z ﬁmq)joamA{LEt + Aio Y;)-

Jj=1
k 00
j j b
—aﬁ(,)Lbo Yt - Z I}"OL](COE} + Z ﬁJ_O(DjoaJ_OA{th + A+0 Yt)
j=1 j=1

Taking the derivative with respect to a we get
Dgér(6o\er) = —(dar) ByLY:.

Hence D,é&:(6p\ ) is stationary and the asymptotic distribution of & is therefore Gaussian. The
score T"2D, log £(6y) is asymptotically Gaussian and the information matrix is found as the
limit of T~1tr{T~' 3|_, Dye:(00)Dyer(0) Q).

B.7.6 Asymptotic covariance of é\ﬁ
The off diagonal elements of the asymptotic information matrix of 0\f is given by

T T
tr{T™" " Dr,(60)eeDrer(00)25 ' 1, tr{T™" " Da(6o)e: Dr,er(00)2'},

t=1 t=1

T T
tr{T™" 3" Da(00)e:Dr,er(00)Q5"}, tr{T™" > Dy(Bo)erDr,er(00)2"},

t=1 =1

T T
tr{T™" " Da(00)e:Daer(60)Q5" 1, tr{T™" " Da(60)e:Dyer(60)25 "},

t=1 t=1
which are product of stationary components and have a finite limit. Hence the asymptotic dis-
tribution of
1 A A A
TE’UE'C(d — do, b - bo, I - Fo, a— 0[0),

36



A

where I' = [I : ... : I}] is multivariate Gaussian and it is independent with respect to f, see

Lemma 10 in Johansen and Nielsen (2010). m
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