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Abstract

The role of standard likelihood based measures of information and efficiency is unclear
when regressions involve nonstationary data. Typically the standardized score is not
asymptotically Gaussian and the standardized Hessian has a stochastic, rather than
deterministic limit. Here we consider a time series regression involving a determinis-
tic covariate which can be evaporating, slowly evolving or nonstationary. It is shown
that conditional information, or equivalently, profile Kullback-Leibler and Fisher In-
formation remain informative about both the accuracy, i.e. asymptotic variance, of
profile maximum likelihood estimators, as well as the power of point optimal invari-
ant tests for a unit root. Specifically these information measures indicate fractional,
rather than linear trends may minimize inferential accuracy. Such is confirmed in

numerical experiment.



1 Introduction

Inference in models involving nonstationary variables is challenging in two important
regards. First the standard Cramér-Rao efficiency theory does not apply. Estimators
are, generally, not asymptotically normal nor do their covariances converge to Fisher
information. Secondly, the asymptotic analysis of such models invariably provides
stochastic representations for estimators and tests, rather than their distributional
properties. Fisher information, as a probability metric, is not applicable in such
models. Some of the asymptotic implications of these issues are explored in Mag-
dalinos [1], while Marsh [2] considers the finite sample properties of Kullback-Leibler
divergence.

This paper considers two standard time series specifications, either
Ay, =di+py—1+e0 or B)yy=di +up; up = pug_y + 4, (1)

fort =1,..,T, & ~ #dN(0,0?). In these models d; represents a deterministic compo-
nent that will be employed to capture the effect of both stationary or ergodic as well
as nonstationary covariates. Typically, interest is in inference on p, i.e. testing for a
unit root, while if d; = o/x; for some choice of x;, then « will be nuisance. In such
circumstances conditional information, Bhapkar and Srinivasan [3] and Zhu and Reid
[4], ought be employed as a probability metric (see also Gibbs and Su [5] for different
choices of such metrics) for inference about the interest parameter. Conditional in-
formation is defined for a log-likelihood [ (A, f5) depending on an interest parameter

f, and nuisance parameter 65 by

C[91|92 - ]9191 - 15162]0_;?2]91927 (2)

where ]9192 =F [—82l (01, 92) /891862] .
Since standard information theory does not apply in nonstationary models, here an
analogue is defined via expectation of the stochastic limit of the scaled log-likelihood

Hessian. This limit is found by first imposing the unit root, giving a preferred point



(see Critchley, Marriott and Salmon [6]) probability metric analogue. It is shown that
conditional information about p in specification A corresponds to profile Kullback-
Leibler and profile Fisher information in specification B. Although this metric neither
bounds nor equals the asymptotic variance of an unbiased estimator for p, it remains
informative about inferential accuracy. Specifically, it is found that these can be
convex functions: when d; = at? they attain a unique minimum at a value of 5* =
(\/6— 1) /2 and at 1 = (x/ﬁ — 1) /2, when d; = ag + a;t?. The prediction that
inferential accuracy is therefore minimized at these points is supported by numerical
experiment.

The analysis of unit root tests began in the context of specification A. More
recently, the set-up of specification B has dominated the literature, as it permits
straightforward construction of invariant tests, having distributions free of nuisance
parameters. In the context of the impact of covariates in unit root testing, Elliott,
Rothenberg and Stock [7] characterize the asymptotic power envelope for both a gen-
eral d; = o (T"/?), as well as the linear trend case. Marsh [8] shows that Fisher
Information in the maximal invariant (to a linear trend) vanishes under a unit root,
while Phillips [9] considers the impact of nonlinear and slowly evolving trends. On the
other hand, Hansen [10] (see also Elliott and Jansson [11] and Chrystalleni, Harvey
and Leybourne [12]) explores the impact of stationary stochastic regressors in speci-
fication A. The results of this paper help shed some light on some of these findings.

The plan for the paper is as follows. Motivation for the results is provided in
Section 2 via consideration of the original Dickey-Fuller [13] formulation (i.e. specifi-
cation A) and the effect of stationary covariates as in Hansen [10]. The main results
of the paper are provided for specification B in Section 3 while Section 4 discusses
these results and Section 5 concludes. An appendix provides the proofs of the main

results as well as tables and graphs for the numerical analysis.



2 Motivation via specification A

The original Dickey-Fuller [13] unit root testing framework considered a model as in
specification A. And it is within this context that the power enhancement of stationary

covariates, see Hansen [10], is explored. In the simplest possible set-up, suppose that

Y — Pl u
T S w i (0,07, t=1,T

Wy (o

and let R? = corr? [u;,v,]. In Hansen [10], and also Chrystalleni, Harvey and Ley-

bourne [11], Dickey-Fuller tests of Hy: p =1 in

Yt = PYt—1 T YW + €4,

are demonstrated to have powers increasing in k2. Since in the limit of R? — 1 we
could, in fact, observe the errors (y; — pyt_l)lT, this result is to be expected, as well
as having empirical importance.

Here we explore the effect of the degree of covariate trending in the context of

testing Hy : p = 1 in the context of the fitted model,
Y = pye—1 + ot +uy,  t=1,..T, (3)

with yg = 0 and where we will assume g > —0.5 and that data is generated via

the pure random walk, Ay, = u;. In (3) we attempt to capture the effect of the

T

1> Le. weput d; = at?. The aim is to capture

covariate via the proxy variable {tﬁ }
the influence of different asymptotic covariate behaviour, i.e. whether the sequence
{dt}thl diverges or converges and at what rate, on measures of inferential accuracy
for the interest parameter p.

Specifically, when —0.5 < 8 < 0 then {tﬁ } is an ‘evaporating’ trend, and captures
the effect of an ergodic regressor, in that when H, is true F [Ay] converges to a
constant (zero, in the simplest case). Instead, when 5 > 0, F [Ay,] diverges. For

0 < B < 0.5 Elliott, Rothenberg and Stock [7] term the trend as being ‘slowly

evolving’, although non-stationary. Since a pure random walk has stochastic order
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O (T*?) we might view the covariate trend being dominant if # > 0.5, and the
stochastic trend being dominant if 8 < 0.5. The purpose of the following analysis is

to detail the effect of the rate of divergence/convergence of the covariate on inference

about p.
Consider the Score and Hessian for model (3), initially assuming ¢ = 1 for
simplicity:
Zthl Yr—1Us Zthl Yi1 Zthl 7y
S(p7a): T & H(p,Oé):— T T 9
> D Py 2ot

Imposing Ay; = u; and yo = 0 then ' [y;_1] = 0 and Fisher information is

T(T—-1) 0
Moo =BERGal=| &
t
t=1

Using this as an inferential metric would be misleading since it would imply no impact

of the covariate on inference on p.

Instead, note the standard results,

TSy = /0 W(r)dW (r) =4 (0 — 1) /2, and

t=1
T 1 1

T’ﬁ’l/ZZtﬁut = / rPdW (r) =4 N <O,/ TQBdr) ,
t=1 0 0

where W (r) is standard Brownian motion, x? denotes a chi-square random variable
with one degree of freedom, = denotes weak convergence and =; denotes equality in

distribution. The Score then obeys the following limit,
' L Wr)
DS (pa) = | aw (r).
0 7P

where Dy = diag {T ,To+Y 2} . Expansion of the Score in the Gaussian case yields,

N " ﬁMLE —1
S(IO7 Oé) = S(ﬁMLEaaMLE) + H(p7 CY) R )
QNMLE



so that,

Pure — 1 _ ol
DT . :_<DT1H(p>a) DT1> DTls(p,Oz).
OMLE
Now
-1
_ . T 1 ¥ T2 oy
- (DTlH (p, @) DTl) = o’ 479 T 0oil) T 2
T—B-3/ Zt:l tﬁytfl T(28+ )thlt &)
~1
1 1
L o [ W (r)’dr o [y r®W (r)dr
o fol rPW (r) dr fol r2dr
and hence,

-1

T (pyre —1) = 1W (r)?dr — <f01 e dr) (/01 W (r)daw (T)) (5)

0 fol r28dr

and
-1

P § e Ll R O B

Note that if we define the limit of the scaled Hessian by,

. H, H,
Di'H(p,a) Dyt = H(p,a)=| " °
Hpa Haa

then the quantities scaling the limit distribution of the components of the Score in

(5) and (6) are:

o — <pr_ (%’“)2) & - (Hm— (ﬁ_ﬂa)2>,

ax H,,

so that H pla and Ha| , are the stochastic analogues of Conditional Information'.
Bhapkar and Srinivasan [3] and Zhu and Reid [4] argue that conditional infor-
mation (2) should form the basis of any efficiency theory, e.g. application of the

Cramér-Rao lower bound to any estimator of p. In the current context this would fail

!The author is grateful to an anonymous referee for steps leading to this interpretation.



since I,, = 0 would wrongly imply that the value of 5 does not affect the limit dis-
tribution of p,;; 5. On the other hand the stochastic quantity H,, depends explicitly
on 3 and should therefore prove informative about inference on p, as a function of j3.

Indeed, here the limit in (5) can be interpreted as;
T (pyre —1) = H,;‘éza

where Z ~ (x} — 1). Only H,, contains any information on the impact of the covari-
ate on the asymptotic distribution of p,,; ;. It does not however measure its variance
directly, since it is correlated with Z.

Specification A is extremely useful in two regards. First, as in Hansen [10], it
exposes the effects of even stationary covariates on tests for nonstationarity. Second,
here, a sensible stochastic analogue of conditional information arises naturally and
its role in the limit distribution is clear. However, the latter applies only by imposing
a = 0, while generally the distribution of p,;; » will depend explicitly upon «, and
any other value will produce different, as well as quickly intractable, limit theory.
Specification B, on the other hand, allows construction of invariant statistics and in

the next Section it will be shown that H ol has far wider applicability, in that context.

3 Profile likelihood and information measures

In the context of specification B, suppose that a process (ut){ is generated according
to

= pus_1 +er 3 e~ iid(0,0?), (7)

and we are interested in testing the null hypothesis Hy : p = 1, against H; : p =
1 —¢/T, for ¢ > 0. In the simplest case we assume that the observed time series data
(yt)lT is given by 1y; = u;, however we explicitly ‘de-trend’ the observations according

to two non-linear trend models;

My =at’ +u, & My :y = ag+ art’ +u, (8)



with 5 > —0.5.
The purpose is to measure the influence of 5 on our ability to determine whether
or not (ut)lT has a unit root. Let &, &y and &; denote the OLS estimators for a,

ap and «a; in (8), respectively. Unit root tests are constructed from detrended data,

(u)l for M, and (u;“)lT for M, where
My :uf;:yt—dtﬁ ; Mg:uj:yt—ézo—ézltﬁ.

The hypotheses Hy and H; are invariant with respect to the groups of transfor-

mations defined, respectively, by
Giry—y+at’ o Gyiy—y+ag+at’ 9)

Similar to King [14] and Nielsen [15], the maximal invariants under G; and G, are v, =
Oly and Vg = ng, where Oj satisfies OJICJ = IT—j; OJCJ/ = Mj = ]T_Xj (X;Xj)_l XJI
and X, = (tﬁ)tT:l and X, = (1,t5)tT:1. Defining the vectors U* = (u;“)T = Miv,

t=1
and Ut = (uj)T

t=1

= M>sv,, then all statistics constructed only from wujy (u;r ) are

invariant, having distributions not depending on « or oy and «y, respectively. In
particular, any quantity derived via the imposition of &« = ay = a; = 0 will, in the
context of specification B, still apply more generally, unlike with specification A.

To measure the effect of the trend parameter 5 on asymptotic inference we will

focus upon likelihood based measures constructed from the Gaussian Profile Likeli-

hood:
exp { —5ts L (i = piti1)’}
(2mo2)T/2 ’

where @; = u} for M, and @; = u;” for Mo, with likelihood profiled with respect to

L(p.o?) = (10)

the nuisance parameters « or (ayp, ) , respectively, via OLS. Accordingly, define the
following profile measures:

Kullback-Leibler divergence
Define the log-likelihood ratio by

LR(p) = In [M] _ % [(p2 )Y @) 200 - 1) @i |

t=1



then the asymptotic profile Kullback-Leibler divergence is given by
KL(p) = lim Eg, [LR(p)].

Fisher and conditional information

For specification B the profile Score and Hessian are,
LS e (@ — piig—)

2 _
S(p.o®) = . .
204 Zt 1( — piiy_1) )

1 T ~2 1 T ~ ~ -
— Uy s U1 (U — PU—
_H (p7 0_2) _ o2 t=1 “t—1 o4 Zt 1 Yt—1 ( t put 1)

ﬁ Zthl Ty (T — pliy—1) -6 Zt 1€ 204

The Gaussian profile MLEs satisfy,

~ PpMLE = P ~_ =\t Al
Dy = (=Dr'H (p.0*) Di')  Dy'S(po®). (1)
~2 2
OpmMLE — O
Imposing p = 1, noting up = O, (TI/Q) and &r = Atip = O, (1), then the limit of the
scaled Hessian, H (p, 0?) = limy_.o D3 H (p, 0) D', where Dp = diag {1,172},
is diagonal, since T—3/2 Zthl Ur—18: = 0, (1), as is its expectation. Asymptotic Fisher
information in (ﬂt);‘ll about p when Ay, = ¢, is

_2 T
>
0_2 t—11 >

t=1

L (f) = lim E

T—o0

and conditional information in p given o2 is equal to Fisher information, in this case,
ie. Cl,,» =1, (B).

Before proceeding we will require limiting forms for the OLS estimators of the
nuisance parameters & and (o, &) when Au; = ;. These generalize results found in
Durlauf and Phillips [16] and are given in the following Lemma, proved in Appendix
L



Lemma 1: Let y; := u; = w1 + &, & ~ 1id(0, 0?),

1
TP 126 = (26+1) / W, (r)dr
0

o = g = EHEDEE (o L ]
—(26+1)(B+1)
62

Y (B -8+ 1) (8+1) i
M( 5 (26 +1) (8 +1) )W"( )d]’

where W, (r) =g cW(r). N

T4y = Qu(B)=

X

Note that, as is well known, &g is never consistent, while neither of & or &, are
if 5 < 0.5. This, for &, contrasts with the limit for é,/.r implied by (6) and which
could be generalized for o # 0, if a were the interest parameter, for instance.

Applying the results of Lemma 1 to the appropriate profile likelihood yields ex-
plicit expressions for the profile Kullback-Leibler, Fisher and conditional information
as given below. For each model we find that these are all asymptotically equivalent
and depend upon the degree of trending, 3, in exactly the same way. The findings

are summarized in the following theorem, which is also proved in Appendix I.

Theorem 1: Part I) Let v, := uy = uy_q1 + & and suppose that we de-trend y,
according to My, with u} =y, — &tP, then:
(a)

2

T-Qz(u;_lf = /01 W2(r)dr — (28 + 1) (/Olrﬁwa(r)dr)

T 1 1
T2 Z upup = / Wf(r)dr —(28+1) (/ TBWU(T)dT) )
1 0 0

(b) Letting p=1—¢/T, for ¢ > 0, we have

@) = orn =1L2y‘5+2]

2 | (28 +3) (B +2)
A A 282 -B+2
BL7A) = Z{@ﬁ+sﬂﬂ+m}'

9



(c) In model M; Kullback-Leibler divergence and, therefore both information

measures, are minimized for trends of the form t° | where B* = (\/6 — 1) /2.

Part II) Now let y;, := uy = uy—1 + &, and suppose that we de-trend vy, according to
My, with u” =y, — ag — aqt?, then:
(a) Both T~237 (uttl)2 and T237 ufu | have the same asymptotic sto-

chastic representation, with

T?Zj:(ujl /W dr—(/ W, ( )

25“;55“) Vﬂ W, (r )dr—%/olwo(r)drl

(b) Letting p=1—¢/T, for ¢ > 0, we have

B 1] (287 +8+5)
N0 = Chie=5l2513G13)
_ 2| @8 +8+9)

KL™(5) = 33 (28+3)(B8+3)

(¢) In model My Kullback-Leibler divergence and, therefore both information

measures, are minimized for trends of the form t5+, where B = (\/ 10 — 1) /2. H

4 Discussion and Analysis

1) Returning to the original Dickey-Fuller [13] Model (i.e. specification A in (1)),

then we find that the expectation of the limit of the Conditional Hessian is

E[%EI;OHM] - E{/Olwz(r)dr—(wﬂ) (/Olr’BW(r)dr)r

[ 2P -8+2 ]
B [<2ﬁ+3)<6+2)]_11(5>'

That is the measure of conditional information derived for specification A is identical

to profile Fisher information in specification B. This finding can generalized, at some

considerable algebraic cost, to the case of d; = o + at”.

10



2) In all cases it is clear that the covariate is relevant for inference on p, whether
it is evaporating or nonstationary, whether slowly evolving or explosive. For instance,

in M, with 5 = 0, we have I} (0) = CT,

1lo

» =1/6,and KL* (0) = ¢?/12. The outcomes
can also be compared with the benchmark of a pure random walk (i.e. the likelihood
does not need profiling), in which case we find I; = 1/2 and KL = ¢?/4. In the
case of My, I7(5) < 1/2 for all —0.5 < [ < oo, although I (—0.5) = 1/2 and
limg_,o I (8) = 1/2. That is, profiling with respect to the limiting evaporating or
explosive covariate has, effectively, no effect on information. For M, the benchmark
case can be taken as M; with 3 = 0. Once again we find I} (3) < 1/6 for all
—0.5 < 8 < 00, but I;7 (—0.5) = 1/6 and limg_., I (3) = 1/6.

3) In order to demonstrate that these findings are genuinely informative about
the effect of regressing out t? on unit root inference we examine the power envelope.
Adding scale invariance to the groups of transformations G; and G, defined above,
then from King [14] the maximal invariant (under (9)) for testing Hy : p = 1in (7) is
v; = C’j’y/ \/m , where C; and M; are defined above. The statistic v; has density
(up to normalized Haar measure on the surface of the unit 7' — j sphere), as

_ ;o _(T;j) , _ N
Fsp) =4, (VA v) A, =CH(A) (A7) G

p

where A, = I — pL, and L is the lag-operator matrix. The Neyman-Pearson tests for
H, against the alternative H; : p # 1 are to reject Hy if
NP; = @ < ks, (12)
Vi ATV
where ks is chosen so that the size is §.

In Table 1 (in Appendix II) the resulting power envelope was simulated for 7' =
250, for p = 1—¢/T with ¢ = 1,2, .., 10 and for different values of 5. The simulations
were carried out with 2 million replications. Note that g = T is used to approximate
the limiting case of  — oco. In Table 1 a clear prediction is supported; in M; power

is not maximized when § = 0, detrending with respect to an evaporating trend

can imply as much or even more power. It is not quite possible, in this context,

11



to confirm the prediction that f*and 8" minimize power. This is for two reasons.
Firstly the powers are clearly very close and insignificantly different even with two
million replications. Second the properties of the power envelope are determined by
behavior of tests under both the null and alternative, whereas Theorem 1 applies only
under the null.

4) Instead, consider the profile maximum likelihood estimators for p in M; and

M27

T *, ok T + 4+
Zt:2 Up Uy A thz Uy Uy q

o 23:2 (u:fl)2 v 25:2 (“;1)27
where u} and u;" are defined above. Figures 1 and 2, in Appendix I, plot the simulated
(with 7" = 250 and two million replications) variances of T (p; — 1)and T (p, — 1),
respectively, for different values of the trend parameter (5. Plotted also are vertical
lines at 3* and 7. These figures help confirm, finally, the third prediction that there

is a value which minimizes the inferential accuracy and, crucially, this value is not

equal to 1.

5 Conclusions

This paper argues that likelihood based measures of information and efficiency remain
informative about inferential accuracy even in regressions involving nonstationary
data. This, even though such models obey none of the required assumptions for
consistent and efficient, asymptotically normal estimation.

The equivalency of conditional information in a lagged dependent variable justifies
use of the simpler Kullback-Leibler, or Fisher information applied to profile likelihood
in the case of unit root inference in the presence of a general covariate. These are
informative, in that clear predictions including maximum inferential efficiency for
‘evaporating’ trends and minimum efficiency for fractional, not linear, trends are

clearly supported through numerical experiment.

12
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Appendix I

Proof of Lemma 1:

Since u; = Ztl £, then first note first the following standard results T-3/2 ZT Uy =
fol W, (r)dr, T-5+3/2 ST 48y, — f()l W, (r)dr and T-G+D) ST 48 fo B — B+1’

which can then be immediately applied to the OLS estimators. Immediately, therefore

we have,

T (3+3/2) S~y 48 fl Wy (r)dr !
—1/2A 19t 0 T _ B
R T (2 41) / POV, (r)dr.
ot Jo r¥Hdr 0

Then,

172, T B3/ STyt =32 5Ty, (B ST 6
a1 =

T-Co+1) ST 128 _ P-2(5+1) (Z tﬁ)
fol rPW, (r)dr — fo W, (r)dr fo rBdr

Jy rosdr = ( rﬂdr)2
= (2ﬁ+1§ Dl [/01 5W()d—%/lwg(r)dr}
_ (26+1§5 )/O<Tﬁ 5i1>W()dT_Ql(ﬁ)

)

g

)

5
as required and finally,

T T
T2 = T2 u, — T2, 700 Y ¢4

1

= /1 W, (r)dr — Qi (8) /Olrﬂdr

/ Wt (284 15)2(6 +1) /01 <Tﬂ _ ﬁ) W, (r)dr

~(28+1)(B+1) I Gl CE R VG V) ISP,
/( 5228+ 1) (B+1) )W“”d]' -

62

Proof of Theorem 1:
Part I): a) The OLS detrended data is

Zl yttﬁ
Sr tm

up =y, — at’ =y —

7
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so that when v, == u; = w1 + &4
T T T 2
. 2 >o1 wa(t—1)°
2. (i) = 2 (um ~ T U 1’
1 1

o (Suae-1y)
" 2

Since, T2 T u? | = [} W2(r)dr, limp_o T-HD ST (¢ — 1)% — (264+1)7"

g

and T-0F+3/2 5Ty, (t — 1) = fol rPW,(r)dr then

T2Zj: (up_))* = /01 W2(r)dr — (28 +1) </01 rﬁwg(r)dr>2 :

Similarly, we have

U IR O (D AT AN SRS Ok VMY
; tU—1 = Z(t Zthwt)(tl Zf(t—l)w (t 1))

1

g (ST wt?) (ST wealt = 17) 7 (¢ - 1)
R SR (= 1)
(F e =17) (S walt-17)  (SF weat?) (S wt?)
. St — 1) . S |

Consequently, using

T T T T
T2 Z wu,, = T72 (Z u?,l + Z €tut1) =T Z u?—l + 0p(1)
1 1 1 1
1
N / W2(r)dr, (13)
0
as well as

T T
T—(B8+3/2) Z g (t — 1)5 — T—(6+3/2) Zut—l(t _ 1)5 +0,(1)
1 1

= /1 W, (r)dr, (14)

0
and similar for 7-¢+3/2 STy, 18 and limp o, T~ ST (t—1)F = (28 + 1),

then we have,

2

T 1 1
T2 Zufu;k_l = / W2(r)dr — (28 + 1) </ TBWU(T)dT> :
. 0 0

16



(b) Since Kullback-Leibler divergence is defined as KL = E [LR|, where

T
LR = 202[,)—1;% —2(p—1) Zututl

and expectations are taken under the unit root null. Consequently, since 72 ZlT (uf)?

?

and T2 Zf ujuy_; have the same asymptotic representation, then we have

2 (/01 W2(r)dr — (28 + 1) (/01 T5W(r)dr)2>] :
or letting p =1—¢/T,

LR = %2 [/01 W2(r)dr — (28 + 1) (/01 rBW(r)dr) 2] :
E Uol Wz(r)dr] 5

(/01T’3W(r)dr)2] = EUOerW(r)dr/olrSW(s)ds}
_ B Uol /01 AP (1) W (s) dsdr}
= /0 lrﬁ /0 ' sP  dsdr + /0 1 PP /0 " Pdsdr
2

(B+2)(28+3)
since £ [W (r) W (s)] = min][r, s], and so,

¢ {1 2(26+1) ]

1
T2LR = 3

Since,

and

E

M= 2 @3B+
which when rearranged gives the expression as in the statement of the Theorem.
For the information measures, we have, immediately that Fisher information is
T
T 2 Z (T ]

1

/0 WR(rydr — (26 4 1) ( /0 ITBW(r)dT) 2] - B 3 ;ff) (yi 5

17
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(c) Immediate from the definition of K L*.
Part IT)
a) For My and with y; = u; we have
ut+ =up — Qp — (341?55,

where &y and ¢y are defined above. Using well known results for the simplest OLS

regression, we define

T T
'&t:ut—T’lZut and f:tﬁ—T’lztﬁ,
1 1
so that we can write

T~
A Do Ut
o ==— and u =1u —

20 1

so that

2
T T -\ 2 T S {)
+)2 S > Ut ~> ~2 ( L
(Ut ) == Ut — —t = Uy — ——5 = -
o003 (o ) 3w
Using results found in the proof of (a), we first find

Ty ap = T—QZT: (Zut)z

:>/W dr—(/W > (15)

T T T
“EEAN gl = TN (ut — 77! Zut> <t5 7! Zﬁ)
1 1 1
T T T
T7—(8+3/2) Z tﬁut _ 7= (B+1) Z P=3/2 Z Uy
1 1 1

1 1 1
B _ -
= /Or W, (r)dr B—l—l/o W, (r)dr, (16)

while

2
3 p ey (tﬁ e itﬁ) @8+ 1; CEST—
1 1 1

18



Consequently, combining (15), (16) and (17), we have

T—2 /W er—(/w >

28+ ;</3+ 1)° UO PP (r )dr_ﬁ/olwa(r)dr}

{/01 W, (r)2dr — (1 + 256—?1) (/01 Wa(r)dr)2 (18)

_{28+ 1;55 +1)° (/01 rﬁWg(T)dr>2

2(28 +;3 (B+1) /01 rPW, (r)dr /01 Wa(r)dr} :

Once again it is straight forward to show that 7-2 3.1 ufu; | has the same as-

2

ymptotic limit, via

N D > .7 A WSS »i T () L
21:%5 Up_y = Z <Ut Z 725 ﬂ) <Ut1 er(f_l)Qﬁ (tl)ﬁ> )

1

where 4 = (t — 1)? = T-' Y] %, and using the results in equations (13) and (14),
above.
Again, to calculate Kullback-Leibler divergence, we require limy_, ., [7;—;2 Z1T (uj )2} .

As above, we have

EUOIW(T)MT: = 5 E
(/01W(r)dr)2: _ %

For the remaining expectation, consider

T T
T—(5+3/2) Z tﬁut> <T—(’Y+3/2) Z t7ut>
( 1 1

(/01 rﬁW(r)dr)Ql = (26+3§(ﬁ+2) and also

lim F

T—oo

~E Uolrﬁwmdr/ol er(T)dr] |

(19)

We can write Z"lp P, Zip tTuy = Zt L tPsTupug, so that noting that F [ugu,] =

min|s, t], we have

r T T ¢ T T
Z tﬁut Z t’Yut] — T*(5+’7+3) (Z Z tﬁs’erl + Z Z t6+18’y>
1 1

t=1 s=1 t=1 s=t+1
1B8++2 T B+1

— 7 (B+7+3) (Z Z T7+1 _ t7+1]> :

T-B+7+3) g

19



and then

lim 7~ p
T—o0

ol v+B+4
Ztﬁ“fzt“f] CEPICEP T N

Consequently, we have

KLT = lim F

T—o0

T T
[p—lZut —2( —1Zuut1”,
t=1 t=1

so that with p = (1 — ¢/T'), and using both (19) and (20) in (18) we have

[werar— (=232 ([wowr) ([ wowr)

_(25+1;2(6+1) (/ W () )2

2(28+1)(B+1)

Bl 3 / /W }
211 26+ 1 (26+1)(B+1)
- 2(2 (H 62 ) 6(2ﬁ+3>(ﬁ+2)>

( 2ﬁ+1 +1) B +4 )
2(8+2)(B+3)

KLt = —E

252+5+5)
12(6+3) (26+3)

Moreover, by arguments almost identical to those given above in the proof of Part

I; for M, we have

If = Clyz = lim E

2\ _ (28 +8+5)
T ; i) ]_6(6+3)(2ﬁ+3)'

(c) Immediate from the definition of KL*. ®
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Appendix 11

Table 1: Power Envelopes for Models Mj;and M, with different trends

M, M, Pure
AR(1)
0 05 T 1 B 0 —05 T 1 Bt
&
1 080 .080 .080 .052 .053 | .079 .077 .076 .054 .054 | .080
2 121 122 121 062 .062 | .119 .115 .116 .061 .061 || .122
3 172 178 174 074 075 | .169 .154 167 .073 .073 | .178
4 234 244 236 .095 .094 | .225 .198 226 .093 .093 | .246
5 300 .321 317 114 115 .298 258 289 .109 .109 | .323
6 365 416 406 .143 145 | .365 .311 .353 .141 .141 || .417
7 457 520 .508 178 178 | 448 .373 434 .169 .169 | .520
8 528 611 596 219 217 | .521 450 515 .214 214 | .610
9 591 687 .673 262 .258 | .579 512 .593 260 .259 | .687
10 668 770 .754 .326 .317 | .658 .569 .654 .296 .297 | .771
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Figure 1: Plot of V [p,] x 10000 vs. (3. Vertical line at 8* = (V6 — 1) /2.
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Figure 2: Plot of V [p,] x 10000 vs. 3. Vertical line at 3% = (v/10 — 1) /2
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