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Abstract

The tick structure of the financial markets entails that price changes observed
at very high frequency are discrete. Departing from this empirical evidence we de-
velop a new model to describe the dynamic properties of multivariate time-series of
high frequency price changes, including the high probability of observing no variations
(price staleness). We assume the existence of two independent latent/hidden Markov
processes determining the dynamic properties of the price changes and the excess prob-
ability of the occurrence of zeros. We study the probabilistic properties of the model
that generates a zero-inflated mixture of Skellam distributions and we develop an EM
estimation procedure with closed-form M step. In the empirical application, we study
the joint distribution of the price changes of four assets traded on NYSE. Particular
focus is dedicated to the precision of the univariate and multivariate density forecasts,
to the quality of the predictions of quantities like the volatility and correlations across
assets, and to the possibility of disentangling the different sources of zero price vari-
ation as generated by absence of news, microstructural frictions or by the offsetting
positions taken by the traders.
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1 Introduction

In the last twenty years, we have witnessed a boost in the intradaily trading activity on the

financial markets and, subsequently, an enormous increase in the availability of stock prices

observed at high frequency. On the one hand, the availability of stock prices sampled at very

high frequency has driven the empirical analysis of financial markets towards the use of ex-

post measurements of (integrated) variance over fixed horizons (e.g. day), see the discussion

in Andersen et al. (2010). On the other hand, prices sampled at very high-frequencies are

characterized by a number of micro-structural features, which challenge the adequacy of the

standard specifications typically adopted for the intradaily price changes. This opens the

door to alternative model specifications for the high frequency price moves.

We contribute to this strand of literature by providing a new statistical framework for

the analysis of high frequency prices, which goes beyond the standard setups. In the classic

framework, the prices of financial assets are typically assumed to originate from a continu-

ous distribution with time-varying parameters, e.g. with stochastic volatility, see Shephard

(2005). The reason for the widely adopted assumption of a continuous underlying price

process is made to increase model tractability. However, financial markets regulations make

stock price changes intrinsically discrete due to the minimum allowed tick size (also known as

decimalization effect). This discreteness becomes more evident when the sampling frequency

increases. For instance, at the frequency of one second the discreteness of the price changes

is the dominating feature, see also the discussion in Rossi and Santucci de Magistris (2018)

on the impact of price discreteness on the inference on stochastic volatility parameters. The

statistical analysis of discrete processes in Z poses substantial difficulties from a method-

ological viewpoint, greatly complicating the underlying theory and model interpretation, see

among others the recent contributions of Koopman et al. (2017) for a discrete-time model

and Shephard and Yang (2017) for a model built in continuous-time. Along with their in-

trinsic discreteness, other stylized facts of high frequency price changes are: i) the strong

presence of time-varying volatility, see Koopman et al. (2017); ii) the large number of zero

price variations, which is reflected in a constant price over a short time interval, a feature

known as price staleness, see Bandi et al. (2017); iii) the presence of extreme observations
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(fat tailed conditional distribution). When the goal is to carry out inference on volatility

and correlations across stocks, all these features must be accounted for.

In this paper, we develop a flexible multivariate integer valued model for the analysis

of price changes observed at high frequency. The goal is to answer the natural question on

how prices of different assets observed at high frequency interrelate, when we incorporate in

the model all the features discussed above. The model builds upon a simple mechanism for

the generation of the transaction price changes that result from the realization of the differ-

ence between two unobserved random variables accounting for positive and negative moves.

Since the price changes can only take values on a discrete grid, these two random variables

must adhere to this constraint. The Skellam distribution of Irwin (1937) and Skellam (1946),

which arises from the difference between two independent Poisson random variables, provides

the natural baseline framework to model discrete price changes, see also Barndorff-Nielsen

et al. (2012) and Koopman et al. (2017). In particular, Koopman et al. (2017) assume that

the price changes of the individual assets traded on NYSE are conditionally distributed

according to a Skellam distribution with stochastic volatility. The resulting model can be

cast in the class of nonlinear non-Gaussian state space models for which the likelihood is

not analytically available. This results in complicated inference and non-standard estima-

tion procedures; Koopman et al. (2017) use simulated maximum likelihood relying on the

numerically accelerated importance sampling (NAIS) method, see Koopman et al. (2015).

An extension to the multivariate context within the framework of Koopman et al. (2017)

is unfeasible. Indeed, like the multivariate Poisson case, the resulting multivariate Skel-

lam distribution (see Bulla et al. (2015) and Akpoue and Angers (2017) for the iid case) is

remarkably difficult to handle. Furthermore, multivariate models of this kind suffer from

the “curse of dimensionality” and have been rarely applied to the case of more than two

variables. A notable application of the Skellam in the context of multivariate prices changes

based on a copula function and a generalized autoregressive score (GAS) specification is

provided in Koopman et al. (2018).

Differently from the previous approaches, our modeling framework builds upon the idea

that the observed price changes are independent conditionally to the realization of unob-

served discrete-valued random variables describing the multivariate dynamic properties of
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the data. In other words, our model belongs to the class of latent/hidden Markov models

(HMM), see among others Vermunt et al. (1999), Bartolucci and Farcomeni (2009), Bar-

tolucci et al. (2012) and Zucchini et al. (2017). The Markov structure is made up of two

independent Markov chains responsible to capture the dynamics of the price changes and

their mutual association as well as the excess probability of zeros. Conditional on the latent

structure, each individual asset is assumed to be Skellam distributed and independent from

other assets. The distribution of the observables, after marginalization of the latent vari-

ables, typically exhibits time-varying volatility, fat tails, excess of zeros, and time-varying

probability of zero observations.

The large fraction of zero observations displaying significant autocorrelation has a sub-

stantial micro-structural interpretation; Bandi et al. (2017) measure the extent of staleness in

high frequency prices by developing a novel financial indicator: the excess idle time (EXIT).

Their results show that the probability of observing zero price changes in financial data

varies over time and it is an indicator of price illiquidity. Similar studies addressing the

time-varying probability of observing zero variations for integer valued time-series (mostly

in N) can be found in Zeger and Brookmeyer (1986), Rydberg and Shephard (2003), Bien

et al. (2011), Hautsch et al. (2013), Kömm and Küsters (2015), Grønneberg and Sucarrat

(2017) and Harvey and Ito (2017). However, none of these (univariate) models contempora-

neously incorporates all the stylized facts characterizing the financial price changes observed

at high frequency. From both a methodological and an applied perspective, allowing for mul-

tivariate dependencies between the zeros of several equities can bring substantial insights

on illiquidity features within and between assets, which is essential to study commonalities

during illiquid episodes.

Through the paper, we show that our latent structure has an alternative representation in

terms of a single hidden Markov chain with suitable constraints, and the re-parametrization is

one-to-one. This allows us to prove that the model is identifiable thus resorting to maximum

likelihood estimation with no exceptional effort by means of an expectation-maximization

(EM) algorithm with steps available in closed form. This is an extension of the EM algo-

rithm proposed in Catania and Di Mari (2018) for ML estimation of a hierarchical Markov-

switching model for multivariate count data (for a similar hierarchical structure for univari-
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ate data, see also Bartolucci and Farcomeni (2015), Geweke and Amisano (2011), Maruotti

(2011), and Maruotti and Rydén (2009), for an application in the context of longitudinal

data). In addition, the hidden Markov representation of our model allows us to analytically

derive the predictive, filtered, and smoothed distributions of the latent variables as well as

the joint predictive distribution of price changes.

Our empirical results can be summarized as follows: the proposed modelling framework

well adapts to match the univariate and multivariate empirical distributions of high fre-

quency price changes and their associated moments. This holds true in both the normal

and Lehman market periods under investigation; the latter being characterized by abnormal

price variations especially at the opening of the trading day. The model well accounts for

all the empirical features displayed by the high frequency data, including the large propor-

tion of zero price variations (staleness), which often occur simultaneously on multiple assets.

Furthermore, we show that disentangling the conditional probability of zeros into could be

employed to predict and interpret the reduced trading activity on the markets as measured

by absence of volume of transactions in certain phases of the trading day.

The paper is organized as follows: Section 2 presents the model and its stochastic prop-

erties. Section 3 discusses inference via the expectation-maximization algorithm. Section

4 outlines the empirical application, and Section 5 concludes. Finally, a document with

supplementary material reports additional results concerning the empirical application.

2 Model

Let Yn,t ∈ Z be the random variable representing the price change of asset n at time t,

and let yn,t be its realization. We collect the price changes of N assets in the N × 1 vector

Yt = (Yn,t, n = 1, . . . , N)′ ∈ ZN , with analogous notation for yt = (yn,t, n = 1, . . . , N)′. Yt is

assumed to be observed for each time point1. Let Sωt and Sκt be two unobserved independent

homogeneous stationary first order Markov chains with finite state space Sωt ∈ {1, . . . , J}

and Sκt ∈ {1, . . . , L}. Let also P (Sωt = i|Sωt−1 = j) = γωi,j for i, j = 1, . . . , J and P (Sκt =

h|Sκt−1 = l) = γκh,l for h, l = 1, . . . , L be the transition probabilities of the two Markov chains

1Note that Yt can also contain missing values. Accounting for missing values is straightforward given
the latent structure of our model as discussed below.
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Sωt and Sκt , respectively. The transition probabilities of Sωt are collected in the J ×J matrix

Γω = [γωi,j]
J
i,j=1 and Sκt in the L×L matrix Γκ = [γκi,j]

L
i,j=1, under the usual constraints on the

positiveness and summability: γci,j > 0; Γcu = u, for c = ω, κ, with u being a vector of ones

of proper dimension. The stationary distributions of the two Markov chains are indicated

by δω = (δωj , j = 1, . . . , J)′ and δκ = (δκh, h = 1, . . . , K)′ for Sωt and Sκt , respectively.2

We allow for a second hidden layer which, conditional on the realization of Sωt , han-

dles time-specific dependencies across the assets and accommodates departures from the

marginal distributions assumed for each asset. We label this additional layer Zt, which is an

unobserved integer-valued random variable with state space {1, . . . , K}. The variable Zt is

assumed to be independent from Sκs and Ys, given Sωt for all s. Specifically, we assume that

Zt|Sωt ⊥⊥ (Sκs ,Ys, S
ω
g ) for all s and g 6= t. Furthermore, Zt|Sωt is assumed to be categorically

distributed with P (Zt = k|Sωt = j) = ωj,k, with ωj,k > 0 and
∑K

l=1 ωj,l = 1 for all j = 1, . . . , J

and k = 1, . . . , K. In other words, the joint latent process (Zt; S
ω
t ) can be decomposed into

an unconditional Markovian state process Sωt that handles serial dependence in the data,

and another process, Zt, that conditionally on Sωt handles cross dependencies. Analogously,

we let Bn,t be an unobserved Boolean random variable with state space {0, 1}, which inflates

the probability of observing a zero for the price change of asset n at time t. All the Bn,t are

collected in the vector Bt = (Bn,t, n = 1, . . . , N)′ ∈ [0, 1]N . We assume that, given Sκt , all

the Bn,t for n = 1, . . . , N , are independent between each other and from Sωs and Zs for all

s, that is Bn,t|Sκt ⊥⊥ (Bm,t, S
κ
g , S

ω
s , Zs) for all s, n 6= m, and g 6= t. We further assume that

P (Bn,t = 1|Sκt = l) = κn,l, where 0 < κn,l < 1 for all n = 1, . . . , N and l = 1, . . . , L. The

aforementioned dependence structure is reported in Figure 1.

The observed random variables Yn,t are assumed to be independently Skellam distributed

given Zt and Bn,t = 0: Yn,t|(Zt, Bn,t = 0) ⊥⊥ Ym,t|Zt, Bm,t=0 for all n 6= m. Furthermore,

Yt|Zt, Bn,t = 0 is assumed to be independent from Sωs , S
κ
s and Bs for all s. In the following

we exploit the stochastic representation of a Skellam random variable as the difference of

two independent Poisson distributed random variables. Specifically, we have that

Yn,t|(Zt, Bn,t = 0) = X
(1)
n,t |Zt −X

(2)
n,t |Zt, (1)

2By the stationarity assumption, the initial distribution of each Markov chain is set equal to the sta-
tionary distribution.
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Sω0 Sω1 SωT

Z0 Z1 ZT

Y0 Y1 YT

B0 B1 BT

Sκ0 Sκ1 SκT

Figure 1: The model path diagram. St and Zt are two integer–valued unobserved stochastic
variables. St follows a first order Markov process with state space {1, . . . , J}, while Zt
is independently and identically distributed given St, with support {1, . . . , K}. Yt is a
multivariate observed integer–valued random variable, which is independently and identically
distributed given St and Zt.

whereX
(1)
n,t |Zt = k andX

(2)
n,t |Zt = k are two independent Poisson random variables with inten-

sity parameters λ
(1)
n,k and λ

(2)
n,k, respectively. The probability mass function of Yn,t|(Zt, Bn,t =

0) is given by

P (Yn,t = y|Zt = k,Bn,t = 0) = e−(λ
(1)
n,k+λ

(2)
n,k)Iy

(
2

√
λ
(1)
n,kλ

(2)
n,k

)(
λ
(1)
n,k

λ
(2)
n,k

)y/2

, (2)

where

Iy(a) =

(
1

2
a

)y ∞∑
r=0

(
1
4
a2
)r

r!Γ(y + r + 1)
,

is the modified Bessel function of the first kind, and Γ(·) is the Gamma function. By

conditioning on the event Bn,t = 1, we assume that P (Yn,t = y|Zt = k,Bn,t = 1) = P (Yn,t =

y|Bn,t = 1) = ψ(y) where

ψ(y) =


1, if y = 0

0, otherwise,

is a Dirac mass at 0. By removing the conditioning on Bn,t = 0, we obtain the following
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stochastic representation

Yn,t|Zt = (1−Bn,t)
(
X

(1)
n,t |Zt −X

(2)
n,t |Zt

)
.

Marginalizing out the effect of Bn,t and conditioning on the event Sκt = j, we recover a zero

inflated Skellam distribution with probability mass function

P (Yn,t = y|Zt = k, Sκt = l) = κn,lψ(y) + (1− κn,l)SK(y, λ
(1)
n,k, λ

(2)
n,k) ,

where SK(y, λ
(1)
n,k, λ

(2)
n,k) = P (Yn,t = y|Zt = k,Bn,t = 0) is reported in (2). Under the

conditional independence assumption for the Yn,t, the joint probability mass function of Yt

is given by

P (Yt = y|Zt = k, Sκt = l) =
N∏
n=1

P (Yn,t = yn|Zt = k, Sκt = l).

The marginalization of Zt is achieved by conditioning on Sωt as follows

P (Yt = y|Sωt = j, Sκt = l) =
K∑
k=1

ωj,k

N∏
n=1

P (Yn,t = yi|Zt = k, Sκt = l).

Finally, after marginalization of the two Markov chains, we recover the unconditional distri-

bution of Yt as

P (Yt = y) =
J∑
j=1

L∑
l=1

K∑
k=1

N∏
n=1

δωj δ
κ
l ωj,k

(
κn,lψ(yn) + (1− κn,l)SK(y, λ

(1)
n,k, λ

(2)
n,k)
)
,

from which we recognize a three layer mixture of conditionally independent zero inflated

Skellam distributions. We label this model Dynamic Mixture of Skellam, DMS, henceforth.

If we wish to condition to past values of Yt, the distribution simply reduces to

P (Yt = y|Y1:t−s) =
J∑
j=1

L∑
l=1

K∑
k=1

N∏
n=1

πωj,t|sπ
κ
l,t|sωj,k

(
κn,lψ(yn) + (1− κn,l)SK(yn, λ

(1)
n,k, λ

(2)
n,k)
)
,

(3)

for s > 0, with

πωh,t|s =

∑J
i=1[(Γ

ω)s]ijα
ω
i,t−s

P (Y1:t−s = y1:t−s)
, πκh,t|s =

∑K
i=1[(Γ

κ)s]ijα
κ
i,t−s

P (Y1:t−s = y1:t−s)
,
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where πωh,t|s := P (Sωt = h|Y1:t−s = y1:t−s) and πκh,t|s := P (Sκt = h|Y1:t−s = y1:t−s) represent

the predictive distribution of Sct in state h, and αci,t = P (Sct = h,Y1:t = y1:t) for c = ω, κ

are the forward probabilities delivered by the forward filtering backward smoothing (FFBS)

algorithm; more details are provided in Section 3. The notation [(Γc)s]ij indicates the ij-th

element of the power s of the matrix Γc.

2.1 Equivalent formulations

The model formulation reported in Figure 1 is convenient to easily determine the depen-

dence structure underlying the DMS. However, the tasks of filtering and smoothing typically

required in the estimation of the model turn out to be rather involved due to the presence

of the two unobserved Markov chains and the additional latent variables (Zt and Bn,t).

Therefore, we present an equivalent model representation that allows us to adapt all the

statistical tools developed for general HMM with discrete support to the present framework.

For instance, the equivalent model representation entails that filtering and smoothing of the

latent chains can be computed by the FFBS algorithm (for technical details, see for instance

Frühwirth-Schnatter (2006)).

We proceed by defining a new stationary first order homogeneous Markov chain Sω,Zt

with state space {1, . . . , JK}. The Markov chain Sω,Zt is defined by combining the Markov

chain Sωt and the integer random variable Zt. In addition, let Ω = ωk,j be a K × J matrix

containing the mixture probabilities and let U and u be respectively a K ×K matrix and

a JK-vector of ones. The transition probability matrix of Γω,Z is given by

Γω,Z = uvec(Ω)′ � (Γω ⊗U), (4)

where � and ⊗ are the Hadamard and Kronecker products, respectively. By incorporating

Zt in Sωt via the new Markov chain Sω,Zt , we obtain the equivalent model representation

reported in Figure 2. The term Sω,Zt is still a homogeneous stationary first order Markov

chain; however, its state space has been enlarged compared to that of Sωt , and its transition

probability matrix has a constrained structure provided by (4). To the constrained structure

imposed to the transition probability matrix corresponds a unique ordering in the conditional
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Sω,Z0 Sω,Z1 Sω,ZT

Y0 Y1 YT

B0 B1 BT

Sκ0 Sκ1 SκT

Figure 2: The model path diagram where Zt is incorporated in Sωt , resulting in Sω,Zt .

densities of Yt|Sω,Zt . Specifically, let iω ∈ {1, . . . , J} and jZ ∈ {1, . . . , K} be two indexes

spanning over the state space of Sωt and Zt, respectively. The state space of Sω,Zt can be

represented as {1ω1Z , 1ω2Z , . . . , 1ωKZ , 2ω1Z , . . . , iωjZ , . . . , JωKZ}, i.e. the conditional

densities of the first K regimes of the Sω,Zt Markov chain are the K mixture components of

the first regime of the Markov chain Sωt , from K + 1 to 2K of the second regime, and so on.

Furthermore, by combining the two independent Markov chains Sω,Zt and SBt in a third

Markov chain Sω,Z,Bt with state space {1, . . . , JKB} and transition probability matrix Γω,Z,B =

ΓB ⊗ Γω,Z , we obtain a representation of the DMS in terms of a single Markov chain. As

for the previous representation, the state space of Sω,Z,Bt can be represented as {1ω1Z1B,

1ω2Z1B, . . . , 1ωKZ1B, 2ω1Z1B, . . . , 1ω1Z2B, iωjZhB, . . . , JωKZLB}, where hB ∈ {1, . . . , L}

spans the state space of SBt . Let us denote this set of indexes R and define the subsets of

indexes for which Zt = k as R(Zt = k), Sωt = j as R(Sωt = j), and SBt = l as R(SBt = l).

For example, let J = 2, K = 3, and L = 4, in this case the number of regimes in the Sω,Z,Bt

Markov chain is 24, and the state space of Sω,Z,Bt can be represented in as

R = {111, 121, 131, 211, 221, 231,

112, 122, 132, 212, 222, 232,

113, 123, 133, 213, 223, 233,

114, 124, 134, 214, 224, 234}.
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For instance, if q = 6, the corresponding label is 231, and we have q1 = 2, q2 = 3, and q3 = 1.

In this case, the subsetR(Zt = k) is given by the indexes of the enlarged state space for which

Zt = k. For example, if k = 2, we have that R(Zt = 2) = {2, 5, 8, 11, 14, 17, 20, 23}. The

representation associated with Sω,Z,Bt is reported in Figure 3. The path diagram displayed

Sω,Z,B0 Sω,Z,B1 Sω,Z,BT

B0 B1 BTX
(1)
0 X

(1)
1 X

(1)
TX

(2)
0 X

(2)
1 X

(2)
T

Y0 Y1 YT

Figure 3: The model path diagram with one chain, Sω,Z,Bt .

in Figure 3 is that of a standard HMM for which the conditional distribution of Yn,t is given

by a zero inflated Skellam distribution. Specifically, conditional on Sω,Z,Bt = q, we denote

the probability mass function of Yt as

P (Yt = y|Sω,Z,Bt = q) =
N∏
n=1

κq3,nψ(yn) + (1− κq3,n)SK(y, λ(1)n,q2 , λ
(2)
n,q2

), (5)

which is adopted for filtering and smoothing of the latent states.

2.2 Identifiability of the DMS model

The fact that the DMS maps into a simple hidden Markov structure allows us to adopt

a number of results on model identification that are standard in the hidden Markov lit-

erature. Identification is proven under the following classic set of assumptions: (A1) Sωt

and Sκt are irreducible, (A2) the rows of Ω are linearly independent, (A3) κn,l1 6= κn,l2

and (λ
(1)
n,j1

, λ
(2)
n,j1

) 6= (λ
(1)
n,j2

, λ
(2)
n,j2

) for all n, l1 6= l2, and j1 6= j2. The following proposition

establishes the identification of the DMS model.

Proposition 2.1 (Identification). Given Assumptions (A1)–(A3) and provided that K ≥ J

the DMS model is identified up to label swapping.
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The proof of Proposition 2.1 is made exploiting Theorem 1 and Proposition 2 of Gassiat et al.

(2016). Specifically, consider a further reparametrization in which we let Γω,B = Γω⊗ΓB be

the transition probability matrix related to the homogeneous stationary first order Markov

chain Sω,Bt = {Sωt , SBt }, with state space {1, . . . , JL}, and state densities

P (Yt = y|Sω,Bt = r) =
K∑
k=1

ωr1,k

N∏
n=1

[
κn,r2ψ(yn) + (1− κn,r2)SK(y, λ(1)n,r1 , λ

(2)
n,r1

)
]
, (6)

where r1 and r2 are indexes associated with Sω,Bt in the representation displayed in Figure

4.

Sω,B0 Sω,B1 Sω,BT

B0 B1 BTZ0 Z1 ZT

Y0 Y1 YT

Figure 4: The model path diagram with one chain, Sω,Bt .

Under assumption (A1), Sω,Bt is irreducible implying that the rank of Γω,B is full. Further-

more, under assumptions (A3) and (A4), the state densities reported in (6) are distinct.

Hence, Proposition 2 of Gassiat et al. (2016) holds true, and Theorem 1 can be applied.

Given that the identifiability of the DMS holds under assumptions (A1)–(A3), the maxi-

mum likelihood estimator obtained via the EM algorithm outlined in the next section is

guaranteed to be the solution of a well posed problem (up to label swapping).

3 Estimation via the EM algorithm

In order to develop an EM algorithm for the maximum likelihood (ML) estimation of the

parameters of the DMS model, we exploit the stochastic representation of the Skellam dis-

tribution as the difference between two independent Poisson distributions reported in (1).

Consider now the joint distribution of (Yn,t, X
(1)
n,t )|(Zt = k,Bn,t = 0); this distribution will
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be useful for the derivation of the EM algorithm. Omitting for simplicity the conditioning

events, we have that

P (Yn,t = yn, X
(1)
n,t = xn) = P (Yn,t = yn|X(1)

n,t = xn)P (X
(1)
n,t = xn)

= P (X
(1)
n,t −X

(2)
n,t = yn|X(1)

n,t = xn)P (X
(1)
n,t = xn)

= P (X
(2)
n,t = xn − yn)P (X

(1)
n,t = xn)

=
e
−
(
λ
(1)
n,k+λ

(2)
n,k

)
λ
(1)
n,k

(xn)
λ
(2)
n,k

(xn−yn)

xn!(xn − yn)!
,

that is, the product of the two Poisson probability mass functions with intensity λ
(1)
n,k and

λ
(2)
n,k evaluated in xn and xn − yn, respectively.

Assume to observe a sample of T observations for N price changes collected in the

vector y1:T = (y′1, . . . ,y
′
T )′. Consider also the series of unobserved random variables Sω1:T =

(Sω1 , . . . , S
ω
T )′, SB1:T = (SB1 , . . . , S

B
T )′, Z1:T = (Z1, . . . , ZT )′, and B1:T = (B′1, . . . ,B

′
T )′ and

their realizations (which are not observed) collected in the vectors sω1:T , sB1:T , z1:T , and b1:T . In

order to exploit the stochastic representation of the Skellam as the difference of two Poisson

distributions, consider also the random variable X
(1)
1:T = (X

(1)
1

′
, . . . ,X

(1)
T

′
)′, where X

(1)
t =

(X
(1)
n,t , n = 1, . . . , N)′ and its (unobserved) realization x

(1)
1:T . We collect all model parameters

in the vector θ = (vec(Ω)′, vec(κ)′, vec(Γω)′, vec(ΓB)′). The likelihood of observed and

unobserved random variables, L(θ|Sω1:T = sω1:T ,S
B
1:T = sB1:T ,Z1:T = z1:T ,B1:T = b1:T ,X

1
1:T =

x1
1:T ,Y1:T = y1:T ), is

L(θ|·) = δωsω1 δ
B
sB1

(
T∏
t=2

γωsωt ,sωt−1

)(
T∏
t=2

γBsBt ,sBt−1

)
T∏
t=1

ωzt,sωt

×
N∏
n=1

ψ(yn,t)
bn,t

e−(λ(1)n,zt+λ
(2)
n,zt

)
λ
(1)
n,zt

(xn,t)
λ
(2)
n,zt

(xn,t−yn,t)

xn,t!(xn,t − yn,t)!

1−bn,t

κ
bn,t

n,sBt
(1− κn,sBt )1−bn,t .

By taking the logarithm and removing the quantities that do not depend on model param-
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eters, we obtain

logL(θ|·) ∝ log(δωsω1 ) + log(δBsB1
) +

T∑
t=1

log(ωzt,sωt ) +
T∑
t=2

log(γωsωt ,sωt−1
)

+
T∑
t=2

log(γBsBt ,sBt−1
) +

N∑
n=1

T∑
t=1

bn,t log(κn,sBt ) +
N∑
n=1

T∑
t=1

(1− bn,t) log(1− κn,sBt )

+
N∑
n=1

T∑
t=1

(1− bn,t)
(
−
(
λ(1)n,zt + λ(2)n,zt

)
+ xn,t log

(
λ(1)n,zt

)
+ (xn,t − yn,t) log

(
λ(2)n,zt

))
.

Unfortunately, this log-likelihood cannot be directly maximized due to the presence of latent

quantities. The EM algorithm threats these unobserved terms as missing values and proceeds

by the estimation of the expected value of the so-called complete data log-likelihood (CDLL).

For the implementation of the EM algorithm, we introduce the following additional variables

uωj,t =


1, if Sωt = j

0, otherwise.

uBh,t =


1, if SBt = h

0, otherwise.

zj,k,t =


1, if Zt = k, Sωt = j

0, otherwise.

vωj,l,t =


1, if Sωt−1 = j, Sωt = l,

0, otherwise.

vBh,l,m =


1, if SBt−1 = h, SBt = m,

0, otherwise.

The first two sets of variables, ucj,t and vcj,l,t for c = ω,B, follow from the standard

implementation of the algorithm for Markov-switching models, see McLachlan and Peel

(2000), whereas the third set, zj,k,t (for j = 1, . . . , J , and k = 1, . . . , K), is specific to our

model and is related to the additional latent variables Zt. The new variables allow us to

write the CDLL as

logLc(θ|·) ∝
J∑
j=1

uωj,1 log(δωj ) +
L∑
l=1

uBl,1 log(δBl ) +
T∑
t=1

N∑
n=1

L∑
l=1

uBl,t(1− bl,n,t) log(1− κn,l)

+
T∑
t=2

J∑
j=1

J∑
l=1

vωj,l,t log(γωj,l) +
T∑
t=2

L∑
j=1

L∑
l=1

vBj,l,t log(γBj,l) +
T∑
t=1

N∑
n=1

L∑
l=1

uBl,tbl,n,t log(κn,l)

+
T∑
t=1

J∑
j=1

K∑
k=1

zj,k,t log(ωk,j) +
T∑
t=1

K∑
k=1

L∑
l=1

N∑
n=1

(1− bl,n,t)zj,k,t

×
(
−
(
λ
(1)
n,k + λ

(2)
n,k

)
+ x

(1)
k,n,t log

(
λ
(1)
n,k

)
+
(
x
(1)
j,n,t − yn,t

)
log
(
λ
(2)
n,k

))
, (7)
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where bl,n,t indicates the realization of Bn,t|SBt = l, and x
(1)
k,n,t indicates the realization of

Xn,t|Zt = k.

The EM algorithm iterates between the expectation-step (E-step) and maximization-step

(M-Step) until convergence. Given a value of the model parameters at iteration m, Θ(m),

the E-step consists in the evaluation of the so-called Q function defined as Q(θ,θ(m)) =

Eθ
(m)

(logLc(θ|·)), where the expectation is taken with respect to the joint distribution of

the missing variables conditional to the observed variables using parameter values at iteration

m. Exploiting the formulation of the CDLL in (7), the Q function can be factorized as

Q(θ,θ(m)) ∝
J∑
j=1

ûωj,1 log(δωj ) +
L∑
l=1

ûBl,1 log(δBl ) +
T∑
t=1

N∑
n=1

L∑
l=1

ûBl,t(1− bl,n,t) log(1− κn,l)

+
T∑
t=2

J∑
j=1

J∑
l=1

v̂ωj,l,t log(γωj,l) +
T∑
t=2

L∑
j=1

L∑
l=1

v̂Bj,l,t log(γBj,l) +
T∑
t=1

N∑
n=1

L∑
l=1

ûBl,tb̂l,n,t log(κn,l)

+
T∑
t=1

J∑
j=1

K∑
k=1

ẑj,k,t log(ωk,j) +
T∑
t=1

L∑
l=1

K∑
k=1

N∑
n=1

(1− bl,n,t)ẑj,k,t

×
(
−
(
λ
(1)
n,k + λ

(2)
n,k

)
+ x̂

(1)
k,n,t log

(
λ
(1)
n,k

)
+
(
x̂
(1)
k,n,t − yn,t

)
log
(
λ
(2)
n,k

))
, (8)

where ûcj,t = P (Sct = j|Y1:T = y1:T ), v̂cj,l,t = P (Sct−1 = j, Sct = l|Y1:T = y1:T ) for c = ω,B,

ẑj,k,t = P (Zt = k, Sωt = j|Y1:T = y1:T ), b̂l,n,t = P (Bn,t = 1|SBt = l,Y1:T = y1:T ), and

x̂k,n,t = E[X
(1)
n,t |Zt = k,Y1:T = y1:T ]. The E-step of the algorithm involves the computation

of these quantities. Furthermore, let us define αq,t = P (Sω,Z,Bt = q,Y1:t = y1:t) and βq,t =

P (Yt+1:T = yt+1:T |Sω,Z,Bt = q), for βq,T = 1 and αq,0 = δω,Z,Bq for all q = 1, . . . , JKL, where

δω,Z,Bq = P (Sω,Z,Bt = q) is the stationary distribution of Sω,Z,Bt in state q. These are the

forward and backward probabilities for the third model representation reported in Figure 3

and can be evaluated using the FFBS algorithm. Once these probabilities are evaluated, the

following smoothed probabilities can be computed

P (Sω,Z,Bt = q|Y1:T = y1:T ) =
αq,tβqt∑JKL
h=1 αh,tβht

P (Sω,Z,Bt = j, Sω,Z,Bt−1 = l|Y1:T = y1:T ) =
αl,t−1γ

ω,Z,B
l,j P (Yt = yt|Sω,Z,Bt = j)βj,t∑JKL

h=1 αh,tβh,t
,

where γω,Z,Bj,l is the (j, l)-th element of Γω,Z,B, and P (Yt = yt|Sω,Z,Bt = j) is in equation (5).
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Since P (Sω,Z,Bt , Sω,Z,Bt−1 |Y1:T ) = P (Sωt , Zt, S
B
t , S

ω
t−1, Zt−1, S

B
t−1|Y1:T ) and P (Sω,Z,Bt |Y1:T ) =

P (Sωt , Zt, S
B
t |Y1:T ) it follows that ûcj,t, v̂

c
j,l,t for c = ω,B, and ẑj,k,t can be evaluated by simple

marginalization of the relevant variables from P (Sω,Z,Bt |Y1:T ) and P (Sω,Z,Bt , Sω,Z,Bt−1 |Y1:T ). It

also follows that the joint probabilities P (Sωt = j, Zt = k, SBt = l|Y1:T ) are immediately

available. The remaining quantities are given by

b̂l,n,t =


0, if yn,t 6= 0∑K

k=1

∑J
j=1

κn,lP (Sω
t =j,Zt=k,SB

t =l|Y1:T )

P (SB
t =l|Y1:T )

(
κn,l+(1−κn,l)SK(y,λ

(1)
n,k,λ

(2)
n,k)

) , otherwise,

and

x̂k,n,t =
J∑
j=1

L∑
l=1

λn,k
SK(y − 1, λ

(1)
n,k, λ

(2)
n,k)

SK(y, λ
(1)
n,k, λ

(2)
n,k)

P (Sωt = j, Zt = k, SBt = l|Y1:T = y1:t)

P (Zt = k|Y1:T = y1:t)
.

In the M-step of the algorithm, the function Q is maximized with respect to the model

parameters θ. Solving the Lagrangian associated with this (constrained) optimization leads

to the following solution of the maximization problem:

γωj,l
(m+1) =

∑T
t=2 v̂

ω
j,l,t∑L

l=1

∑T
t=2 v̂

ω
j,l,t

, γBj,l
(m+1)

=

∑T
t=2 v̂

B
j,l,t∑L

l=1

∑T
t=2 v̂

B
j,l,t

, κ(m+1)
n,c =

∑T
t=1 û

B
c,tb̂n,t∑T

t=1 û
B
c,t

,

ω
(m+1)
k,j =

∑T
t=1 û

λ
j,tẑk,t∑T

t=1

∑L
l=1 û

λ
l,tẑk,t

, λ
(1)
n,k

(m+1)
=

∑T
t=1

∑J
j=1 ẑj,k,t(1− b̂l,n,t)(yn,t − 2x̂n,t)∑T

t=1 ẑk,t(1− b̂n,t)
,

λ
(2)
n,k

(m+1)
= λ

(1)
n,k

(m+1)
−
∑T

t=1

∑J
j=1 ẑj,k,t(1− b̂l,n,t)yn,t∑T
t=1 ẑk,t(1− b̂n,t)

.

Given an initial guess θ(0), the algorithm iterates between the E- and the M-steps until

convergence. Convergence to a local optimum is guaranteed since the M-step increases the

likelihood value at each iteration. As for standard HMMs, the likelihood function can present

several local optima and there is no guarantee that convergence to the global optimum is

achieved. To this end, running the algorithm several times with different starting values is

a standard procedure to better explore the likelihood surface.
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3.1 Intradaily seasonality

A well known stylized fact of high frequency prices is that the variability of their changes

exhibits a pervasive intradaily seasonal pattern, see among others Andersen and Bollerslev

(1997) and the recent contribution of Andersen et al. (2018). For instance, at the opening

of the market, the volatility is generally at its peak as a consequence of the re-balancing

activity by market participants processing the overnight information. On the contrary, the

volatility is typically very low during lunch time.

With the goal of incorporating this stylized fact in our modeling framework, we introduce

a series of dummy variables fdt for d = 1, . . . , D associated with different intradaily trading

periods. We set D = 14 dummy variables according to the following scheme: d = 1 for

9:30-9:35, d = 2 for 9:35-10:00, d = 3 for 10:00-10:30, d = 4 for 10:30-11:00 and so on, until

d = 14 for 16:30-17:00. To preserve the tractability of the model outlined above, we impose

that the intensity parameters of the two Poisson distributions are time-varying with the

following multiplicative structure λ
(h)
n,k,t = λ

(h)
n,kβn,t for h = 1, 2, where βn,t =

∏D
d=1 β

fd,t
n,d . The

additional parameters βn,d > 0 for n = 1, . . . , N and d = 1, . . . , D inflate (or deflate) the

Poisson intensity parameters when fd,t = 1. Note that different assets are allowed to react

differently to each trading period and that the previously defined latent variables do not

affect this feature. It follows that the βn,d coefficients can be regarded as a fixed intradaily

effect on the trading intensity. The E-step previously presented remains unchanged by this

modification, except for replacing λ
(h)
n,k with λ

(h)
n,k,t. The closed-form M-step for the new set

of parameters at iteration (m+ 1) is given by

β
(m+1)
n,d =

∑T
t=1 fd,t

∑L
l=1

∑K
k=1(1− bl,n,t)(2xk,n,t − yn,t)∑T

t=1 fd,t
∑L

l=1

∑K
k=1(1− bl,n,t)(λ

(1)
n,k

(m+1)
+ λ

(2)
n,k

(m+1)
)
,

and the M-step for λ
(1)
n,k and λ

(2)
n,k is slightly modified to

λ
(1)
n,k

(m+1)
=

∑T
t=1

∑J
j=1 ẑj,k,t(1− b̂l,n,t)(yn,t − 2x̂n,t)∑T

t=1 ẑk,t(1− b̂n,t)β
(m)
n,t

, (9)

λ
(2)
n,k

(m+1)
= λ

(1)
n,k

(m+1)
−
∑T

t=1

∑J
j=1 ẑj,k,t(1− b̂l,n,t)yn,t∑T

t=1 ẑk,t(1− b̂n,t)β
(m)
n,t

. (10)

17



Finally, as it will be evident from Figure 5 in Section 4, the frequency of zeros also

exhibits a seasonal pattern over the trading day. If this pattern is not properly accounted

for, the unobserved state variable SBt can be affected by the seasonal component, preventing

a clear interpretation of possible changes in the behaviour of Bt. In this case, we allow

the state dependent Bernoulli probabilities κn,l to depend on an additional deterministic

seasonal component, gd,t, where gd,t = 1, if time t coincides with season d, for d = {1, . . . , U}.

Specifically, we modify the Bernoulli probabilities as κn,l,t =
∑U

d=1 gd,tκn,ld, where κn,l,d are

static seasonal-dependent Bernoulli probabilities that need to be estimated alongside the

other parameters. The E- and M-steps of all other parameters remain unchanged, while

we need to substitute κn,l with κn,l,t. The M-step for the new Bernoulli probabilities κn,l,d

at iteration (m + 1) is given by κ
(m+1)
n,l,d =

∑T
t=1 gd,tû

B
l,tb̂n,t∑T

t=1 gd,tû
B
l,t

, for l = 1, . . . , L, i = 1, . . . , N , and

d = 1, . . . , U .

4 Empirical Application

4.1 Data description and summary statistics

We consider the discrete stock price moves of four companies listed on the Dow Jones

index (DJIA) in different time periods. The stocks under investigation are the same as

in Koopman et al. (2017): Caterpillar (CAT), Coca Cola (KO), JP Morgan (JPM), and

Walmart (WMT). We consider two sampling periods: a normal one from November 6, 2013,

to November 19, 2013, and a turbulent one (labelled as “Lehman”), from September 11,

2008, to September 25, 2008, which includes the bankruptcy of Lehman Brothers Holdings

Inc. Data are collected from the Trades and Quotes (TAQ) database and a preliminary

cleaning of the high frequency prices is performed following the procedure of Brownlees and

Gallo (2006) and Barndorff-Nielsen et al. (2009). Although the DMS can be employed with

price changes observed at any sampling frequency, we have decided to focus on stock prices

sampled at 15 seconds by means of the previous-tick method. A comparison of the results

obtained with other sampling frequencies would be extremely time consuming and would

add great length to the paper, thus is it left for future research.

Table 1 reports the main summary statistics of the price changes for the four stocks
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Normal Period Lehman Period

WMT KO JPM CAT WMT KO JPM CAT

Mean 0.02 0.00 0.01 0.00 0.01 0.00 0.03 -0.04

Mode 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Median 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

% Zeros 0.42 0.50 0.39 0.34 0.20 0.28 0.12 0.16

Max 24 8 21 22 125 119 152 91

Min -21 -12 -15 -24 -113 -163 -385 -142

Variance 2.12 0.85 2.05 3.35 13.17 11.03 50.44 29.19

Skewness 0.28 -0.19 0.42 -0.11 -0.08 -2.69 -4.41 -0.98

Kurtosis 17.00 5.13 10.34 8.77 118.57 304.70 292.45 47.53

Table 1: Summary statistics of the price changes. The table reports summary statistics for
the integer-valued price changes (in cents of dollar) for two different sample periods: normal
(from November 6, 2013, to November 19, 2013) and Lehman (from September 11, 2008, to
September 25, 2008). The DJIA stocks considered are CAT, KO, JPM, and WMT.

considered. Notably, both the median and the mode of Yi,t is zero for both the normal and

the Lehman periods. This provides a first evidence on the relevance of explicitly accounting

for an excess probability of zeros when dealing with stock prices sampled at high frequencies.

For instance, during normal period, the percentage of zeros is between 34% for CAT and

50% for KO, which is the least liquid asset. The percentage of zeros drastically reduces over

the Lehman episode, as a consequence of the large amount of news arriving to the market

in this period and the increased uncertainty about the fundamentals across investors. The

sample average of price changes is also very close to zero and, especially for the normal

period, the level of skewness is almost null, thus signaling a rather symmetric distribution.

On the contrary, all series are negatively skewed during the Lehman period: this is due to

the arrival of several bad news on the overall stability of the financial sector, which generated

large negative price moves. As expected, in this period, both variance and kurtosis are very

large, and the magnitude of the price variations might be rather extreme as testified by the

maximum and minimum variations in the order of hundreds of cents. Notably, the largest

price variations in both the normal and the Lehman periods take place at the opening of the

trading day, thus signaling the relevance of properly accounting for this fixed effect trough

seasonal dummies as illustrated in Section 3.1.

Figure 5 shows that the probability of zeros is also subject to non-negligible variability at
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the intradaily level with a reverse U-shape reflecting the different amounts of trading activity

within the day. This evidence is consistent across the four assets under investigation with

KO being the least active stock with more than half of the trades associated with zero

variations during the central business hours of the normal period.
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Figure 5: Empirical frequency of zeros. The figure reports the percentage of zero-price moves
in different intradaily periods (30 minutes) for the two samples: normal (from November
6, 2013, to November 19, 2013) and Lehman (from September 11, 2008, to September 25,
2008). The DJIA stocks considered are CAT, KO, JPM, and WMT.

4.2 Model selection and goodness of fit

The DMS model is estimated on both the normal and the Lehman periods for all combina-

tions of L ∈ {1, . . . , 6}, K ∈ {1, . . . , 15}, and J ∈ {1, . . . , 6}. We use fourteen seasonal terms

for both the Skellam coefficients and the Bernoulli probabilities as illustrated in Section 3.1.

To capture the intensive trading activity at the opening of the market, the first season co-

incides with the first five minutes of the trading day from 9:30 to 9:35, the second from 9:35

to 10:00, and the remaining run 30 minutes each until the market closure at 16:30. The

selection of the best model is performed via the Bayesian Information Criteria (BIC). The

BIC selects J = 5, K = 5 and L = 1 for the normal period, and J = 5, K = 12, and L = 2

for the Lehman period.3 Interestingly, the variability and erratic nature of the price moves

during the Lehman episode requires not only many mixture components (K = 12), but also

two states for the excess probability of zeros. On the contrary, a more parsimonious model is

selected for the normal period. The goodness of fit of the univariate marginal distributions

3All details are available upon request to the authors.
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Figure 6: Comparison between the empirical and model-implied unconditional distribution
of CAT the normal, Panel (a), and the Lehman, Panel (b), period. The first figure of
each panel reports the distribution of the first 5 minutes of trading activity (9:30 - 9:35),
the second reports the distribution for the following 25 minutes (9:35 - 10:00), figures from
the third to the fifteen display the distribution computed every 30 minutes. Yellow lines
represent the probability implied by the unconditional distribution of the DMS model.

can be visually assessed by looking at Figure 6. The fit to the empirical frequencies achieved

by the unconditional distribution of the DMS model is remarkable, and it signals the ability
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of the dynamic mixture model to adapt to different market conditions and intensities of the

trading process.4 Indeed, the fit proves robust for all the intradaily business periods defined

according to the seasonal dummies (9:30-9:35, 9:35-10:00, 10:00-10:30,. . . ). As expected,

the empirical distribution is more dispersed at the opening, i.e., from 9:30 until 9:35, thus

justifying the use of a specific seasonal term, β1,d, for this period. Furthermore, during the

Lehman episode, the probability mass is more dispersed than in the normal period; also

during the central hours of the day.

We also assess the quality of the fit of the univariate distributions by means of the test

of Berkowitz (2001), which is a classic tool used to study the quality of density forecasts for

financial risk management applications. The test is based on the probability integral trans-

forms (PITs) of the data with respect to their conditional (on the past) distribution, which

for the DMS is easily computed from Equation (3) by marginalization. The Berkowitz’s test

relies upon the previous results by Fisher (1932) and Pearson (1938) stating that, under cor-

rect model specification and when the support of the observables is continuous, PITs should

be iid uniformly distributed over the (0, 1) interval, and their transformation according to

the Gaussian quantile function should be iid Gaussian distributed. For discrete random

variables the PITs cannot be uniformly distributed, and modifications should be made to

the testing procedure. To tackle this issue, we compute the randomized, yet uniform, PITs

for integer valued variables derived by continuization of the discrete conditional pmf, see

Smith (1985), Brockwell (2007), and Liesenfeld et al. (2008).

Figure 7 displays the histogram of the PITs divided in ten bins for all series. We report

results for both the in-sample and the out-of-sample periods, where the latter covers the 10

trading days after the in-sample period. The plots highlight the ability of DMS to provide an

overall good fit. Indeed, the PITs are approximately uniformly distributed in all cases since

the vast majority of the relative frequencies (blue columns) falls within the 95% confidence

bands (red line), which are very narrow due to the extremely large sample size. Table 2

reports the results of the Berkowitz’s testing procedure. Columns labeled τ = 1%, τ = 5%,

and τ = 10%, report the value of the Berkowitz’s test statistic, when the coverage below

4Figures 4-6 in the supplementary material confirm an analogous level of goodness of fit for the other
stocks.
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(a) Normal - In-Sample
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(b) Lehman - In-Sample
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(c) Normal - Out of Sample
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(d) Lehman - Out of Sample

Figure 7: PITs. In-sample and out-of-sample randomized PITs as in Brockwell (2007)
computed according to the one step ahead univariate conditional distribution of each asset.
PITs are divided in 10 bins such that under the null hypothesis of correct model specification
the area of each bin should be 10%. Confidence intervals based on the methodology of
Diebold et al. (1998) and computed at the 5% level are reported around the theoretical
value of the uniform density.

the τ quantile level is tested. Columns labeled “All” report the statistics, when looking at

the entire distribution (i.e., τ = 100%), and columns labeled “Joint” report the value of

the statistic, when independence and coverage are jointly tested. The results from Table
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In-sample

Lehman Period Normal Period

τ = 1% τ = 5% τ = 10% All Joint τ = 1% τ = 5% τ = 10% All Joint

WMT 1.21 4.06 1.98 4.55 90.82 0.11 1.65 0.05 3.13 9.36
KO 39.06 82.13 96.28 31.01 725.01 3.12 3.83 9.92 9.43 83.14
JPM 9.74 20.53 19.25 8.64 175.55 11.27 10.09 8.63 19.69 53.59
CAT 0.60 1.10 0.54 2.52 123.56 2.39 6.23 4.17 6.95 44.13

Out-of-sample

Lehman Period Normal Period

τ = 1% τ = 5% τ = 10% All Joint τ = 1% τ = 5% τ = 10% All Joint

WMT 26.90 59.63 85.58 166.17 190.73 0.53 2.74 3.03 2.10 21.55
KO 46.79 58.15 56.84 79.46 113.05 43.56 38.19 40.54 13.56 629.01
JPM 21.53 19.64 22.23 11.89 27.89 4.92 0.85 0.74 4.50 104.96
CAT 6.30 20.60 30.76 48.81 54.74 5.64 6.20 17.57 16.91 78.53

Table 2: LR test statistics of Berkowitz (2001). The tests are computed using the random-
ized PITs as in Brockwell (2007). We consider the coverage of the left tail below the τ%
quantile level. Results are reported for the in-sample and out-of-sample periods during nor-
mal market conditions and during the Lehman episode. Columns labeled “All” correspond
to unconditional coverage of the whole distribution (τ = 100%). Columns labeled “Joint”
report the statistics associated with the joint test for the null of correct unconditional cov-
erage and independence of the PITs. Gray cells indicate values below the 5% critical value
associated with the asymptotic distribution of the test.

2 are mixed and can be summarized as follows: i) the conditional distribution is generally

correctly specified for WMT and CAT in both in-sample periods and only for WMT and

JPM in the normal out-of-sample period, ii) during the Lehman out-of-sample period, we

always reject the null hypothesis, and iii) the null hypothesis of independence and correct

coverage of the transformed PIT is always rejected. The rejection of the null hypothesis is

somehow expected due to the very large sample size and the parameters instability following

the Lehman episode. We conclude that, although the tests reported in Table 2 often reject

the null hypothesis, histograms displayed in Figure 7 are encouraging and suggest that the

fit of the univariate distributions achieved by DMS is reasonable in both the in-sample and

the out-of-sample periods.

The goodness of fit of the bivariate distribution of CAT-WMT for different intradaily

periods (opening, lunch, closing) is reported in Figure 8. The fit to the empirical frequencies

(red area) by the DMS (blue line) is again remarkable for both the normal and the Lehman

periods. For what concerns the normal period, Panel a) highlights that the bivariate dis-

tribution of the price variations is rather sparse at the opening, while in Panel b) and c)
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Figure 8: Bivariate unconditional distributions. The figure reports the empirical and model-
based unconditional distributions of CAT and WMT during the opening of the market
(9:30-09:35), the lunch time (12:00 - 12:30), and the closing (15:30-16:00) for both the normal
and the Lehman periods. The full red circles represent the empirical frequencies computed
over the estimation period. The blue circles represent the theoretical frequencies computed
according to the unconditional bivariate distribution of CAT and WMT.

most of the probability mass is associated with price variations in the range between -1

and +1 cents, with a relatively high percentage of joint zero variations. The picture dras-

tically changes in the Lehman period. The bivariate empirical probability is dispersed in

all intradaily periods (including lunch and closing hour). The fit is remarkable also in this

case, suggesting that the DMS model is sufficiently flexible to account for a large number

of shapes of the bivariate distribution. In particular, the probability mass on the zeros is

extremely high at the opening for CAT-JPM (while not for CAT-WMT). This evidence is

associated with the event of a trading halt at the opening on September 15, 2008, for several

stocks traded on NYSE. Indeed, at the opening of Monday, September 15, 2008, the trading

of CAT, KO, JPM stopped, resulting in a frozen market and a prolonged period of no price

variations. In particular, Panel c) of Figure 9 displays the effect of the market freezing on

the unconditional probability of joint zeros on CAT and JPM. In Section 4.3, we characterize

the ability of the DMS model to predict and adapt to prolonged periods of price staleness.
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Figure 9: Bivariate unconditional distributions. The figure reports the empirical and model-
based unconditional distributions of CAT and JPM during the opening of the market (9:30-
09:35), the lunch time (12:00 - 12:30), and the closing (15:30-16:00) for both the normal
and the Lehman period. The full red circles represent the empirical frequencies computed
over the estimation period. The blue circles represent the theoretical frequencies computed
according to the unconditional bivariate distribution of CAT and JPM.

4.2.1 Filtered Variance and Correlation

The same FFBS algorithm adopted in the estimation via EM can be exploited to extrapolate

the intradaily (spot) volatilities of each individual stock under consideration. Similarly to

Koopman et al. (2017), Figure 10 displays the absolute value of the price changes together

with the extrapolated volatilities, σ̂t|t−1,i.

The extrapolated volatilities are computed as the square root of the diagonal elements

of the predicted covariance matrix, Σ̂t|t−1, obtained as

Σ̂t|t−1 = Gt|t−1 − µt|t−1µ
′
t|t−1, (11)

where Gt|t−1 and µt|t−1 are the N × N matrix and N valued vector of conditional second

cross moments and mean, respectively. The typical elements Gi,j,t|t−1 and µi,t|t−1 are given
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Figure 10: Absolute price changes (red squares) with in-sample predicted volatility, σ̂t|t−1,i,
(blue solid line) during the Lehman period. Predicted volatilities are computed according
to the one step ahead conditional distribution over the in-sample period.

by

Gi,j,t|t−1 =
J∑
j=1

L∑
l=1

K∑
k=1

πωj,t|t−1π
κ
l,t|t−1ωj,k(1− κl,i,t)(1− κl,j,t)δi,tδj,t if i 6= j

Gi,j,t|t−1 =
J∑
j=1

L∑
l=1

K∑
k=1

πωj,t|t−1π
κ
l,t|t−1ωj,k(1− κl,i,t)(2$i,t + δ2i,t) if i = j

µi,t|t−1 =
J∑
j=1

L∑
l=1

K∑
k=1

πωj,t|t−1π
κ
l,t|t−1ωj,k(1− κl,i,t)δi,t,

where δi,t = λ
(1)
i,k,t − λ

(2)
i,k,t and $i,t = (λ

(1)
i,k,t + λ

(2)
i,k,t)/2. The intradaily patterns in the magni-

tude of the price variations are clearly reflected in the extrapolated volatilities, which are, by

construction, smoother than the ex-post realizations. Similarly to Koopman et al. (2017),

we aggregate the (spot) variances, σ̂2
t|t−1,i, over 30-minutes horizons and compare them with

the realized (ex-post) variance based on high frequency data sampled at 1 minute using

the realized kernel estimator of Barndorff-Nielsen et al. (2008). Figure 11 suggests that the

27



50

100

150

11 12 15 16 17 18 19 22 23 24 25

(a) WMT

50

100

150

200

250

11 12 15 16 17 18 19 22 23 24 25

(b) KO

100

200

300

400

500

11 12 15 16 17 18 19 22 23 24 25

(c) JPM

50

100

150

200

250

300

11 12 15 16 17 18 19 22 23 24 25

(d) CAT

Figure 11: Aggregated predicted volatility (blue dashed line) and realized volatility (black
solid line) the Lehman period over 30-minutes intervals. Realized volatilities are computed
as square roots of the realized kernel estimator. The aggregated predicted volatilities are
computed as the square roots of the one-step-ahead variances, σ̂2

t|t−1,i, aggregated over 30-
minutes intervals.

correlation between the model-based and the realized variances is almost maximal. Analo-

gously, the computation of the predicted covariance matrix in (11) via the FFBS algorithm

allows us to compute the correlations aggregated over 30-minutes horizons. These are com-

pared with the realized (ex-post) correlations computed with the realized kernel estimator of

Barndorff-Nielsen et al. (2008) based on high frequency prices sampled at 1 minute. Figure

12 highlights the ability of the model-based correlations to provide an unbiased and smooth

prediction of the realized ones.

We also perform an out-of-sample analysis of the DMS model to assess its ability to adapt

to changing market conditions and to capture the relevant features of the high frequency

price changes outside the estimation period. Table 3 presents a summary of the conditional

variance forecast accuracy of the DMS compared with that of a SARIMA model estimated on

squared price variations with AR, MA, and seasonal AR and MA orders selected according
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Figure 12: Ex-ante and ex-post correlations. The figures report the filtered correlation after
aggregation (blue dashed line) and realized correlation (black solid line) in the Lehman (top)
and normal (bottom) periods of CAT versus other assets. The correlation are constructed
aggregating Σ̂t|t−1 in (11) over 30-minutes intervals. The realized correlations are computed
through the realized kernel estimator of the covariance matrix of price changes.

MSE QLIKE MSE-LOG MSE-SD MSE-Prop MAE MAE-LOG MAE-SD MAE-Prop

Normal Period

WMT 1.05 1.06 1.02 1.02 1.11 1.01 0.99 0.99 1.06
KO 0.95 1.06 1.01 1.01 1.06 0.99 0.99 0.99 1.06
JPM 0.94 0.96 0.99 0.97 0.96 0.97 0.99 0.98 0.96
CAT 0.96 1.05 1.02 1.01 0.99 0.99 1.01 1.02 1.05

Lehman Period

WMT 0.83 0.97 0.99 0.90 0.89 0.89 0.99 0.96 0.97
KO 0.97 1.03 0.95 0.97 0.77 1.01 0.96 0.96 1.03
JPM 1.02 0.77 0.91 0.96 0.83 1.01 0.93 0.94 0.77
CAT 0.74 1.13 1.06 0.84 0.97 0.90 1.02 0.98 1.13

Table 3: Volatility predictions. The table reports the comparison of the one-step-ahead
volatility predictions of DMS with those of a SARIMA model for both the normal and the
Lehman period. Results are reported according to the nine volatility loss functions detailed
in Patton (2011). DMS losses computed over the full out-of-sample period are averaged and
reported relative to those of the SARIMA. Values smaller than one indicate outperfomance
of DMS with respect to SARIMA and viceversa. Gray cells indicate rejection of the bilateral
null hypothesis of equal predictive ability of Diebold et al. (1998) at the 5% confidence level.

to BIC. The ex-post variances are proxied by the squared price variations. The comparison

of the predictive accuracy of the two models is performed through the Diebold and Mariano

(2002) test based on a number of loss functions, which are those adopted in Patton (2011).

The forecasting window includes the 10 days after the in-sample interval for both the normal
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and the Lehman periods. Overall, the DMS provides out-of-sample predictions of squared

price variations that are statistically superior to those of the SARIMA with 5% significance

level in 35 out of 72 cases. On the contrary, the SARIMA is statistically superior only in

18 cases. The forecasts of DMS prove particularly good after the Lehman period, where the

forecast accuracy achieved with the DMS is higher than that of the SARIMA in 23 out of

36 cases (while SARIMA is superior in only 4 cases). This finding testifies the ability of the

DMS to provide a very flexible conditional distribution of the price variations, which adapts

well in mutated market conditions. This is also highlighted in Figure 13, which reports the
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Figure 13: Absolute price changes (red squares) with out-of-sample predicted volatility,
σ̂t|t−1,i, (blue solid line) during the Lehman period. Predicted volatilities are computed
according to the one step ahead conditional distribution over the out-of-sample period cor-
responding to the 10 days after the Lehman period.

absolute price changes (red squares) with the model-based filtered volatility (σ̂i,t|t−1) in the

out-of-sample period. As for the in-sample period, the volatility patterns closely follow the

magnitude of the price variations also in the out-of-sample interval.
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4.3 Predicting and disentangling staleness

As shown in Table 1, the unconditional probability of observing zero variations in the dataset

of prices observed at 15 seconds frequency is very high and generally well above 30%. This

phenomenon is well known in the high frequency literature, see the recent contribution of

Bandi et al. (2017). The absence of price movements might signal the inability of a market to

frequently update by incorporating relevant information into the stock price. This is possibly

associated with (weak) forms of market inefficiency. For instance, price-based illiquidity

measures based on the percentage of zeros on a given interval (e.g. at daily level) have been

proposed in several papers. For instance, Lesmond (2005) and Bekaert et al. (2007) study the

illiquidity on the emerging markets, where the full extent of the available information is not

fully reflected in the observed prices. Irregular trading and price staleness have been studied

in several articles such as the early works of Atchison et al. (1987) and Lo and MacKinlay

(1990), and the more recent contributions of Bandi et al. (2017, 2018), with the definition

of excess idle time in the univariate and multivariate context, respectively. A common

trait of most of the studies on high frequency market imperfections is the assumption of a

continuous underlying price process with microstructural features modeled as an additional

source of randomness (like a censoring or a barrier) preventing the efficient price to be

observed. Indeed, modeling the price process as a continuous random variable automatically

assigns zero probability to the event of zero price variations. On the contrary, the Skellam

distribution can assign positive probability to the event of zero price variation. Table 4

displays the parameter estimates of the following predictive logit regression over the out-of-

sample period

logit (Πy,t) = β0 + β1Pt|t−1(Yt = 0) +Wtγ, (12)

where Πy,t is the probability of a zero price variation at time t, Wt is a vector of control

variables and Pt|t−1(Yt = 0) denotes the model-based predictive probability of no price

variation at time t conditional on the information set at time t− 1, that is

Pt|t−1(Yt = 0) =
J∑
j=1

L∑
l=1

K∑
k=1

πωj,t|t−1π
κ
l,t|t−1ωj,k

(
κl + (1− κl)SK(0, λ

(1)
k , λ

(2)
k )
)
,
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where we explicitly drop the dependence on i = 1, . . . , N for notational convenience. All

figures in Table 4 signal the positive and highly significant dependence between the ex-ante

(model-based) probability of zeros and the ex-post realization of price staleness, also when

correcting for intradaily seasonal patterns, autocorrelation in the dependent variable, and

liquidity of the market as measured by the bid-ask spread.

Intuitively, the presence of zeros in the high frequency prices can be due to several

factors. First, the presence of zeros might be the consequence of frictions in the form of bid-

Normal Period Lehman Period

(a) (b) (c) (d) (a) (b) (c) (d)

WMT

β̂0 −2.21∗∗∗ −2.59∗∗∗ −2.44∗∗∗ −2.00∗∗∗ −2.74∗∗∗ −2.85∗∗∗ −2.80∗∗∗ −2.17∗∗∗

β̂1 4.38∗∗∗ 5.08∗∗∗ 4.36∗∗∗ 4.04∗∗∗ 6.75∗∗∗ 6.74∗∗∗ 6.08∗∗∗ 4.94∗∗∗

Dummy
Lags
BA

KO

β̂0 −2.04∗∗∗ −2.61∗∗∗ −2.48∗∗∗ −2.23∗∗∗ −2.70∗∗∗ −2.94∗∗∗ −2.83∗∗∗ −2.56∗∗∗

β̂1 3.75∗∗∗ 4.78∗∗∗ 4.27∗∗∗ 4.20∗∗∗ 6.14∗∗∗ 6.94∗∗∗ 5.87∗∗∗ 5.45∗∗∗

Dummy
Lags
BA

JPM

β̂0 −2.20∗∗∗ −2.76∗∗∗ −2.67∗∗∗ −2.10∗∗∗ −3.17∗∗∗ −3.13∗∗∗ −3.05∗∗∗ −2.67∗∗∗

β̂1 4.20∗∗∗ 5.50∗∗∗ 5.05∗∗∗ 4.84∗∗∗ 9.50∗∗∗ 9.04∗∗∗ 7.32∗∗∗ 6.88∗∗∗

Dummy
Lags
BA

CAT

β̂0 −2.34∗∗∗ −2.68∗∗∗ −2.60∗∗∗ −2.20∗∗∗ −3.17∗∗∗ −3.38∗∗∗ −3.27∗∗∗ −2.89∗∗∗

β̂1 4.78∗∗∗ 5.33∗∗∗ 4.95∗∗∗ 4.46∗∗∗ 9.50∗∗∗ 10.04∗∗∗ 8.31∗∗∗ 7.33∗∗∗

Dummy
Lags
BA

Table 4: Estimated coefficients of the logistic regression in (12). The table reports the
results for each asset over the normal and Lehman periods. We consider regression (12)
with no control variables (a), with seasonal dummies (b), with seasonal dummies and 15
autoregressive terms of the dependent variable (c), with seasonal dummies, autoregressive
terms and bid-ask spread (BA). Apexes ∗∗∗, ∗∗, and ∗ indicate statistical significance at the
1%, 5%, and 10% confidence levels, respecively. The standard errors are computed according
to the Newey-West heteroscedasticity and autocorrelation consistent (HAC) standard errors.
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ask spread, which are partly responsible for the observed sluggishness of the high frequency

prices. Second, the absence of price variations might be the consequence of the absence

of news, such that the traders do not revise their reservation prices and do not generate

any trade and price movement. Third, even in presence of news, if the aggregated traders’

reactions to the news are of opposite sign but with the same magnitude, then the observed

transaction price does not move. In this case, we say that the market is in a dyadic state.

Our model is able to separately identify the three sources of zero variation in the observed

high frequency transaction price. Hence, we can disentangle the probability of zeros as

• No news: P (Yi,t = 0|Bi,t = 0, X1 = 0, X2 = 0).

• Dyadic market: P (Yi,t = 0|Bi,t = 0, X1 > 0, X1 = X2).

• Frictions: P (Yi,t = 0|X1 > 0, X2 > 0, X1 6= X2).

At this point, we look at the relation between trading activity and different sources of

price staleness, and we let the mixture of distribution hypothesis of Clark (1973) and Tauchen

and Pitts (1983) to provide an ideal and simple setup to interpret the empirical findings. In

particular, we relate the absence of price movements to the volume of trades by assuming

that the market consists of a finite number, M ≥ 2, of active traders, who take long or short

positions on a given asset. Within a given trading period of unit length (e.g. an hour, a

day, a week), the market passes through a sequence of i = 1, . . . I equilibria. The evolution

of the equilibrium price is motivated by the arrival of new information to the market. At

intra period i, the desired position of the m-th trader (m = 1, . . . ,M) is qi,m = ξ(p∗i,m − pi),

where p∗i,m is the reservation price of the m-th trader, pi is the current market price, and

the constant ξ > 0 measures the resilience of the market. The reservation price of each

trader might reflect individual preferences, liquidity issues, asymmetries in information sets,

and/or different expectations about the fundamental values. As new information arrives, the

traders adjust their reservation prices, resulting in a change in the market price given by the

average of the increments of the reservation prices. In absence of news, individual traders do

not update their reservation prices and no trading volume is generated. On the contrary, the

MDH prescribes that if the aggregated reservation prices of the traders have opposite signs,

then trades would take place (and trading volume would be generated), but we would not
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observe price moves. Finally, the microstructural frictions such as transaction costs in the

form of bid-ask spread (BA) would set to zero the traded quantities, when |p∗i,j − pi| < BA.

Summarizing, we expect the price staleness to be associated with absence of trading volume

Normal Period Lehman Period

(a) (b) (c) (d) (a) (b) (c) (d)

WMT

β̂0 −5.12∗∗∗ −7.21∗∗∗ −7.06∗∗∗ −5.92∗∗∗ −8.66∗∗∗ −27.06∗∗∗ −27.02∗∗∗ −27.22∗∗∗

β̂1 5.40∗∗∗ 5.02∗∗∗ 4.56∗∗∗ 3.81∗∗∗ 14.21∗ 33.45∗∗∗ 32.72∗∗∗ 33.14∗∗∗

Dummy
Lags
BA

KO

β̂0 −8.74∗∗∗ −11.17∗∗∗ −10.95∗∗∗ −2.96 −5.69∗∗∗ −25.45∗∗∗ −23.03∗∗∗ −23.17∗∗∗

β̂1 10.02∗∗∗ 8.66∗∗∗ 8.19∗∗∗ 7.32∗∗∗ 5.24∗∗∗ 34.50∗∗∗ 14.64∗∗∗ 14.32∗∗∗

Dummy
Lags
BA

JPM

β̂0 −7.71∗∗∗ −23.36∗∗∗ −23.31∗∗∗ −17.28∗∗∗ −6.95∗∗∗ −26.32∗∗∗ −25.27∗∗∗ −25.26∗∗∗

β̂1 8.81∗∗∗ 8.49∗∗∗ 8.34∗∗∗ 6.78∗∗∗ 30.43∗∗∗ 45.01∗∗∗ 23.85∗∗∗ 23.85∗∗∗

Dummy
Lags
BA

CAT

β̂0 −3.93∗∗∗ −6.62∗∗∗ −6.38∗∗∗ −6.43∗∗∗ −6.04∗∗∗ −20.38∗∗∗ −20.49∗∗∗ −20.67∗∗∗

β̂1 4.73∗∗∗ 7.54∗∗∗ 6.60∗∗∗ 6.68∗∗∗ 34.63∗∗∗ −4.98 −2.08 −1.79
Dummy
Lags
BA

Table 5: Estimated coefficients of the logistic regression in (13). The table reports the
results for each asset over the normal and the Lehman periods. We consider regression (13)
with no control variables (a), with seasonal dummies (b), with seasonal dummies and 15
autoregressive terms of the dependent variable (c), with seasonal dummies, autoregressive
terms, and bid-ask spread (BA). Apexes ∗∗∗, ∗∗, and ∗ indicate statistical significance at the
1%, 5%, and 10% confidence levels, respectively. The standard errors are computed according
to the Newey-West heteroscedasticity and autocorrelation consistent (HAC) standard errors.

(due to absence of news and frictions), while the trading volume are generated without price

moves when the market is in a dyadic state. We study this empirical prediction by looking

at the following logit regression

logit (Πv,t) = β0 + β1P̃t|t−1(Yt = 0) +Wtγ, (13)

34



where Πv,t is the probability of zero trading volume at time t, P̃t(Yt = 0) = P (Yi,t = 0|Bi,t =

0, X1 = 0, X2 = 0) + P (Yi,t = 0|X1 > 0, X2 > 0, X1 6= X2), and Wt is a vector of control

variables such as intradaily seasonal dummies and autoregressive terms. Furthermore, since

in the MDH framework the presence of transaction costs would reduce the amount of traded

securities, we also control for liquidity proxies in the form of bid-ask spread, since repeated

trades on the ask or on the bid sides would result in a sequence of zero price variations

associated with non-zero transaction volume. We expect the parameter β1 to be significantly

positive, since absence of news and frictions should increase the probability of observing zero

trading volume. Table 5 presents the parameter estimates for all stocks under consideration.

For both the normal and the Lehman periods, the predicted probabilities of absence of

news and frictions are associated with a significant increase in the probability of observing

zero trading volume. This finding also holds when controlling for autocorrelation, intradaily

seasonality, and bid-ask spread. This confirms the ability of the DMS to disentangle the

price staleness of financial prices observed at high frequencies and associate it to prediction

of the reduced trading activity as measured by the absence of trading volume.

5 Conclusions

Building upon the framework of hidden/latent Markov chains, we provide a hierarchical

HMM model for multivariate count data based on the Skellam distribution. We apply it to

the prices of stocks traded on NYSE and observed at very high frequencies (15 seconds).

Our model captures most of the features of the price variations observed at high frequencies

both in-sample and out-of-sample. Furthermore, it allows to disclose new characteristics

of the financial microstructure. For instance, the model is able to account for the large

proportion of contemporaneous zero price variations on several assets (co-staleness), which

might be associated with frozen market conditions and illiquidity episodes preventing the

efficient transmission of news to the financial prices. Furthermore, we study the relationship

between the model-implied probability of absence of price variations due to frictions and

the absence of trading volume, and we find it is in line with the empirical predictions of the

MDH theory coupled with the presence of microstructure noise. To conclude, we believe that
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the DMS can be beneficial for several financial applications not limited to the one presented

in this paper, e.g., when the goal is to investigate illiquidity spillover effects on a large scale.

Furthermore, the DMS might represent a suitable modeling framework also in non-financial

applications involving signal extraction in the presence of rounding errors. For instance,

when measuring air pollutants to assess their effect on air quality or when predicting the

risk of a given disease based on censored scores.
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