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Abstract

Quantiles provide a comprehensive description of the properties of
a variable and tracking changes in quantiles over time using signal
extraction methods can be informative. It is shown here how sta-
tionarity tests can be generalized to test the null hypothesis that a
particular quantile is constant over time by using weighted indica-
tors. Corresponding tests based on expectiles are also proposed; these
might be expected to be more powerful for distributions that are not
heavy-tailed. Tests for changing dispersion and asymmetry may be
based on contrasts between particular quantiles or expectiles. We re-
port Monte Carlo experiments investigating the e¤ectiveness of the
proposed tests and then move on to consider how to test for relative
time invariance, based on residuals from �tting a time-varying level
or trend. Empirical examples, using stock returns and U.S. in�ation,
provide an indication of the practical importance of the tests.
KEYWORDS: Dispersion; expectiles; quantiles; skewness; station-

arity tests; stochastic volatility, value at risk.
JEL classi�cation: C12, C22

1 Introduction

Tests for serial correlation and stationarity are mostly applied to the level
of a time series. For �nancial time series, movements in the variance are
often of interest so serial correlation and stationarity tests are applied to
squares or absolute values (possibly after �rst removing the mean). However,
the distribution of a variable may display changes over time that are not
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captured by the level or variance. For example, there may be movements in
skewness or the tails. Quantiles provide a more comprehensive description of
the properties of a variable and tracking changes in quantiles over time can
be informative. Indeed, lower tail quantiles are used to de�ne Value at Risk
(VaR), a measure that is of considerable importance in �nancial regulation;
see, for example, Engle and Manganelli (2004). In a recent paper, De Rossi
and Harvey (2006a) explain how time-varying quantiles may be estimated
using state space signal extraction techniques. Figure 1, taken from that
paper, shows quantiles, modeled as random walks, �tted to General Motors
daily stock returns.1 The present paper generalizes serial correlation and
stationarity tests so as to test the null hypothesis that a particular quantile
is constant over time. These tests are based on statistics constructed from
quantile residuals coded as weighted indicators. The main concern is with
stationarity tests, where the test statistics can be shown to have the usual
(asymptotic) Cramér von Mises distribution under the null hypothesis. The
proof is a generalization of that given by De Jong, Amsler and Schmidt (2006)
for the indicator test based on the median.
De Jong, Amsler and Schmidt (2006) show that for most distributions

with �nite variance the indicator-based stationarity test is less powerful than
the standard test based on residuals from the mean. We therefore seek to
generalize the standard stationarity test to provide alternatives to the indi-
cator tests for the constancy of quantiles. We do this by �rst noting that
expectiles have been proposed as an alternative - or complement - to quan-
tiles; see, for example, Newey and Powell (1987), Efron (1991) and, in a time
series context, De Rossi and Harvey (2006b). We then de�ne residuals based
on expectiles and show that they can be used to construct stationarity tests
with the usual asymptotic distribution. By matching up an expectile with
a quantile, an expectile based test can be used to test the constancy of a
speci�c quantile. We investigate the asymptotic properties of such tests and
carry out Monte Carlo experiments to compare their performance with that

1The stock returns data used as illustrations are taken from Engle and Manganelli
(2004). Their sample runs from April 7th, 1986, to April 7th, 1999, but the �gure uese
only the �rst 2000. The large (absolute) values near the beginning of �gure 1 are associated
with the great crash of 1987.
The histogram of the series from observation 501 to 2000 (avoiding the 1987 crash)

shows heavy tails but no clear evidence of skewness. The excess kurtosis is 1.547 and the
associated test statistic, distributed as �21 under normality, is 149.5. On the other hand,
skewness is 0.039 with an associated test statistic of only 0.37.
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Figure 1: Quantiles �tted to GM returns

of quantile indicator tests. We also propose ways in which they may be made
robust to heavy tails, a property that is a feature of quantile indicator tests.
If the level, as represented by the median, is constant, we can focus on

other quantiles and contrasts between them. This is typically the case with
stock returns, as in �gure 1. Stationarity tests built around contrasts allow
inferences to be made about possible time variation in dispersion and asym-
metry. Multivariate tests can capture movements in di¤erent parts of the
distribution. We report Monte Carlo experiments investigating the e¤ective-
ness of various new tests and comparing them with standard procedures and
with the Box-Ljung tests based on quantile indicators that are proposed in
Linton and Whang (2007). We then move on to consider how to test for
relative time invariance, in other words whether the distribution around a
possibly nonstationary level is constant over time. The tests are based on
residuals from �tting a time-varying mean or median. We discuss the im-
plications of working with such residuals and investigate test performance
by simulations. Monthly �gures on the US rate of in�ation are used as an
illustration.
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2 Quantiles and expectiles

We �rst review some standard results on quantiles and then give correspond-
ing de�nitions and properties for expectiles. It is then shown how it is possible
to switch from one to the other. The last three sub-sections introduce the
weighted indicators and residuals that are used in the tests and investigates
the extent to which the serial correlation in a Gaussian series carries over to
them.

2.1 Quantiles

Let �(�) - or, when there is no risk of confusion, � - denote the ��th quantile.
The probability that an observation is less than �(�) is � ; where 0 < � < 1:

Given a set of T observations, yt; t = 1; ::; T , the sample quantile, e�(�); can
be obtained by sorting the observations in ascending order. However, it is
also given as the solution to minimizing

S� =
X
yt<�

(� � 1)(yt � �) +
X
yt��

�(yt � �) =
X
t

(� � I(yt � � < 0))(yt � �)

with respect to �; where I(:) is the indicator function. Di¤erentiating (minus)
S� at all points where this is possible gives

TX
t=1

IQ(yt � �(�));

where

IQ(yt � �(�)) =

�
� � 1; if yt < �(�)
� ; if yt > �(�)

(1)

de�nes the quantile indicator function. Since the quantile indicator function
is not continuous at 0; IQ(0) is not determined. However, we will constrain
it to lie in the range [� � 1; � ]:
The sample quantile, e�(�); is such that, if T� is an integer, there are T�

observations below the quantile and T (1� �) above2. In this case any value

2In quantile regression, the quantile, �t(�); corresponding to the t� th observation is a
linear function of explanatory variables, xt; that is �t = x

0
t�. Estimates of the parameter

vector, �; may be computed by linear programming as described in Koenker (2005).
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of e� between the T��th smallest observation and the one immediately above
will make

P
IQ(yt�e�) = 0: If T� is not an integer, e� will coincide with one

observation. This observation is the one for which
P
IQ(yt � e�) changes

sign. These statements need to be modi�ed slightly if several observations
take the same value and coincide with e�: Taking this point on board, a
general de�nition of a sample ��quantile is a point such that the number of
observations smaller, that is yt < e�; is no more than [T� ] while the number
greater is no more than [T (1� �)]:

2.2 Expectiles

Expectiles o¤er an alternative class of location measures to quantiles. The
!�expectile, �(!), is obtained by minimizing

S! =
X

yt<�(!)

(1� !)(yt � �(!))2 +
X

yt��(!)

!(yt � �(!))2

=
X
t

j! � I(yt � �(!) < 0)j (yt � �(!))2; 0 < ! < 1

with respect to �(!): (In a regression context this is known as asymmetric
least squares.) Di¤erentiating S! and dividing by minus two gives

TX
t=1

IE(yt � � (!)) (2)

where

IE(yt � � (!)) = j! � I(yt � �(!) < 0)j (yt � � (!)); t = 1; :::; T: (3)

There is no problem with de�ning IE(0) : since (3) is continuous, IE(0) = 0:
The sample expectile, e�(!); is the value of �(!) that makes (2) equal to zero.
Setting ! = 0:5 gives the mean, that is e�(0:5) = y: For other ! it is necessary
to iterate to �nd e�(!).
The population expression corresponding to (2) is

(1� !)

�(!)Z
�1

(y � �(!)) dF (y) + !

1Z
�(!)

(y � �(!)) dF (y) ; (4)
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where F (y) is the cdf of y: Newey and Powell (1987) show, in their theorem
1, that when (4) is set to zero, a unique solution exists if E(y) = �(0:5)
exists.

2.3 Comparing quantiles and expectiles

As noted by Efron (1991), counting the number of observations smaller than
an estimated expectile gives the value of � needed for it to be interpreted as
a quantile. Conversely, to �nd the value of ! for an expectile that makes it
equal to the ��quantile, we note that a simple re-arrangement of (2) when
it is set to zero and e�(!) is set to e�(�) gives

e! = P
yt<�(�)

(yt � e�(�))P
yt<e�(�)(yt � e�(�))�Pyt�e�(�)(yt � e�(�)) (5)

The population analogue of (5) can be written

! =

R �(�)
�1 (y � �(�))dF (y)R �(�)

�1 (y � �(�))dF (y)�
R1
�(�)
(y � �(�))dF (y)

=

hR �(�)
�1 ydF (y)

i
� ��(�)

2
hR �(�)
�1 ydF (y)

i
� �+ (1� 2�)�(�)

:

(6)
When � = 0:5 and the distribution is symmetric, ! = 0:5: More generally
the conditions under which � = ! are very restrictive; see Efron (1991). For
a normal distribution

! =
(2�)�1=2 exp(��(�)2=2) + ��(�)

(2=�)1=2 exp(��(�)2=2) + (2� � 1)�(�) (7)

where �(�) is the ��quantile from N(0; 1) . Using this formula we �nd that
for � = 0:01; 0:05; 0:10; 0:15, 0:25; 0:330 (0:331) the corresponding values of
! are 0:00146; 0:0124; 0:0344; 0:0652; 0:153; 0:248 (0:250): Formulae relating
! and � can be obtained for other distributions such as uniform and Laplace.
In all these cases setting �(!) = �(�) implies ! < � for � < 0:5 (and ! > �
for � > 0:5):

2.4 Quantics and expectics

The ��quantile indicator at time t is IQ(yt� �(�)); t = 1; :::; T; where IQ(:)
is as de�ned in (1). The sample ��quantile indicator, or ��quantic, at time t
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is IQ(yt�e�(�)); t = 1; :::; T . The quantics sum to zero if, when an observation
is equal to the sample quantile, the corresponding quantic is assigned a value
between � � 1 and � to ensure that this is the case. If T� is an integer,
the sample quantile will normally lie at some point between observations, in
which case the mean of the quantics is automatically zero, while the sample
variance is equal to �(1� �):
The !�expectile residual at time t is IE(yt � e�(!)); t = 1; :::; T , where

IE(:) was de�ned in (3). We call these !�expectics, even though they are
only partly dependent on an indicator. An expectic may also be based on
the � � th quantile, in which case we will call it a ��expectic and write it as

IE(yt � e�(�)) = ���e! � I(yt � e�(�))��� (yt � e�(�)); t = 1; :::; T; (8)

where e! is de�ned by (5). Sample expectics always sum to zero by construc-
tion.

2.5 Properties of population quantics and expectics

The properties of the ��quantile indicator, or population quantic, and the
population expectic, (3), are needed for some of the results that follow later
in the paper.
Assumption 1. �(�) is the unique population ��quantile and y has a

continuous positive density in the neighbourhood of �(�).

Proposition 1 If assumption 1 holds, then the population ��quantic has a
mean of zero and a variance of �(1� �):

Assumption 2. The variance of y is positive and �nite.

Proposition 2 If assumption 2 holds, the population �� and !�expectics
have a mean of zero and a �nite variance.

The variance of the population ��expectic is

V ar(IE(yt � �(�))) = (! � 1)2E[(y � �(�))2 j y < �(�)] Pr(y < �(�))

+!2E[(y � �(�))2 j y � �(�)] Pr(y � �(�))

= �(! � 1)2E[(y � �(�))2 j y < �(�)] + !2(1� �)E[(y � �(�))2 j y � �(�)]:
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2.6 Serial correlation

We now investigate the properties of the population quantics and expectics
for stationary processes.

Proposition 3 If yt is strictly stationary, then the population quantics are
both strictly stationary and covariance stationary since their moments al-
ways exist. If yt is covariance stationary (all autocovariances are �nite), the
population quantics and expectics are covariance stationary.

Transforming to indicators will tend to weaken the correlation structure
of a covariance stationary process. Any autocorrelation for the � -th quantile
indicator is related to the corresponding autocorrelation of yt; denoted �y;
by the formula

�� (�y) =
�L
�
�(�); �y

�
+ (1� �)L

�
��(�); �y

�
�(1� �)

� 1 (9)

where L(�(�); �) = Pr (yt > �(�); yt�k > �(�); �) with k any integer. The
proof is in appendix A. Note that �� (0) = 0; as it should be. For a Gaussian
process, the formula for the median simpli�es to

�0:5 = 2�
�1 arcsin

�
�y
�

since, as shown in Abramowitz and Stegun (1964, p 936-9), L(0; �) = 0:25 +
(1=2�) arcsin(�). In general, however, L(h; �) must be obtained numerically.
Table 1 shows how the correlations of the quantile indicators and popu-

lation expectics vary with � and � for a Gaussian process. Although some
progress can be made in �nding analytic expressions, we found it simpler to
obtain �gures by simulation3: The values of ! correspond to � were obtained
from (7). For both quantics and expectics, the correlation weakens as we
move towards the tails, but the e¤ect is less pronounced for expectics. There
is an interesting asymmetry in that negative correlations weaken much more
than positive ones; as can be seen,

���� (��y)�� < �� (�y) for �y > 0 and � 6= 0:5:
3To be precise, data were generated from AR(1) processes that gave the required cor-

relations using the Ox random number generator and 10,000 replications; see Doornik
(1999).
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3 Models of Time-Varying Quantiles and Ex-
pectiles

The signal extraction procedure for time-varying quantiles set out in De Rossi
and Harvey (2006a) is based on the model

yt = �t(�) + "t(�); t = 1; :::; T; (10)

where Pr(yt < �t(�)) = Pr("t(�)) < 0 = � with 0 < � < 1: It is assumed that
the "t(�)0s are independently drawn from an asymmetric double exponential
distribution, but this is simply a convenient device that leads to the appro-
priate criterion function for what is essentially a nonparametric estimator.
A suitable model for a stationary time-varying quantile is the �rst-order

autoregressive process

�t(�) = (1� �� )�
y
� + ���t�1(�) + �t(�); j�� j < 1; t = 1; :::; T; (11)

where �t(�) is normally and independently distributed with mean zero and
variance �2�(�); that is �t(�) v NID(0; �2�(�)); and is independent of "t(�); ��
is the autoregressive parameter and �y� is the unconditional mean of �t(�).
The random walk quantile is obtained by setting �� = 1 so that

�t(�) = �t�1(�) + �t(�); t = 2; :::; T: (12)

The initial value, �1(�), is assumed to be drawn from a N(0; �) distribution.
Letting � ! 1 gives a di¤use prior; see Durbin and Koopman (2001). A
nonstationary quantile can also be modelled by a local linear trend with a
speci�cation that results in the smoothed estimates being a cubic spline. The
speci�cation is close to an integrated random walk.
The signal extraction procedure developed by De Rossi and Harvey (2006b)

for time-varying expectiles is also based on a signal plus noise model, but with
the noise treated as coming from an asymmetric normal distribution. The
algorithm is a simple iterative procedure based on the Kalman �lter and
smoother. It is more straightforward than for quantiles because there are no
solutions where the estimated signal coincides with an observation. As with
quantiles, the parameters can be estimated by cross-validation.
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4 Generalized stationarity tests

4.1 Tests based on quantics: IQ tests

A test of the null hypothesis that a quantile is constant may be based on the
quantics, IQ(yt � e�(�)); t =; :::; T: If the alternative hypothesis is that �t(�)
follows a random walk, a modi�ed version of the basic stationarity test of
Nyblom and Mäkeläinen (1983) is appropriate. The test statistic of Nyblom
and Mäkeläinen uses residuals from a sample mean and its asymptotic dis-
tribution is a Cramér-von Mises (CvM) distribution; the 1%, 5% and 10%
critical values are 0.743, 0.461 and 0.347 respectively. Nyblom and Harvey
(2001) show that the test has high power against an integrated random walk
while Harvey and Streibel (1998) note that it also has a locally best invariant
interpretation as a test of constancy against a highly persistent stationary
AR(1) process. This makes a modi�ed version of the test entirely appropriate
for the kind of situation we have in mind for time-varying quantiles; see our
�gure 1 and also �gure 9 in Linton and Whang (2007).

Proposition 4 Under the null hypothesis that the observations are IID, and
assumption 1 is satis�ed, the asymptotic distribution of the stationarity test
statistic

�� (Q) =
1

T 2�(1� �)

TX
t=1

 
tX
i=1

IQ(yi � e�(�))!2 (13)

is the CvM distribution.

The result comes about because the population quantics are IID, but es-
timating the quantile introduces a constraint. De Jong, Amsler and Schmidt
(2006) - hereafter DAS - give a rigorous proof for � = 0:5. Carrying over
their assumptions to all quantiles we �nd that, for IID observations, all that
is required is for assumption 1 to hold. A formal proof can be found in
appendix C. We show later that the test statistic is Op(T ) when the series
contains a random walk component.

4.2 Tests based on expectics: IE tests

DAS show that for most distributions with �nite variance the indicator-based
stationarity test is less powerful than the standard test based on residuals
from the mean. This leads us to investigate stationarity tests based on ex-
pectics.
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Proposition 5 Under the null hypothesis that the observations are IID, and
assumption 2 is satis�ed, the asymptotic distribution of the statistic

�!(E) =

PT
t=1

�Pt
j=1 IE(yj � e� (!))�2
T 2b�2 ; (14)

where b�2 = T�1
PT

t=1 IE(yt � e� (!))2; is the CvM distribution.

The proof in appendix D is based on the assumptions for theorem 3 in
Newey and Powell (1987, p 826-8) which establishes the asymptotic distrib-
ution of the asymmetric least squares estimator. These assumptions require
slightly higher than fourth moments. However, we conjecture that, for our
purposes, the existence of second moments will su¢ ce.
It will often be the case that we want to use expectics to test the constancy

of a particular quantile, in which case we use the � -expectics, de�ned in (8),
to form a statistic analogous to (14). Let this statistic be denoted as �� (E):

Proposition 6 Under the null hypothesis that the observations are IID, and
assumptions 1 and 2 are satis�ed, the asymptotic distribution of the statistic
�� (E) is CvM:

4.3 Robust expectics

Expectile tests could be made robust by Winsorizing the observations, that
is observations greater in absolute value than a tail quantile are set equal to
that quantile. A simple procedure is as follows:
1) estimate the ��quantile;
2) Winsorize the observations using a robust measure of range;
3) �nd ! and carry out the expectic test.
The precise way in which Winsorizing is carried out may vary with � :

4.4 Serial correlation

Assuming strict stationarity (and a mixing condition), De Jong, Amsler and
Schmidt (2006) modify the indicator test for � = 0:5 along the lines of
Kwiatkowski et al (1992) so that it has the CvM distribution under the
null. They call this the IKPSS test. More generally, for any � ; we can
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replace the term �(1� �) in (13) by the nonparametric estimator of the long
run variance

�̂2L (Q;m) = 
̂(0) + 2
mX
j=1

k (j=m) 
̂� (j) (15)

= T�1
mX

j=�m
k (j=m)

T�jX
t=1

IQ
�
yt � e�(�)� IQ�yt+j � e�(�)�

where k (j=m) is a weighting function, such as the Bartlett window, 1 �
jjj=(m + 1); and b
� (j) is the sample autocovariance of the quantics at lag
j. Alternative options for the kernel k(:; :) and guidelines for choosing lag
truncation parameter, m; may be found in Andrews (1991). When modi�ed
in this way we will write the test statistic as �� (Q;m): Note that if e�(�) does
not coincide with an observation or observations, setting m = 0 gives exactly
the same result as (13) since the sample variance, 
̂(0); is �(1� �):
Under the null hypothesis that the observations are strictly stationary,

that assumption 1 holds and that assumption 2 in DAS holds, the asymptotic
distribution of the statistic �� (Q;m) is CvM: DAS prove that �0:5(Q;m)
has the CvM distribution asymptotically given (in addition to assumption
1) strong mixing conditions, the existence of the long-run variance of the
quantile indicators and regularity conditions on the kernel and the behaviour
of m as T goes to in�nity. It is not di¢ cult to extend the result to all
quantiles.
The expectile stationarity test statistic with the nonparametric correction

for serial correlation, denoted �!(E;m); is obtained after replacing b�2 by a
consistent estimate of the long run variance of IE (yt � �(�)) ; paralleling
(15). When � = 0:5 it corresponds to the standard KPSS test statistic.
The �� (E;m) test is similarly constructed. Both the �!(E;m) and �� (E;m)
statistics are asymptotically distributed as CvM .

4.5 Financial time series

Test statistics for the daily GM returns of �gure 1 are shown in table 2 for
a range of quantiles and various values of m in the nonparametric estimator
of the long-run variance.
All the quantic stationarity tests, including the median, reject the null

hypothesis of time invariance at the 1% level of signi�cance when m = 0.
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However, the test statistic for � = 0:01 (not reported in the table) is only
0.289 which is not signi�cant at the 10% level. This is consistent with the
small estimate obtained for the signal-noise ratio. Similarly the statistic
is 0.354 for � = 0:99 which is only just signi�cant at the 10% level. The
values of the test statistics fall as m increases, but they all still reject at the
5% level of signi�cance. In a situation where independence is a reasonable
assumption under the null hypothesis, this fall is to be expected given what
is known about the estimator of the long-run variance in other contexts; see,
in particular, the Monte Carlo results for the median indicator test in DAS.
The expectic tests, �� (E); do not reject for � � 0:5; except in one case

where the test just rejects at the 10% level. There are more rejections for
� > 0:5; but rarely at the 1% level. The outlying values around the time of the
stock market crash of 1987 probably account for the low power. Robustifying
the tests, by setting the observations less than the 0.01 quantile or greater
than the 0.99 quantile equal to the corresponding quantile (Winsorizing),
leads to far more rejections, but in most cases the test statistics are still less
than the corresponding quantile statistics. This is perhaps a little surprising.
The Box-Ljung statistics are based on quantiles and herem is the number

of lags in the autocorrelations, except that the column headed 0 refers to one
lag. There are clear rejections in the tails, particularly � = 0:05 and 0:1; but
not at the quartiles. The 5% critical values for 1,8,17 and 25 lags are 3.84,
15.5, 27.6 and 37.7 respectively.
The results indicating the non-constancy of the median are unexpected,

particularly as there is no evidence for a non-stationary mean ( and the Box-
Ljung quantic test does not reject). De Jong et al (2006) also reject constancy
of the median for some weekly exchange rates. A plot of the estimated median
for GM shows that it is close to zero most of the time apart from a spell near
the beginning of the series and a shorter one near the end.
The other two series in Engle and Manganelli (2004) are IBM and S & P

500. The results are somewhat similar, though in S & P the quantic statistics
for � = 0:5 are much smaller ( but still reject at the 5% level of signi�cance).
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4.6 Joint test for the time invariance of a distribution

A joint test to see if a group of N quantiles show evidence of changing over
time can be based on a generalisation of (13), namely

�� (Q;N) = T�2
TX
t=1

"
tX
i=1

IQi

#0

�1

"
tX
i=1

IQi

#
; (16)

where the j � th element of the N � 1 vector IQi is IQ(yi � e�(� j)) and the
jk� th element of the N �N covariance matrix 
 is � j(1� � k) for � k > � j;
see appendix B. Under the null hypothesis of IID observations, the limiting
distribution of �� (Q;N) is Cramér-von Mises with N degrees of freedom,
denoted CvM(N). (The proof is straightforward given the proof for tests
based on a single quantile - assumption 1 must hold for all the quantiles). A
nonparametric modi�cation may be made to deal with serial correlation, as
in Nyblom and Harvey (2000), to give a statistic denoted �� (Q;N;m):
If the median is assumed to be constant, as might be the case with stock

returns, a test on the 5,25,75 and 95 % quantiles might be regarded as a
general test for a change in the distribution over time. Thus for GM the
�� (Q; 4) test statistic for 0.05, 0.25, 0.75 and 0.95 is 5.451. The 1% CV is
1.623 (5% is 1.237). This is a convincing rejection.
Expectics can be used to construct joint test statistics in the same way.

The �� (E; 4) test statistic for 0.05, 0.25, 0.75 and 0.95 is 4.420, rising to 4.470
if robusti�ed.

5 Performance of tests

We now compare the performance of quantic and expectic tests for the model

yt = �t + "t; �t = �t�1 + �t; t = 1; :::; T; (17)

where "t is strictly stationary with zero median, while �t v NID(0; �2�).
Since the distribution of "t is time invariant, the (time-varying) quantiles
and expectiles4 of yt are a constant distance apart. The null hypothesis for
all tests corresponds to �2� = 0.
For the quantic tests, the model can be regarded as the same as (10) with

�t being the median, �(0:5); and �t(�) being the median plus a constant,

4De�ned as the corresponding quantile or expectile of "t plus �t:
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while "t(�) is equal to "t; minus the same constant. Thus in terms of (12),
�2�(�) = �2�; and, for a given � ; we could think of the stationarity test as
testing H0 : �

2
�(�) = 0 against H1 : �

2
�(�) > 0: The probability of rejection

(possibly size corrected) can then be formally interpreted as power.
For a Gaussian series the quantic test for � = 0:5 is less powerful than

the standard stationarity test. This is hardly surprising since the latter is
LBI and it is shown in DAS that the asymptotic distributions under the
alternative are di¤erent. The extent of the di¤erence can be seen in the
simulations in DAS. On the other hand heavy-tails can favour the indicator
test and the interesting question is then whether some kind of robusti�cation
can swing the balance back to a residual based test. We seek to investigate
this matter for a range of � :
Linton and Whang (2007) study the quantilogram, the plot of the auto-

correlations calculated from the quantics, and investigate the performance
of Box-Ljung tests for a range of � . Assuming symmetry, they show that
the statistic constructed from ��quantics, which we denote as BL� (P ), has
the usual asymptotic �2P distribution, where P is the number of lags in the
autocorrelations. They �nd a fall in power towards the tails, that is as �
approaches zero and one. One could extend their ideas by constructing the
�expectilogram�and Box-Ljung statistics from the expectics. Our main in-
terest, though, is in seeing how the expectic stationarity tests behave as we
move towards the tails. Note that, for the model under consideration, the
probability of rejection with the BL� (P ) test is likely to be somewhat be-
low that of the corresponding stationarity test. From Harvey and Streibel
(1998), the stationarity test statistic can be written � = �T�1

P
k krk;where

rk is the lag k sample autocorrelation, showing the importance of high order
autocorrelations.

5.1 Asymptotic distribution under the alternative hy-
pothesis

The limiting representation in DAS can be generalized to � and ! other than
0:5. In appendix E we show that, if the observations are IID plus a random
walk component, then

T�1�� (Q)
d! 1

�(1� �)

Z 1

0

�Z �

0

f� � 0:5 + 0:5sgn(W (x)� �(�))gdx
�2

d�;

(18)
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where �(�) denotes a random variable with a distribution equal to the limiting
distribution of e�(�); after appropriate scaling. This expression shows that the
test statistic is Op(T ) under the random walk alternative and hence the test
is consistent.
For the expectic tests,

T�1�!(E)
d!
R 1
0

�R �
0
f0:5 + (! � 0:5)sgn(W (x)� �(!))g(W (x)� �(!))dx

�2
d�R 1

0
f0:5 + (! � 0:5)sgn(W (x)� �(!))g2(W (x)� �(!))2dx

;

(19)
where �(!) is de�ned in a similar way to �(�). As can be seen, the limiting
distribution of T�1�!(E) is quite di¤erent from that of T

�1�� (Q); but is still

of Op(1): For ! = 0:5 we have �(0:5)
d
=
R 1
0
W (u)du; thereby yielding the lim-

iting distribution of the Nyblom-Mäkeläinen statistic under the alternative
hypothesis, that is

T�1�0:5(E)
d!

R 1
0

�R �
0
(W (x)�

R 1
0
W (u)du)dx

�2
d�R 1

0

�
W (x)�

R 1
0
W (u)du)

�2
dx

;

as in Nyblom and Harvey (2000, theorem 3).

5.2 Monte Carlo experiments: IID observations plus
a random walk under the alternative

Here we present Monte-Carlo evidence on the size and power properties of the
quantic and expectic tests, based on the statistics �� (Q) and �� (E); when
the underlying data generating process is a random walk plus noise. To
shed light on the behaviour of the tests with respect to fat tails, three cases
are considered for the noise process5, "t: (i) N(0; 1); (ii) t-distribution with
three degrees of freedom, (iii) Cauchy distribution. In all cases the random
walk component is driven by a Gaussian disturbance with variance equal to
�2� = c2=T 2; for c = 0; 2:5; 5; 10; 25; 50: The quantic and expectic tests are
compared with the quantic Box-Ljung statistic, introduced by Linton and
Whang (2007). Tables 3,4 and 5 contain the rejection frequencies of the
tests for the case T = 200 (and 50,000 replications); additional results for

5DAS put the same distribution on the disturbance driving the random walk.
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other sample sizes are available upon request. Because of symmetry, we only
present results for � � 0:5:
The main conclusions for the Gaussian case, reported in Table 3, are as

follows.
(a) Except when � = 0:01, the empirical sizes of the quantic and expectic

tests are very close to the nominal 5%; on the other hand a test based only
on the �rst autocorrelation coe¢ cient, denoted BL(1); does not appear to
control size very well in the tails.
(b) As expected, power6 increases with c for all tests.
(c) Power falls o¤ as we move towards the tails.
(d) The IE test is more powerful than IQ, except7 when � = 0:01 (when

the IE test is very undersized).
(e) The IQ stationarity test is generally far more powerful than the Box-

Ljung test of Linton-Whang with 5 autocorrelations, BL(5); except when c =
50 when the rejection probabilities are close to one (using 10 autocorrelations
would give a little more power, with a gain of the order of 1% to 5%). BL(1)
is clearly dominated.
The IKPSS test (with m = 0) of DAS corresponds to our IQ test for

� = 0:5 and the simulation results in their table 3 for T = 200 are consistent
with the rejection frequencies of our table 1 (note that their � = 0:01 would
imply c = 20):
The results for t(3) errors are reported in Table 4. The IQ and IE tests

still appear to control size well, except in the tails when they are somewhat
undersized, particularly IE. The main di¤erence8 with table 1 is that IQ is
now more powerful than IE: (This remains true even with size correction).
Finally, when errors are taken from a Cauchy distribution the IQ test still
appears to control size well and display good power properties at least in
the central quantiles; see table 5. The expectic test is not valid in this case,
and is undersized. (The extent of the undersizing for � = 0:5 is the same as
reported by DAS). The rejection frequencies under the alternative are very
low.

6Power here means the proportion of rejections; no attempt has been made to correct
for size.

7It can be shown - see De Rossi and Harvey (2006b) - that the estimator of the expectile
is less e¢ cient than the quantile for � = 0:01: For � = 0:05 the e¢ ciency is roughly the
same.

8Power is slightly lower than in Gaussian case, but the variance of the t3 distribution
is three and so the signal-noise ratios are smaller.
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5.3 Serial correlation

DAS derive the asymptotic distribution of the IKPSS statistic under the
alternative hypothesis and show that (m=T )�(Q;m) = Op(1):We conjecture
that a similar result holds for tests based on all quantics. However, the
asymptotics appear to give little insight into the relative power of the various
quantic and expectic tests and so we focus on simulation experiments.
Correcting the IQ and IE tests to allow for serially correlated errors im-

plies the usual trade-o¤ between size and power, as shown in Kwiatkowski
et al. (1992) for the standard KPSS test. Table 6 presents Monte Carlo
evidence for a data generating process9 made up of a random walk plus an
AR(1) process with parameter � = 0:5: The disturbances are either N(0; 1)
or scaled10 Cauchy, with the random walk component scaled by a factor
�� = q = 0; :0001:5; :001:5; :01:5; :1:5; 1: The sample size is T = 200 with the

lag truncation parameter m = int
�
4 (T=100)1=4

�
= 5: With this choice of

m; both tests are generally oversized, the worst case being the IQ test with
Cauchy errors. Under Gaussianity, the rejection frequencies under the alter-
native largely mirror the IID case, with the IE test being more powerful.
The results for the Cauchy distribution are rather surprising, however, since
although the IE test is not valid, it is less oversized than the IQ test and the
rejection frequencies are much higher than in the IID case.
Even the standard KPSS test is oversized with the above DGP. The over-

sizing of all tests becomes greater as � moves towards one, though since the
aim is to detect slowly near persistent movements this is not necessarily a
bad thing.
Table 7 shows result for the stationary component following an MA(1)

with negative �rst-order correlation of �0:4 (the parameter � is -0.8). In
contrast to the previous table the tests are now undersized, particularly for
expectics. Nevertheless, in the Gaussian case, the IE test dominates the IQ
test even for the smallest q considered. With (scaled) Cauchy disturbances,
the rejection frequencies are well below those of the IQ test except when q
is high.
In section 2 we showed that serial correlation tends to fall as � moves
9The experimental design is as in DAS and our results for � = 0:5 correspond to those

contained in their table 1 (lower part) and in their table 4 (except that they present
size-adjusted power, while we give rejection frequencies).
10"Scaled Cauchy" means a Cauchy random variable multiplied by 0.1, so that the noise

is not too small or large and hence rejection frequencies take meaningful values.
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towards zero or one. This suggests that it might be useful to adopt a rule
that gives lower values of m for such values.

5.4 Multivariate tests

Simulation evidence (not reported here) shows that there is no power gain
from considering many quantiles (with respect to just considering the me-
dian) when the data is generated from a random walk plus noise. This is
to be expected since all the quantiles and expectiles follow exactly the same
path, di¤ering only by a constant. On the other hand the power does not
appear to fall as more tests are combined. Thus a failure to reject can be
con�dently interpreted as time invariance rather than low power against a
time series that is nonstationary in the level.
To illustrate, consider the example from De Rossi and Harvey (2006a)

where 500 observations were generated from a scale mixture of two Gaussian
distributions with time-varying weights and variances chosen so as to keep
the overall variance constant over time. Figure 2 shows the absolute values
of the series and 98%, 90% and 50% quantiles, corresponding to 1%, 5% and
25% in the original series. The 98% and 90% quantiles diverge, re�ecting the
changing behaviour in the tails. The IQ test statistics for � = :98 and 0:9
were .214 and .594 respectively, so only the second rejects at the 5% level,
though not at the 1% level. The joint test statistic is 1.265, which clearly
rejects at the 1% level (the 5% critical value is .748, while the 1% is 1.074).
The reason is that the correlation between the two quantics under the null
is 0.44 but in this series the quantiles head o¤ in di¤erent directions.
Adding the 50% quantics gives a joint test of 1.633. The individual test

statistic for the 50% quantics is 0.311; this is not signi�cant at the 10% level,
which is hardly surprising given that the 50% quantile shows little movement.
However, incorporating the 50% quantics into the joint test appears to have
little adverse e¤ect since the 1% critical value is 1.359.

6 Contrasts

A quantile contrast is a linear combination of quantiles. The contrasts be-
tween complementary quantiles, that is

D�(�) = �t(1� �)� �t(�); � < 0:5; t = 1; ::; T (20)
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Figure 2: A tail of two quantics

yield measures of dispersion. For a symmetric distribution

S�(�) = �t(�) + �t(1� �)� 2�t(0:5) (21)

is zero for all t = 1; ::; T , so a plot of this contrast shows how the asymmetry
captured by the complementary quantiles, �t(�) and �t(1� �); changes over
time. Examples are given in De Rossi and Harvey (2006a).
A test based on a quantic contrast,

a:IQ(yt � e�(� 1)) + b:IQ(yt � e�(� 2)); t = 1; :::; T;

where a and b are constants, can be useful in pointing to speci�c departures
from a time-invariant distribution. The corresponding population quantile
indicator contrast has a mean of zero and a variance11 that can be obtained
by using the formula

cov(IQ(yt � �(� 1)); IQ(yt � �(� 2)) = � 1(1� � 2); � 2 > � 1; (22)

11If neither e�(�) nor e�(1� �) coincides with an observation or observations, the sample
and population covariances are exactly the same, as are the variances.
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derived in appendix B. Tests statistics analogous to �� (Q) and �� (Q;m) can
be constructed from the sample quantic contrasts. Under the conditions of
assumption 1 applied to each quantile, they have the CvM distribution when
the observations are, respectively, IID or strictly stationary. Similar tests
can be constructed using expectics.

6.1 Dispersion

A test of constant dispersion can be based on the complementary quantic
contrast

DIQt(�) = IQ(yt � e�(1� �))� IQ(yt � e�(�)); � < 0:5 (23)

This mirrors the quantile contrast, e�(1 � �) � e�(�); used as a measure of
dispersion. It follows from (22) that the variance of the population quantic
contrast is 2�(1� 2�): The test statistic will be denoted �� (DQ):
A complementary expectic contrast, denotedDIEt(!); can be constructed

in a similar way. The contrast can be matched to a given � and hence de-
noted DIEt(�): Values of ! and 1� ! are obtained from (5); they could be
constrained to add to one if desired. The statistic will be denoted �� (DE):
Robusti�cation can be carried out as before.
A test of constant dispersion can be constructed using the quantics from

the (1 � 2�)th quantile for the absolute values, jytj ; when the median is
zero. For known quantiles, it is shown in appendix F that DIQt(�) is equal
to IQ(jytj � �(1 � 2�)) when there is symmetry. Thus any di¤erence in
performance comes from enforcing the restriction that e� (�) + e� (1� �) = 0:
For known expectiles, DIEt(!) is not, in general, equal to IE(jytj �

�(1 � 2�)). Forming expectics from the mean of absolute values gives the
stationarity test of Nyblom andMäkeläinen (1983) which Harvey and Streibel
(1998) �nd to be more powerful than a test based on squared observations
for detecting stochastic volatility. Note that for a Gaussian distribution, the
mean of absolute values,

p
2=�; corresponds to the complementary quantiles

at � = 0:288 in the original series.

6.1.1 Monte Carlo experiments for the stochastic volatility model

Here we consider the stochastic volatility model

yt = "t exp (0:5ht) ; "t v NID(0; 1) (24)

ht = �ht�1 + �t; �t v NID(0; �2�)
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with h0 = 0. Table 8 reports Monte Carlo simulated percentage rejections
for tests, all with m = 0; based on the following statistics: (i) single quantile
tests, �� (Q) and �� (E); dispersion tests �� (DQ) and �� (DE); �1�2� (Q) and
�1�2� (E) computed from jytj :
The �gures are for a sample size T = 1000; � = 1 (integrated volatility)

and �� set to 0; :005; :01; :02; :03; :05: The expectic tests are calculated
with ! = !(�) as in (6): Because of symmetry we only report results for
� � 0:5: As in the earlier tables, the number of replications is 50,000. The
main �ndings are as follows.
(a) The �� (Q) tests reject the null hypothesis of constancy with increasing

frequency as � moves towards zero or one. The expectic tests, �� (E); display
similar behaviour, except that the rejection frequencies are essentially the
same for � = 0:15 and 0:05:
Although yt is not strictly stationary when there is integrated stochastic

volatility; the sizes of the quantic and expectic tests for � = 0:5 are a¤ected
very little; even with �� = 0:05; they are still below 0.06. This is consistent
with the theoretical analysis in Cavaliere and Taylor (2004).
(b) Power is monotonically increasing with ��:
(c) The expectic test, �� (E); appears to be more powerful than the quantic

test, �� (Q); except in the tails.
(d) As expected, the dispersion tests, �� (DQ) and �� (DE), reject more

frequently than the corresponding single quantile tests, �� (Q) and �� (E).
The expectic dispersion tests show a clearer domination over the dispersion
quantic tests than do the corresponding single quantile tests. Furthermore,
for the range of ��s that we consider, the power of �� (DQ) continues to
increase as we move towards the tails, while that of �� (DE) falls o¤ slightly.
The best choice for the expectic test seems to be a value of ! corresponding
to � = 0:25:
(e) The rejection probabilities for the quantic tests based on absolute

values are very close to those of the �� (DQ) tests. The earlier theoretical
analysis indicated that the statistics are identical for known quantiles and it
appears that enforcing the symmetry restriction when estimating quantiles
makes little or no di¤erence. On the other hand, the expectic tests based
on absolute values do behave somewhat di¤erently from the �� (DE) tests.
They are more powerful for � = 0:15 and � = 0:05; but less powerful for
� = 0:25 and � = 0:33: The best tests against stochastic volatility appear to
be the ones based on �� (DE) with � equal to 0:25 and the absolute value
expectic test with � = 0:15.
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(f) We con�rmed (in experiments not reported here) that all the tests
display a tendency to reject the null hypothesis for very persistent but sta-
tionary volatility, for example, � = 0:99; see Harvey and Streibel (1998).
However for � = 0:95, we found rejection frequencies close to the nominal
size of 0:05.
The results for heavy-tails disturbances, generated by "t having a t-

distribution with three degrees of freedom, are presented in Table 9. As
with Gaussian disturbances, the test sizes are all close to the nominal. The
main di¤erences are as follows.
(a) The power of the single quantile test is now maximized at � = 0:15

rather than � = 0:05: The power of the expectic test is also maximized at
� = 0:15.
(b) The quantic tests are more powerful than the corresponding expectic

tests for all � :Even though �2" = 3;rather than one, the rejection frequencies
for quantic tests are actually higher than those for Gaussian disturbances.
On the other hand the rejection frequencies for expectic tests are lower.
(c) As regards the dispersion tests, the rejection frequencies for expectics

are higher than those of quantics for � = 0:33, but smaller for � = 0:15 and
� = 0:05.
(d) In contrast to the Gaussian case, the absolute value expectic test is

now more powerful than the �� (DE) test for all quantiles. The best choice
seems to be � = 0:25. However, the absolute value quantic test - and the
very similar �� (DQ) test - has higher rejection frequencies for � = 0:15 and
� = 0:05. If heavy tails are a possibility, a quantic dispersion test based on
� = 0:15 might be the best option.

6.1.2 Financial time series

For GM, the test statistics �� (DQ) for the interquartile range and the 5%/95%
range are 3.589 and 3.210 respectively. Thus both decisively reject. The cor-
responding expectic statistics, �� (DE); are 2.567 and 0.506. The failure to
reject for � = 0:05 is consistent with the Monte Carlo results of the previous
sub-section.

6.2 Asymmetry

A test of changing asymmetry may be carried out using the quantic contrast

SIQt(�) = IQ(yt � e�(1� �)) + IQ(yt � e�(�)); � < 0:5 (25)
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The variance of the population contrast is 2� and it is uncorrelated with
the population contrast corresponding to DIQ(�): The sample values are �1
when yt < e� (�) ; 1 when yt > e�(1� �) and zero otherwise. The test statistic
will be denoted �� (SQ):
For GM returns the asymmetry test statistics are 0.133 and 0.039 for

� = 0:25 and � = 0:05 respectively. Thus neither rejects at the 10% level of
signi�cance. The same is true of the expectic tests where the test statistics
are 0.061 and 0.069. However, changing skewness may be a feature of some
�nancial time series, as shown in Harvey and Siddique (1999).

6.3 Combined tests

A multivariate test statistic for a pair of complementary quantics, denoted
�2(�)(Q); contains information on changing dispersion and asymmetry. In fact
since the population quantile indicator contrasts corresponding to DIQ(�)
and SIQ(�) are mutually uncorrelated, it follows that, if the variances and
covariances in the test statistics are set equal to population values, then

�2(�)(Q) = �� (DQ) + �� (SQ); � < 0:5: (26)

This will be approximately true when the long-run variance is estimated. For
expectiles, the population variables corresponding toDIQ(�) and SIQ(�) are
only uncorrelated if the distribution is symmetric.
For GM, the multivariate test statistic, �2(�)(Q); based on the 0.25 and

0.75 quantics is 3:722, which is exactly equal to the sum of the dispersion
and asymmetry test statistics, 3:589 and 0:133: This clearly rejects as the 1%
critical value is 1.074. The corresponding multivariate statistic for expectiles,
�2(�)(E); is 2:669 which, although not equal to the sum of the dispersion and
asymmetry test statistics, 2:567 and 0:061 respectively, is not too far away.

7 Relative time invariance

In looking at quantic and expectic tests so far it has been assumed that the
location, that is the median and/or mean, is constant. Our main concern in
this section is when the median and/or mean might be changing over time.
The aim is to test time invariance of aspects of the distribution apart from
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Figure 3: Monthly US in�ation: smoothed level and residuals

its location. An example is provided by monthly U.S. in�ation12 in �gure 3.
The level was obtained by �tting a random walk plus noise using the STAMP
7 package of Koopman et al (2006). The signal-noise ratio was estimated by
maximum likelihood as q = 0:074: The smoothed level is clearly not constant
(indeed stationarity tests on all quantiles reject as one would expect), but
there may be issues of changing dispersion, as highlighted recently by Stock
and Watson (2007), and asymmetry.

7.1 Residuals and tests

We �rst consider testing the null hypothesis of the time-invariance of a given
quantile with respect to the median, that is

�t(�) = �� + �t(0:5); t = 1; :::; T (27)

where �� is a constant. Thus in (10) "t(�) = "t(0:5)��� : The model therefore
corresponds to the alternative hypothesis used for the investigation in section
12To be precise, the �rst di¤erence of the logarithm of the personal consumer expenditure

de�ator (all) from 1959(1) to 2005(6) as given by Stock and Watson (2005). We have
annualized in percentage terms by multiplying through by 1200.
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5.
Quantic tests may be carried out13 by estimating the time-varying me-

dian, e�t(0:5); as in De Rossi and Harvey (2006a), and then constructing the
IQ(yt � b�t(�))0s; where b�t(�) = b�� + e�t(0:5) and b�� is the � � th quantile of
the residuals from the median residuals, yt�e�t(0:5): Expectics, IE(yt�b�t(�))
in the notation of (8), could be computed for given quantiles and the corre-
sponding tests carried out as usual.
Quantic tests, and the corresponding ��expectic tests, can also be based

on the quantiles computed from the residuals from the time-varying mean,
that is yt� e�t(0:5); t = 1; :::; T: This raises an immediate issue, which is that
when a signal plus noise model with a unit root is �tted, the residuals are
strictly non-invertible. As a consequence, the long-run variance is zero. This
non-invertibility does not carry over to the median indicators because as was
shown in sub-section 2.5 the correlations are all closer to zero. As � moves
towards the tails, the correlations become even smaller in absolute value.
The same is true for the expectics, but the reductions are smaller. This
e¤ect is more pronounced for negative autocorrelations and for a strictly
non-invertible process, with spectrum at zero frequency,

P1
k=1 �(k) = �0:5:

For example, (in a doubly in�nite sample) the residuals from a (correctly
speci�ed) random walk plus noise follow a strictly non-invertible ARMA(1,1)
process with �(1) = �(� + 1)=2 and �(�) = ���1�(1); � > 1; where � =
(q+2)=2�(q2+4q)1=2=2 and so all the autocorrelations are negative. Note that
because the operation used to estimate a time-varying median is a nonlinear
one, it is di¢ cult to determine the properties of the residuals, yt � e�t(0:5).
Indeed, the fact that they do not apparently follow a linear process when
the original process is linear (after di¤erencing) may be a cause for concern.
But, of course, the linearity of the original is itself a convenient �ction.
In general the mean will be more e¢ cient than the median. This is well

documented when the mean and median are �xed, but it carries over to when
they are time-varying; see De Rossi and Harvey (2006b). Although the mean
is only equal to the median for symmetric distributions, symmetry is not
needed since, under the null hypothesis of relative time-invariance, the time-
varying mean will correspond to a time-varying quantile for some � ; the fact
that this may not be the median does not matter since the quantiles move

13If the two quantiles were observed, one could be subtracted from the other and a
non-stationarity test carried out; see Harvey and Bernstein (2003). This is not an option
for a single series.
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together over time.
Tests can also be based on the standardized innovations (one-step ahead

prediction errors) from the Kalman �lter. If the model is Gaussian and
correctly speci�ed, the standardized innovations will be normally distrib-
uted and serially independent with mean zero and constant variance. Hence
the tests may be applied with no correction for serial correlation (m = 0):
However, given model uncertainty, it might be better to correct for serial
correlation, particularly if the procedure is robusti�ed in the way suggested
in sub-section 7.3. Tests constructed from innovations may have better size
properties, but the question is whether a price is paid in terms of power.

7.2 Simulation evidence

For a Gaussian random walk plus noise model (17) with stochastic volatility
in the noise, as in sub-section 6.1, we computed Monte Carlo rejection fre-
quencies of the dispersion tests for relative invariance, that is �� (DQ;m) and
�� (DE;m); based on the quantics and expectics constructed as IQ(yt�b�t(�))
and IE(yt�b�t(�)); where b�t(�) = b�� +e�t(0:5); e�t(0:5) is the estimated time-
varying mean and b�� is the � � th quantile of the residuals yt� e�t(0:5): The
signal-noise ratio, q; was �xed at its value under the null. The estimated
mean is obtained either by smoothing or (Kalman) �ltering. Table 9 pro-
vides the percentage rejections for � = 0:05; 0:25; with m = 6; based on
10,000 replications.
Under the null, �2� = 0; all quantiles, including the median are constant,

and the set-up is similar to the one in table 8. When there is a random walk
component, we �nd that the tests based on residuals from smoothing are
undersized, particularly when � = 0:25: Using innovations seems to control
size better (even if we set m = 0), but, unless �� is close to zero, there are
fewer rejections.

7.3 Robustness

Fitting a (time-varying) mean requires �nite second moments for the distur-
bances in both the level and noise. A (time-varying) median requires �nite
second moments only for the disturbances in the level, together with assump-
tion 1 on the noise. However, expectic tests computed from the residuals from
a �tted median still need �nite second moments for the noise.
In order to make the procedure robust we suggest proceeding as follows:
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i) estimate the time-varying median;
ii) Winsorize the residuals (using a robust estimator of range);
iii) add the Winsorized residuals to the median and estimate the time-

varying mean;
iv) compute quantiles from the residuals and carry out quantic and ��expectic

tests.
Step (iii) is e¤ectively a time series M�estimator; see Huber (1981). It

could be iterated, with the range re-estimated at each iteration.

7.4 Misspeci�ed detrending

The need to identify a suitable model for detrending prior to testing for rel-
ative time invariance may be source of unease. However, misspeci�cation of
such a model need not have serious consequences as the following proposition
makes clear.

Proposition 7 If the true model is a linear process after di¤erencing d
times, and the �tted model is a linear process after di¤erencing d times, the
modi�ed test statistics, �� (Q;m) and �� (E;m); constructed from the residu-
als will still have an asymptotic CvM distribution under the null hypothesis
provided that d � d:

The result may be shown by using the Wiener-Kolmogorov formula to
�nd the properties of the residuals. Suppose that the true process is such
that �dyt =  (L)�t; where  (L) is a polynomial in the lag operator with
all roots outside the unit circle and �t is white noise with variance �2: If the
�tted UC model is of the form yt = �t + "t; where the estimated variance
of the white noise process "t is �2"; and its reduced form is �dyt =  (L)�t;
where the variance of �t is �2; the process followed by the extracted residuals
in a doubly in�nite sample is

e"t = �2"(1� L)d(1� L�1)d

�2 (L) (L�1)
yt =

�2"(1� L)d�d(1� L�1)d

�2 (L) (L�1)
 (L)�t

(Note the simpli�cation if the model is correctly speci�ed.) Clearly d � d
is needed if the process is to be stationary. Although the process is strictly
non-invertible, the weakening of the autocorrelation structure for indicators
and expectics other than ! = 0:5 means that the nonparametric correction
in the test statistic can be legitimately employed. More generally, if "t is
modeled as a stationary process, the same conclusions hold.
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7.5 US in�ation

Fitting a random walk plus noise model to US in�ation, as in �gure 3, re-
sults in some residual serial correlation in the innovation residuals, in partic-
ular the �rst-order autocorrelation is 0.14. The residual autocorrelation can
be removed by �tting a stochastic cycle or low order autoregressive model.
However, the result on misspeci�ed trends in the previous sub-section indi-
cates that this is not necessary. Indeed the �rst-order autocorrelation for the
smoothed residuals from the random walk plus noise model is not strongly
negative, presumably because of the misspeci�cation.
A full set of results for the test statistics, as in table 2, is available on

request. The main features are that the �� (DQ; 8) test statistics for � = 0:05;
0.10 and 0.25 are 0.444, 0.636 and 0.273 respectively while the corresponding
�gures14 for �� (DE; 8) are 0.247, 0.469 and 0.612. There is clear evidence
for changing dispersion and the statistics are consistent with the results of
table 8 in that the quantic statistics are higher in the tails and lower for the
interquartile range. There is no indication of changing asymmetry.
The tests based on innovations tell a similar story. The �� (DQ; 8) test

statistics for � = 0:05; 0.10 and 0.25 are 0.538, 0.393 and 0.417 respectively
while the corresponding �gures for �� (DE; 8) are 0.247, 0.352 and 0.447.
Again the asymmetry test statistics are small and statistically insigni�cant
at the 10% level.
Finally we �tted an integrated random walk plus noise model and found

the maximum likelihood estimate of the signal-noise ratio to be 0:0007. The
�� (DQ; 8) test statistics for � = 0:05; 0.10 and 0.25 were 0.598, 0.288 and
0.200 respectively while the corresponding �gures for �� (DE; 8) were 0.240,
0.425 and 0.550. These test statistics are not too di¤erent from those ob-
tained with the random walk plus noise model.

8 Conclusion

We have shown how tests of time invariance may be constructed from what
we call quantics or expectics. The former are based on weighted indicators
obtained from an estimated quantile while the latter are based on residuals
weighted di¤erently according to whether the observation is above or below

14As expected from table 8 these �gures are bigger than the corresponding �gures for
test statistic on individual quantics and expectics.
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the quantile. The serial correlation structure is weakened by transforming
to quantics or expectics with autocorrelations moving closer to zero as the
quantile moves towards either of the tails. Stationarity test statistics con-
structed from quantics or expectics are shown to have the usual Cramér von
Mises distribution, asymptotically, under the null hypothesis of time invari-
ance. Our simulation results con�rm certain prior expectations such as the
higher power of expectic tests for Gaussian series for most quantiles, coupled
with a tendency for the quantic tests to do better when there are heavy tails
(where power is generally lower). A compromise is to robustify the expectic
tests, but this does not always produce an improvement over the quantic
tests. Multivariate tests, combining the information in a set of quantics or
expectics, appear to be useful as general tests of time invariance.
Tests based on contrasts can be used to detect changing dispersion and

asymmetry. Dispersion tests are based on complementary quantics or expec-
tics. Alternatively tests can be based on absolute values (about the mean or
median), though for quantics the tests are essentially the same when the dis-
tribution is symmetric. With expectics, a good test against changing volatil-
ity is the one based on the quartile contrast, though with heavy tails (but still
�nite variance) the corresponding test based on the mean of absolute values
seems preferable. If there are concerns about the existence of moments, a
quantic dispersion test constructed using the 15 and 85% quantiles is good
choice.
Testing for relative time invariance introduces some new issues. Our rec-

ommendation is to estimate a stochastic trend or level as for a Gaussian
model, possibly with prior treatment of potential outliers, and then to pro-
ceed to compute quantics and expectics by �tting quantiles to the residuals.
Even if the �tted model is misspeci�ed, the smoothed residuals are stationary
and serial correlation not accounted for by the model will be accommodated
by the nonparametric estimator of the long run variance; all that is required
is that the number of unit roots in the �tted model is at least as great as in
the true model.
There are a number of other open problems. For example, a test might

be based on a combination of expectics and quantics. Also more work needs
to be done on the e¤ectiveness of methods for dealing with relative time
invariance, including the treatment of time trends, and on robusti�cation.
Tests for movements in the tails, re�ecting changing kurtosis, can be based
on the outer quantiles, but an allowance needs to be made for changing
dispersion and this requires some investigation. Finally we believe that our
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procedures can be modi�ed to deal with irregular spacing, thereby providing
tests for the linearity assumption in quantile or expectile regression against
the alternative of nonlinear cubic splines.

APPENDICES

A Autocorrelations of quantile indicators

The autocorrelation of the � -th quantile indicator corresponding to �y; the au-
tocorrelation of the covariance stationary process, yt; at any lag k = 1; 2; :::.,
is

�� (�y) =
E [IQ (yt � �(�)) IQ (yt�k � �(�))]

V ar(IQ (yt � �(�)))
:

The denominator is �(1� �); while the numerator is

� 2 Pr (yt > �(�); yt�k > �(�)) + (� � 1)2 Pr (yt < �(�); yt�k < �(�))

+�(� � 1) Pr (yt > �(�); yt�k < �(�)) + �(� � 1) Pr (yt < �(�); yt�k > �(�))

But

Pr (yt > �(�); yt�k < �(�)) + Pr (yt < �(�); yt�k > �(�))

= 1� Pr (yt > �(�); yt�k > �(�))� Pr (yt > �(�); yt�k > �(�))

So the numerator becomes

� Pr (yt > �(�); yt�k > �(�))+(1��) Pr (yt > ��(�); yt�k > ��(�))+� 2��

Hence (9) is obtained.

B Correlations between quantics

Tests involving more than one quantic need to take account of the correlation
between them. To �nd the covariance of the � 1 and � 2 population quantics
with � 2 > � 1, their product must be evaluated and weighted by (i) � 1 when
yt < � (� 1), (ii) � 2 � � 1 when yt > � (� 1) but yt < � (� 2), (iii) 1 � � 2 when
yt > � (� 2) : This gives

(� 2 � 1) (� 1 � 1) � 1 + (� 2 � 1) � 1 (� 2 � � 1) + � 2� 1 (1� � 2) = � 1 (1� � 2)
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and on collecting terms we �nd that

cov(IQ(yt � �(� 1)); IQ(yt � �(� 2))) = � 1(1� � 2); � 2 > � 1: (28)

It follows that the correlation between the population quantics for � 1 and � 2
is

� 1(1� � 2)p
� 1(1� � 1)� 2(1� � 2)

; � 2 > � 1

The correlation between the complementary quantile indicators, IQ(yt�
�(�)) and IQ(yt� �(1� �)); is simply �=(1� �). This is 1/3 for the quartiles
and 1/9 for the �rst and last deciles.

C Limiting null distribution of the IQ test

Let yt be IID random variables, with �(�) being the the unique popula-
tion � -th quantile. Assume that yt � �(�) has continuous density f(x; �)
in the neighborhood of x = 0 (Assumption 1) denote by F (x; �) the corre-
sponding cumulative distribution function. The limiting distribution of the
sample � -th quantile b�(�) is known to be given15 by T 1=2 �e�(�)� �(�)

�
d!

N (0; �(1� �)=f2(0; �)) ; see, for example, Koenker (2005p 71-2). Now let

GT (r; �) = T�1=2
[rT ]X
j=1

�
IQ
�
yt � �(�)� �T�1=2

�
� IQ (yt � �(�))

�
;

for r 2 [0; 1]: On setting � = T 1=2
�e�(�)� �(�)

�
and rearranging the above

expression we can write

T�1=2
[rT ]X
j=1

IQ
�
yt � e�(�)� = A+B + C; (29)

15When extending results on testing the median in the presence of serial correlation, DAS
note that the asymptotic variance of the median is multiplied by 2� times the spectrum
at zero, that is the long-run variance. The same holds for other quantiles.
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where

A = GT

�
r; T 1=2

�e�(�)� �(�)
��
� E

h
GT

�
r; T 1=2

�e�(�)� �(�)
��i

B = T�1=2
[rT ]X
j=1

IQ (yt � �(�)) ;

C = E
h
GT

�
r; T 1=2

�e�(�)� �(�)
��i

= � T�1=2[rT ]
�e�(�)� �(�)

�
f
�e�(�)� �(�)

�
:

The �rst term, A; is of op(1) by the same type of arguments as in lemma 3
of DAS (uniform convergence in probability of GT (r; �) to its mean), while
the expression for C is obtained by noting that E [IQ (yt � �(�))] = 0 and
that

E
h
IQ
�
yt � e�(�)�i = (� � 1)F

�e�(�)� �(�); �
�
+ �

�
1� F

�e�(�)� �(�); �
��

= � �
�
� +

�e�(�)� �(�)
�
f
�e�(�)� �(�)

�
; �
�

= �
�e�(�)� �(�)

�
f
�e�(�)� �(�); �

�
where the second equality follows by a mean value theorem expansion of F (:)
and the consistency of e�(�); with �(�) between �(�) and e�(�): Given that by
the invariance principle B )

p
�(1� �)W (r); where W (r) is a standard

Wiener process and the notation ) denotes weak convergence, expression
(29) yields

(�(1� �)T )�1=2
[rT ]X
j=1

IQ
�
yt � e�(�)�) W (r)� rW (1):

Thus, by an application of the continuous mapping theorem,

�� (Q)
d!
Z 1

0

(W (r)� rW (1))2 dr (30)

which is the standard Cramér-von Mises distribution.
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D Limiting null distribution of the IE test

Let yt be IID random variables satisfying assumptions 1-4 of Newey and
Powell (1987). In particular, the assumptions imply a continuous density
function and the existence of moments of order slightly higher than four.
Newey and Powell (1987, p 827) show that the limiting distribution of the
sample !-expectile, e�(!); is given by

T 1=2 (e�(!)� �(!))
d! N

�
0; E

�
IE2t

�
=(E (j! � I(yt � � (!) < 0)j)

�2
;

where IEt denotes IE (yt � � (!)) as de�ned in (3).
As noted in proposition 2, IEt has zero mean and �nite variance. Thus

the invariance principle holds, that is T�
1
2

P[rT ]
t=1 IEt )

p
E (IE2t )W (r) ;

r 2 [0; 1]:
Now consider the case where e�(!) < �(!); the same type of arguments

would follow for e�(!) � �(!): By simple re-arrangement one can write

IE (yt � e� (!)) = IEt �Rt; t = 1; :::; T;

where

Rt =

8<:
(! � 1) (e�(!)� �(!)) for yt < e�(!)
! (e�(!)� �(!))� (yt � �(!)) for e�(!) � yt < �(!)
! (e�(!)� �(!)) for yt � �(!):

Given the limiting result for the sample expectile, it can be seen that Rt =
j! � I(yt � � (!) < 0)j (e�(!)� �(!))+op(1) and so T�

1
2

P[rT ]
t=1 Rt ) r

p
E (IE2t )W (1) ;

r 2 [0; 1]: Thus, by an application of the continuous mapping theorem, �!(E)
converges to a CvM distribution, as in (30).

E Limiting distributions of test statistics un-
der the alternative

Suppose that a functional central limit theorem holds for the scaled obser-
vations under the I(1) alternative, i.e. T�1=2y[T�] ) �W (�); � 2 [0; 1] for
some � > 0:
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For quantic tests we will assume that ��1T�1=2e�(�) d! �(�) for some
(implicitly de�ned) random variable �(�): DAS prove that this is true for
� = 0:5: We will �nd it convenient to write

IQ(yt � �(�)) = � � 0:5 + 0:5sgn(yt � �(�)):

Then, using the results of Park and Phillips (1999), for � 2 [0; 1];

T�1
[�T ]X
j=1

IQ(yt � e�(�)) d!
Z �

0

f� � 0:5 + 0:5sgn(W (x)� �(�))gdx

and so

T�3
TX
t=1

 
tX
j=1

IQ(yt � e�(�))!2 d!
Z 1

0

�Z �

0

f� � 0:5 + 0:5sgn(W (x)� �(�))gdx
�2

d�;

Hence we obtain (18).
For expectics write

IE(yt � �(!)) = [0:5 + (! � 0:5)sgn(yt � �(!))](yt � �(!))

then

T�3=2
[�T ]X
j=1

IE(yt � e�(!))
= T�3=2

[�T ]X
j=1

[0:5 + (! � 0:5)sgn(yt � e�(!))](yt � e�(!))
) �

Z �

0

f0:5 + (! � 0:5)sgn(W (x)� �(!)g(W (x)� �(!))dx

where �(!) is such that ��1T�1=2e�(!) ! �(!). (We assume this to be true
for ! 6= 0:5). Now

T�4
TX
t=1

tX
j=1

f0:5 + (! � 0:5)sgn(yj � e�(!))(yt � e�(!))g2
d! �2

Z 1

0

�Z �

0

f0:5 + (! � 0:5)sgn(W (x)� �(!))g(W (x)� �(!))dx

�2
d�:
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Then, by the same arguments, we have in the denominator

T�1b�2 = T�2
TX
t=1

fIE(yt � e� (!))g2
! �2

Z 1

0

f0:5 + (! � 0:5)sgn(W (x)� �(!))g2(W (x)� �(!))2dx;

and so we obtain (19).
When the expectile is matched to a given quantile, e�(!) is replaced bye�(�) and �(!) is replaced by �(�). However, this makes no di¤erence to the

general form of the asymptotic distribution.

F Dispersion and absolute values

Assume the quantiles are known. Let nA be the number of observations
greater than or equal to �(1� �); nB the number of observations less than or
equal to �(�) and nC the number of observations less than �(1��) or greater
than �(�):Then

DIQ(�) = (1� �)nA + (1� �)nB � �(nB + nC)� �(nA + nC)

For a symmetric distribution and �(1 � �) � �(0:5) = ��(�) + �(0:5) and
these are equal to the quantile at 1� 2� for jyt � �(0:5)j : Hence

IQ(1� 2�) = (1� 2�)(nA + nB)� 2�nC

which on re-arrangement is seen to be the same as the previous formula.

Acknowledgement We wish Giuliano De Rossi for many discussions
on this and related topics. Earlier versions of the paper were given at Hi-
totsubashi University (Tokyo), Oxford and Cambridge. We are grateful to
Katsuto Tanaka, David Hendry, Steve Satchell, Robert Taylor and others
for helpful comments. Any errors are our responsibility. We acknowledge
�nancial support from the ESRC under the grant Time-Varying Quantiles,
RES-062-23-0129.

36



REFERENCES
Abramowitz, M. and I.A. Stegun (1964). Handbook of Mathematical

Functions. Washington: U.S. Bureau of Commerce.
Andrews. D.F., Tukey, J. W., Bickel, P. J. (1972). Robust estimates of

location. Princeton: Princeton University Press.
Andrews, D.W.K. (1991). Heteroskedasticity and autocorrelation consis-

tent covariance matrix estimation. Econometrica 59, 817-58.
Cavaliere,G., and A.M.R. Taylor (2005). Stationarity tests under time

varying second moments. Econometric Theory, 21, 1112-1129.
De Jong, R.M., Amsler, C. and P. Schmidt (2007). A Robust Version of

the KPSS Test on Indicators, Journal of Econometrics, 137, 311-33.
De Rossi, G. and Harvey, A C (2006a). Time-varying quantiles. Cam-

bridge, Faculty of Economics, CWPE 0649.
De Rossi, G. and Harvey, A C (2006b). Quantiles, expectiles and splines,

mimeo
Doornik, J. A. (1999). Ox: An Object-Oriented Matrix Language. 3rd

edition. Timberlake Consultants Press: London.
Durbin, J. and S.J. Koopman, (2001). Time series analysis by state space

methods. Oxford University Press, Oxford.
Efron, B. (1991). Regression percentiles using asymmetric squared error

loss. Statistica Sinica, 1, 93-125.
Engle, R.F., and Manganelli, S. (2004). CAViaR: Conditional Autore-

gressive Value at Risk by Regression Quantiles, Journal of Business and
Economic Statistics, 22, 367�381.
Harvey A.C., 1989. Forecasting, structural time series models and the

Kalman �lter Cambridge: Cambridge University Press.
Harvey, A.C. and J. Bernstein (2003). Measurement and testing of in-

equality from time series deciles with an application to US wages. Review of
Economics and Statistics, 85, 141-52.
Harvey, A. C., and M. Streibel (1998). Testing for a slowly changing level

with special reference to stochastic volatility. Journal of Econometrics 87,
167-89.
Harvey, A.C., and S.J Koopman (2000). Signal extraction and the formu-

lation of unobserved components models, Econometrics Journal, 3, 84-107.
Harvey, C., and A. Siddique (1999). Autoregressive conditional skewness.

Journal of Financial and Quantitative Analysis, 34, 465-87.
Huber, P.J. (1981). Robust statistics. New York: Wiley.
Koenker, R. (2005). Quantile regression. Cambridge University Press.

37



Koopman, S.J., N. Shephard and J. Doornik (1999). Statistical algo-
rithms for models in state space using SsfPack 2.2. Econometrics Journal,
2, 113-66.
Koopman, S.J., A.C. Harvey, J.A. Doornik and N. Shephard (2006).

STAMP 7.0: Structural Time Series Analyser, Modeller and Predictor, Lon-
don: Timberlake Consultants Ltd.

Kwiatkowski, D., Phillips, P.C.B., Schmidt P. and Y.Shin (1992). Testing
the null hypothesis of stationarity against the alternative of a unit root:
How sure are we that economic time series have a unit root? Journal of
Econometrics 44, 159-78.
Linton, O. and Y.-J.Whang (2007). The quantilogram: with an appli-

cation to evaluating directional predictability. Journal of Econometrics (to
appear).
Newey, WK and J.L. Powell (1987). Asymmetric least squares estimation

and testing, Econometrica, 55, 819-847.
Nyblom, J.(1989). Testing for the constancy of parameters over time.

Journal of the American Statistical Association 84, 223-30.
Nyblom, J., and A.C. Harvey (2000). Tests of common stochastic trends,

Econometric Theory, 16, 176-99.
Nyblom, J., and A.C. Harvey (2001). Testing against smooth stochastic

trends, Journal of Applied Econometrics, 16, 415-29.
Nyblom, J. and T. Mäkeläinen (1983). Comparison of tests for the pres-

ence of random walk coe¢ cients in a simple linear model, Journal of the
American Statistical Association, 78, 856-64.
Park, J.Y. and P.C.B. Phillips (1999). Asymptotics for nonlinear trans-

formations of integrated time series. Econometric Theory, 15, 269-98.
Shephard, N (2005). Stochastic Volatility. Oxford: Oxford University

Press.
Stock, J.H. and M.W.Watson (2007) Why has U.S. in�ation become

harder to forecast? Journal of Monet, Credit and Banking, 39, supplement
F, 3-33.

38



Table 1. Autocorrelations for population quantics and expectics from a Gaussian time series.

ρy 0.50 0.33 0.25 0.10 0.05 0.248(0.33) 0.153(0.25) 0.034(0.10) 0.012(0.05)

0.80 0.59 0.58 0.56 0.50 0.45 0.77 0.74 0.63 0.55

0.50 0.33 0.32 0.30 0.24 0.20 0.47 0.43 0.31 0.23

0.25 0.16 0.15 0.14 0.10 0.07 0.23 0.20 0.12 0.08

-0.25 -0.16 -0.15 -0.13 -0.07 -0.04 -0.22 -0.18 -0.08 -0.04

-0.50 -0.33 -0.29 -0.24 -0.10 -0.05 -0.42 -0.34 -0.14 -0.07

-0.80 -0.59 -0.45 -0.32 -0.11 -0.05 -0.66 -0.52 -0.20 -0.10

τ for quantics ω(τ) for expectics



Table 2. Quantic, Expectic and Box-Ljung Indicator test for GM returns (2000 observations)

τ m=0 m=8 m=17 m=25

Quantic test
0.05 1.823 1.349 1.138 1.025
0.10 1.425 1.115 0.871 0.741
0.25 1.026 0.949 0.823 0.743
0.33 0.799 0.782 0.705 0.648
0.50 2.532 2.667 2.621 2.437
0.67 0.660 0.649 0.601 0.579
0.75 1.544 1.347 1.206 1.142
0.90 1.389 1.088 0.918 0.832
0.95 1.350 1.136 0.983 0.902

Expectic test
0.05 0.116 0.081 0.077 0.077
0.10 0.301 0.209 0.187 0.180
0.25 0.350 0.295 0.251 0.232
0.33 0.203 0.197 0.171 0.160
0.50 0.074 0.090 0.085 0.083
0.67 0.462 0.533 0.501 0.487
0.75 0.715 0.751 0.682 0.649
0.90 0.906 0.811 0.698 0.648
0.95 0.578 0.509 0.440 0.410

Expectic-robust test
0.05 1.047 0.877 0.787 0.769
0.10 1.189 0.968 0.813 0.747
0.25 0.749 0.718 0.604 0.544
0.33 0.394 0.416 0.366 0.337
0.50 0.064 0.075 0.072 0.070
0.67 0.489 0.523 0.490 0.475
0.75 0.819 0.802 0.727 0.690
0.90 1.412 1.262 1.091 1.007
0.95 1.241 1.137 0.997 0.922

Box-Ljung test
0.05 3.547 40.694 54.174 79.925
0.10 1.539 38.747 64.821 92.909
0.25 0.123 7.927 22.389 35.324
0.33 0.045 6.865 17.686 33.029
0.50 0.526 8.776 13.888 24.229
0.67 0.785 10.523 20.706 24.217
0.75 2.116 11.809 19.042 24.523
0.90 4.843 19.019 35.425 39.768
0.95 8.117 16.496 35.239 41.228



Table 3. Percentage rejection frequencies.  Errors N(0,1). The random walk under the alternative is gaussian with innovation standard deviation equal to c/T. T=200. 

τ IQ IE r(1) Q(1-5) IQ IE r(1) Q(1-5) IQ IE r(1) Q(1-5) IQ IE r(1) Q(1-5) IQ IE r(1) Q(1-5) IQ IE r(1) Q(1-5)

0.05 4.9 4.9 7.0 6.3 6.2 8.6 7.3 6.5 11.2 19.0 8.4 8.0 25.8 43.4 12.1 13.8 57.8 78.9 29.9 43.0 77.0 93.4 58.7 77.1

0.15 4.9 4.9 2.9 4.5 7.6 10.6 2.8 4.9 17.2 25.8 3.5 6.2 40.0 54.2 7.8 14.7 76.3 87.2 40.8 62.3 91.4 96.9 82.6 94.0

0.25 5.2 5.1 5.1 5.1 9.4 11.6 5.3 5.0 19.9 28.5 6.0 6.8 45.6 57.8 11.3 17.0 81.3 89.1 55.5 71.3 94.4 97.8 92.7 97.2

0.33 5.1 5.2 4.4 5.0 9.4 12.2 4.4 5.0 21.3 29.9 5.3 6.6 48.1 59.2 11.2 18.8 83.2 89.8 58.7 74.8 95.3 98.1 94.5 98.2

0.50 5.0 5.3 4.5 5.2 9.6 12.6 4.8 5.4 22.3 30.7 5.3 6.5 49.4 60.2 12.8 20.8 84.3 90.5 63.5 78.1 95.9 98.3 96.1 98.7

c=25 c=50c=0 c=2.5 c=5 c=10



Table 4. Percentage rejection frequencies. Errors t(3). The random walk under the alternative is gaussian with innovation standard deviation equal to c/T. T=200

τ IQ IE r(1) Q(1-5) IQ IE r(1) Q(1-5) IQ IE r(1) Q(1-5) IQ IE r(1) Q(1-5) IQ IE r(1) Q(1-5) IQ IE r(1) Q(1-5)

0.05 4.6 3.9 6.7 5.6 4.8 4.4 6.8 5.6 5.9 6.1 7.0 5.9 9.6 12.2 7.5 7.0 28.9 38.0 12.7 15.4 53.8 65.3 30.3 42.5

0.15 5.0 4.3 2.4 4.2 6.5 5.8 2.5 4.6 11.2 10.3 2.7 4.9 25.6 25.1 4.4 8.2 60.9 60.0 22.6 37.7 83.5 84.3 62.1 79.5

0.25 4.9 4.5 5.5 4.9 7.4 6.7 5.4 4.9 15.0 13.2 5.6 5.3 36.6 31.8 8.6 10.8 72.5 68.9 39.8 55.4 90.3 89.6 82.2 91.4

0.33 5.3 4.6 4.4 5.3 8.5 7.4 4.3 5.5 17.8 15.1 4.5 5.9 41.3 35.6 8.7 14.4 77.2 73.0 45.6 63.0 92.5 91.6 86.9 94.8

0.50 5.0 4.7 4.6 5.2 9.5 7.8 4.6 5.2 20.5 16.2 5.2 6.1 45.0 38.4 10.1 16.4 80.2 75.3 52.2 68.4 93.9 92.8 90.8 96.5

c=25 c=50c=0 c=2.5 c=5 c=10



Table 5. Percentage rejection frequencies. Errors Cauchy. The random walk under the alternative is gaussian with innovation standard deviation equal to c/T. T=200

τ IQ IE r(1) Q(1-5) IQ IE r(1) Q(1-5) IQ IE r(1) Q(1-5) IQ IE r(1) Q(1-5) IQ IE r(1) Q(1-5) IQ IE r(1) Q(1-5)

0.05 4.5 2.0 6.7 6.1 4.6 2.0 6.5 6.0 4.5 2.0 6.5 6.0 4.7 2.1 6.5 6.0 6.0 2.6 6.8 6.3 9.6 4.1 7.7 7.6

0.15 5.1 2.3 2.6 4.7 5.3 2.3 2.6 4.8 6.2 2.4 2.7 4.9 9.8 2.7 2.8 5.3 27.7 4.6 5.5 9.9 53.8 10.1 20.0 32.4

0.25 5.2 2.4 5.5 5.1 6.2 2.5 5.7 5.4 9.5 2.6 5.6 5.4 21.0 3.1 6.1 6.6 53.1 6.5 17.5 27.0 77.6 14.6 52.5 67.0

0.33 5.2 2.5 4.5 5.2 7.0 2.6 4.5 5.2 12.8 2.8 4.7 5.6 29.6 3.5 6.2 8.7 64.5 7.8 25.8 40.0 84.9 17.3 65.7 81.1

0.50 5.2 2.7 4.7 5.3 8.2 2.8 4.8 5.8 16.8 3.1 4.9 6.2 38.1 4.0 7.3 11.3 72.7 9.2 35.6 52.6 89.4 19.4 76.3 89.4

c=25 c=50c=0 c=2.5 c=5 c=10



Table 6. T=200. The d.g.p. is Gaussian random walk plus AR(1) with φ=0.5. Disturbances driving the AR(1)are either N(0,1) or (scaled) Cauchy; q is the standard deviation of the AR(1) innovations.

τ IQ IE IQ IE IQ IE IQ IE IQ IE IQ IE IQ IE IQ IE IQ IE IQ IE IQ IE IQ IE

0.05 5.4 4.5 7.3 3.8 7.1 7.2 7.9 4.5 9.2 9.9 8.6 5.0 32.6 34.7 17.5 11.5 55.7 61.5 34.1 27.4 56.6 65.4 46.0 45.4

0.15 6.8 6.8 8.8 6.2 10.6 11.5 18.4 9.0 14.6 16.3 24.1 11.2 48.0 51.5 52.5 27.3 73.9 77.4 68.7 50.1 76.9 82.0 73.7 68.1

0.25 7.6 7.9 9.5 7.2 12.3 13.8 32.0 12.2 17.0 19.4 41.7 15.3 52.3 56.9 69.3 36.6 79.8 83.1 80.1 61.7 84.9 88.6 83.3 78.4

0.33 7.7 8.3 9.7 7.5 13.3 14.7 40.2 13.6 18.3 20.8 50.7 17.6 55.0 58.8 75.6 41.3 82.1 85.2 83.8 67.2 86.5 90.3 85.9 81.9

0.50 7.8 8.7 10.1 7.9 13.5 15.6 47.6 15.0 19.0 21.8 57.5 19.6 56.1 61.0 79.3 45.3 83.6 86.7 86.0 71.2 88.1 91.4 87.4 84.5

q=.1^.5 q=1q=0 q=.0005^.5 q=.001^.5 q=.01^.5

Normal Cauchy Normal Cauchy Normal Cauchy Normal Cauchy Normal Cauchy Normal Cauchy



Table 7. T=200. The d.g.p. is Gaussian random walk plus MA(1) with θ=-0.8. Disturbances driving the MA(1)are either N(0,1) or (scaled) Cauchy; q is the standard deviation of the MA(1) innovations.

τ IQ IE IQ IE IQ IE IQ IE IQ IE IQ IE IQ IE IQ IE IQ IE IQ IE IQ IE IQ IE

0.05 4.2 3.6 4.7 1.7 7.4 7.1 5.5 2.3 10.6 10.7 6.6 3.0 40.2 43.1 21.3 10.1 65.6 69.2 45.0 22.8 62.0 69.5 51.7 40.2

0.15 4.1 3.2 4.2 0.8 11.7 14.8 27.6 6.3 18.4 24.0 39.8 9.9 59.4 66.2 69.6 28.2 81.4 85.2 75.7 49.4 80.0 84.2 75.9 67.5

0.25 3.3 1.7 3.8 0.2 14.6 22.7 55.3 12.3 24.1 35.9 65.4 18.3 66.2 76.6 82.5 44.2 86.0 89.2 84.9 66.8 86.3 89.5 84.9 80.1

0.33 2.7 0.5 2.7 0.1 16.3 30.0 66.1 16.7 27.2 44.8 74.3 24.5 69.7 81.3 85.9 54.4 87.1 90.8 86.8 75.3 88.0 90.9 86.8 84.8

0.50 1.8 0.0 2.0 0.0 18.4 39.1 74.0 21.3 30.6 54.4 80.1 31.6 72.1 85.2 87.6 62.9 88.2 91.5 88.4 80.8 89.0 92.1 88.2 88.2

Normal Cauchy Normal CauchyNormal Cauchy Normal CauchyNormal Cauchy Normal Cauchy

q=.1^.5 q=1q=0 q=.0005^.5 q=.001^.5 q=.01^.5



q: 0 0.005 0.01 0.02 0.03 0.05

Quantic test
τ: 0.05 4.64 9.39 21.71 48.02 65.08 82.76

0.15 5.13 8.34 18.60 42.56 60.66 81.03
0.25 4.94 6.58 12.52 30.74 46.98 68.93
0.33 5.09 5.67 8.37 19.15 31.59 52.70
0.50 5.08 5.09 5.11 5.18 5.24 5.74

Expectic test :
τ: 0.05 4.69 9.19 21.65 47.26 63.34 80.08

0.15 4.67 9.26 21.27 47.20 63.90 81.81
0.25 4.57 7.43 14.91 36.16 52.43 72.21
0.33 4.60 6.08 9.93 23.05 36.74 55.76
0.50 4.82 4.85 4.87 5.00 5.01 4.89

Quantic dispersion test (DQ)
τ: 0.05 5.02 14.60 35.65 65.31 79.99 92.64

0.15 5.07 13.87 33.15 63.29 79.16 92.58
0.25 5.01 10.91 25.75 54.33 71.74 88.51
0.33 5.08 8.77 19.08 43.17 61.82 81.69

Expectic dispersion test (DE)
τ: 0.05 4.97 15.59 36.83 66.69 80.86 92.25

0.15 4.98 19.20 43.94 73.45 86.36 96.01
0.25 5.13 19.29 44.43 74.01 87.23 96.31
0.33 5.02 19.23 43.96 73.63 86.88 96.12

Dispersion test (IQ absolute deviations from median)
τ: 0.05 4.94 14.58 35.43 64.94 80.10 92.56

0.15 5.14 13.96 33.02 63.28 79.54 92.52
0.25 4.79 10.64 25.65 54.43 71.50 88.53
0.33 5.26 8.92 19.22 43.38 61.44 81.71

Dispersion test (IE absolute deviations from mean)
τ: 0.05 5.04 17.12 39.75 69.93 83.41 94.07

0.15 5.01 19.62 44.79 74.29 87.21 96.39
0.25 4.85 17.08 40.06 70.22 84.69 95.22
0.33 4.77 13.73 32.71 63.08 79.06 92.32

Table 8. Percentage rejections against Stochastic Volatility data generating process 
with Gaussian innovations. Sample size T=1000.



q: 0 0.005 0.01 0.02 0.03 0.05

Quantic test
τ: 0.05 4.92 9.86 23.86 51.22 68.11 83.84

0.15 4.65 11.29 28.94 58.01 73.89 88.82
0.25 4.33 8.98 21.87 48.75 66.21 83.58
0.33 4.99 7.15 14.31 35.10 51.92 72.73
0.50 5.01 5.03 5.03 5.21 5.52 6.87

Expectic test :
τ: 0.05 4.19 6.73 13.43 32.44 47.73 66.90

0.15 4.33 7.87 17.63 40.15 57.07 74.65
0.25 4.43 6.91 14.00 33.48 49.09 66.37
0.33 4.54 6.04 9.67 21.95 32.68 43.89
0.50 4.94 4.87 4.93 4.59 4.15 3.59

Quantic dispersion test (DQ)
τ: 0.05 4.66 16.30 38.01 67.90 82.47 93.41

0.15 5.05 20.57 46.71 75.84 88.05 96.53
0.25 4.89 18.24 42.09 72.62 85.91 95.56
0.33 5.07 14.16 34.75 64.87 80.29 92.92

Expectic dispersion test (DE)
τ: 0.05 4.50 9.86 23.46 49.18 65.72 82.64

0.15 4.22 15.67 37.36 66.49 81.33 92.82
0.25 4.46 18.96 42.58 72.15 85.28 94.98
0.33 4.48 20.09 44.53 74.39 86.79 95.74

Dispersion test (IQ absolute deviations from median)
τ: 0.05 4.55 16.37 38.16 68.26 82.52 93.40

0.15 4.84 20.81 46.74 75.94 88.11 96.52
0.25 5.01 18.22 42.16 72.71 85.81 95.49
0.33 4.90 14.56 34.95 64.71 80.40 92.78

Dispersion test (IE absolute deviations from mean)
τ: 0.05 4.39 11.56 28.74 56.04 72.25 87.51

0.15 4.44 19.77 44.19 74.12 86.63 95.76
0.25 4.81 22.02 48.27 78.02 89.06 96.90
0.33 4.75 20.60 45.45 75.45 87.81 96.24

Table 9. Percentage rejections against Stochastic Volatility data generating process 
with t(3) innovations. Sample size T=1000.



Table 10a. Percentage rejections of the quantic test of relative invariance (T=500, m=6)

IQ TEST σκ: 0 0.025 0.05 0.1 0.25
SMOOTHED RESIDUALS
ση=0 τ=.05 4.8 26.9 52.9 74.1 86.4

τ=.25 4.9 15.8 37.0 64.5 87.6
ση=.1 τ=.05 2.9 25.1 51.9 74.3 86.5

τ=.25 0.6 10.1 34.0 62.5 79.6
ση=1 τ=.05 4.1 17.6 38.8 61.8 76.1

τ=.25 2.4 10.1 27.1 49.8 67.4
FILTERED RESIDUALS
ση=0 τ=.05 4.8 26.6 52.2 73.7 86.2

τ=.25 4.9 15.7 37.3 64.5 87.4
ση=.1 τ=.05 4.8 25.3 50.5 72.4 84.4

τ=.25 4.8 14.8 34.4 59.5 77.1
ση=1 τ=.05 4.7 12.9 29.6 51.0 69.0

τ=.25 4.9 8.8 18.8 36.5 57.3

Table 10b. Percentage rejections of the expectic test of relative invariance (T=500, m=6)

IE TEST σκ: 0 0.025 0.05 0.1 0.25
SMOOTHED RESIDUALS
ση=0 τ=.05 4.4 25.4 49.1 67.0 74.8

τ=.25 4.7 18.4 40.4 62.9 58.4
ση=.1 τ=.05 2.4 23.8 48.8 67.6 76.5

τ=.25 0.0 11.1 38.8 64.2 69.3
ση=1 τ=.05 3.9 17.0 37.8 59.1 71.2

τ=.25 0.8 14.3 38.9 63.3 75.7
FILTERED RESIDUALS
ση=0 τ=.05 4.5 24.7 48.3 66.4 74.5

τ=.25 4.8 18.2 39.9 62.6 58.5
ση=.1 τ=.05 4.6 23.8 47.2 66.0 74.6

τ=.25 5.0 17.4 38.2 60.6 64.4
ση=1 τ=.05 4.6 12.8 28.5 48.8 63.8

τ=.25 4.9 10.0 22.8 42.3 61.1


