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1 Introduction

Since the pioneering work of Engel and Granger (1987) and Johansen (1988, 1995), the lit-
erature on cointegration grew at a rapid pace. Even though this topic has been covered
extensively in time series, the analysis of cointegration in panel data is in early stages of
development. The two main approaches to the analysis of cointegration in panels are the
residual-based and the system-based approaches. Regarding the residual-based approxima-
tion, we can �nd in the econometric literature proposals that specify either the null hypothesis
of no cointegration �see Pedroni (1995, 1999, 2004) and Kao (1999), among others �or the
null hypothesis of cointegration �see McCoskey and Kao (1998) and Westerlund (2005). The
system-based approach has relied on the panel extension of Johansen�s methodology. Thus,
based on the vector autoregressive model (VAR) framework, Larsson, Lyhagen and Löthgren
(2001) propose the panel Johansen�s test analog to determine the rank of the cointegrating
space.
The proposals mentioned above de�ne the so-called �rst generation of panel cointegration

tests, in which the time series (individuals) that de�ne the panel data set are assumed to
be cross-section independent. Unfortunately, this assumption is crucial for the limiting
distributions that are obtained in these papers and, in most cases, it is not satis�ed from
an empirical point of view. Violation of the cross-section independence assumption implies
that Central Limit Theorems (CLT) cannot be applied and, hence, the panel data based
statistics do not converge to the standard normal distribution. Provided that in most cases
the economic time series of di¤erent sectors, cities, regions or countries are closely related,
the use of these panel data statistics to analyse the presence of cointegration can lead to
misleading conclusions. The challenge to overcome this limitation has given rise to the
so-called second generation of panel cointegration tests.
Proposals that consider the presence of cross-section dependence among the time se-

ries that de�ne the panel data set include Bai and Carrion-i-Silvestre (2005), Banerjee and
Carrion-i-Silvestre (2006), and Gengenbach, Palm and Urbain (2006) for the single equation
framework, and Groen and Kleinberger (2003) and Breitung (2005) for the vector error cor-
rection (VECM) framework. For a more detailed literature review on panel cointegration
see Breitung and Pesaran (2007).
The aim of this paper is to solve some limitations of the existing literature on panel

cointegration analysis. To this end, we propose a test statistic to determine the cointegrating
rank in a panel system of equations allowing for the presence of cross-section dependence
across the systems of variables in the panel set-up. We deal with cross-section dependence
by means of approximate common factor models as proposed in Bai and Ng (2004), Bai and
Carrion-i-Silvestre (2005), Banerjee and Carrion-i-Silvestre (2006), and Gengenbach, Palm
and Urbain (2006), among others. The novelty of our approach is that it takes into account
the possibility that there might be more than one cointegrating relationship among the
variables that de�ne the system for each individual, at the time that controls for the presence
of cross-section dependence among the di¤erent systems in a parsimonious way through the
use of common factors. To the best of our knowledge, this has not been addressed in the
literature.
Our proposal relates to other test statistics that are available in the literature to determine

the number of stochastic trends in individual systems. Thus, the statistic determines the
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number of stochastic trends using the principal component approximation as in Stock and
Watson (1988) and Bai and Ng (2004). Other statistics that base on the degeneration of
the moment matrix that involves the time series in the system are the ones in Phillips and
Ouliaris (1990), Shintani (2001), Harris and Poskitt (2004) and Cai and Shintani (2006).
However, none of these approaches considers the case where the variables in the model are
a¤ected by global stochastic trends, which in our set-up are captured by the common factors.
In order to investigate the small-sample properties of the panel cointegration rank test

that we propose, we conduct a Monte Carlo simulation. We estimate two di¤erent models
depending on the form of the deterministic component. One model where the deterministic
term consists of only the constant and another where the deterministic term consists of the
constant and the linear trend. The results of the simulation study indicate that, in general,
panel data statistic performs better than the univariate one.
The remainder of the paper is organized as follows. Section 2 presents the model, assump-

tions and the test statistic that is used to determine the cointegrating rank. In addition,
we discuss the way in which the individual statistics can be combined to specify a panel
data cointegrating rank statistic. Section 4 analyses the �nite sample of our approach, both
in an individual-by-individual framework and in a panel set-up, by means of Monte Carlo
simulation. Finally, some concluding remarks are presented in Section 5. The Appendix
collects all the proofs.

2 Model and assumptions

Let Yi;t be a (k � 1) vector of stochastic process with the data generating process (DGP)
de�ned as:

Yi;t = Di;t + ui;t (1)

ui;t = �iFt + ei;t (2)

(I � L)Ft = C (L)wt (3)

(I � L) ei;t = Gi (L) "i;t; (4)

where Di;t denotes the deterministic component, which in this paper can be either Di;t = �i
�henceforth, this speci�cation is denoted as the only constant case �or Di;t = �i + �it �
hereafter, the linear time trend case �t = 1; : : : ; T and i = 1; : : : ; N . Note that the case of
non-deterministic components Di;t = 0 is also covered in our framework as a particular case
of the only constant case. The component Ft denotes a (q � 1) vector of common factors
and �i is a (k � q) matrix of factor loadings. Finally, ei;t is a (k � 1) vector that collects
the idiosyncratic stochastic component. It is worth mentioning that the presentation of the
model is done in a general way, so that the case where there are no common factors at all,
i.e. �i = 0 8i, can be embeded in our framework �further speci�c comments on this concern
are given below. Let M < 1 be a generic positive number, not depending on T and N .
Throught the paper, we use kAk to denote the Euclidean norm tr (A0A)1=2 of matrix A. The
stochastic processes that participate on the de�nition of the DGP are assumed to satisfy the
following assumptions:
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Assumption A: (i) for non-random �i, k�ik � M ; for random �i, E k�ik4 � M , (ii)
1
N

PN
i=1 �

0
i�i

p! ��, a (q � q) positive de�nite matrix.
Assumption B: (i) wt � iid (0;�w), E kwtk4 �M , and (ii) V ar (�Ft) =

P1
j=0Cj�wC

0
j >

0, (iii)
P1

j=0 j kCjk < M ; and (iv) C (1) has rank q1, 0 � q1 � q.
Assumption C: (i) for each i, "i;t � iid (0;�"i), E k"i;tk

4 � M , (ii) V ar (�"i;t) =P1
j=0Gi;j�"iG

0
i;j > 0, (iii)

P1
j=0 j kGi;jk < M ; and (iv) G (1) has rank r.

Assumption D: The errors "i;t, wt, and the loadings �i are three mutually independent
groups.
Assumption E: E kF0k �M , and for every i = 1; : : : ; N , E kei;0k �M .

The de�nition of the (k � q) loading matrix �i is given by

�i =

�
�i;1;1 �i;1;2
�i;2;1 �i;2;2

�
so that we can impose restrictions on how the factors a¤ect the elements of Yi;t in (1). Thus,
some of the factors can only a¤ect one subset of the variables, say, the series that de�nes
the cointegrating space, but not the other variables, and the other way round. Therefore,
situations where �i;1;2 = 0 and/or �i;2;1 = 0 are covered in this set-up. Note that it is possible
that both �i;1;2 6= 0 and �i;2;1 6= 0, which is the general situation that is assumed henceforth.
The unobservable common factors are estimated using the principal component approach

suggested in Bai and Ng (2002, 2004). Let us consider the general deterministic component
given by Di;t = �i + �it. Taking the �rst di¤erence of the model we have

�Yi;t = �i + �i�Ft +�ei;t: (5)

We can de�ne the idempotent matrix M = IT�1 � � (�0�)�1 �0, with � a (T � 1)� 1 vector of
ones. Then,

M�Yi = M�F�0i +M�ei:

yi = f�0i + zi:

Note that when the deterministic component is Di;t = �i, taking �rst di¤erences removes
the constant term, so that in this case we can de�neM = IT�1 and the rest of our discussion
applies without sole modi�cation. The common factors are extracted as the q eigenvectors
corresponding to the q largest eigenvalues of the (T � 1) � (T � 1) matrix yy0, where y =
[y1; : : : ; yN ] is a (T � 1) � Nk matrix that is de�ned using the (T � 1) � k matrices yi,

i = 1; : : : ; N . The matrix of estimated weights, �̂ =
�
�̂1; : : : ; �̂N

�
, is given by �̂ = y0f̂ .

We can obtain an estimate of zi from ẑi = yi � f̂ �̂
0
i, as in Bai and Ng (2004). Note that

we can recover the common factors as F̂t =
Pt

j=2 f̂j and the idiosyncratic component as
êi;t =

Pt
j=2 ẑi;j. The determination of the cointegrating rank can be devised using êi;t in the

usual VECM representation.
The model given by (1) and (2) can be written as

Yi;t = Di;t + �iFt + ei;t: (6)
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Note that if we assume the simplest VAR model for the idiosyncratic disturbance term, we
have

ei;t = Biei;t�1 + "i;t;

and de�ning Bi � Ip = �i = �i�
0
i, we get ei;t = [Ip � (Ip + �i�

0
i)L]

�1
"i;t, which substituted

in (6), for Di;t = �i + �it, gives

Yi;t = Di;t + �iFt + [Ip � (Ip + �i�
0
i)L]

�1
"i;t

�Yi;t = [Ip � (Ip + �i�
0
i)L]Di;t + [Ip � (Ip + �i�

0
i)L]�iFt + "i;t

= [��i�0i�i + (Ip + �i�
0
i) �i]� �i�

0
i�it+ �i�

0
iYi;t�1

+�i�Ft � �i�
0
i�iFt�1 + "i;t:

The model can be expressed as:

�(Yi;t �Di;t � �iFt) = �i�
0
i (Yi;t�1 �Di;t�1 � �iFt�1) + "i;t

�ei;t = �i�
0
iei;t�1 + "i;t: (7)

We can see that the cointegrating rank can be obtained from the analysis of the idio-
syncratic stochastic component. Instead of using the Johansen LR statistic as in Larsson,
Lyhagen and Löthgren (2001), in this paper we propose to determine the rank with a test sta-
tistic that is based on the multivariate version of the square of the modi�ed Sargan-Bhargava
(MSB) statistic proposed in Stock (1999).
The de�nition of the testing procedure builds upon the di¤erent rates of convergence of

the elements on the Qêiêi matrix under the null hypothesis. Without loss of generality, let us
assume that the rank of the cointegrating space is 0 < r < k. We can de�ne the orthogonal
matrix A = [A1 : A2] with A1 a (k � r) matrix and A2 a (k �m) matrix, m = k � r, such
that the �rst r elements of the rotated vector eAi;t = A0ei;t =

�
(A01ei;t)

0 ; (A02ei;t)
0�0 are I(0) and

the other m elements are I(1). Accordingly, we de�ne the partition of the long-run variance
matrix as


�eAi �eAi =

�

11;i 
12;i

21;i 
22;i

�
:

Furthermore, note that �
�
T�1Qêiêi
̂

�1
�êi�êi

�
= �

�
T�1QêAi êAi 
̂

�1
�êAi �ê

A
i

�
= �

�
T�1
̂

�1=2
�êAi �ê

A
i
QêAi êAi 
̂

�1=2
�êAi �ê

A
i

�
,

where � (�) denotes the eigenvalues of the matrix between parenthesis. The determination
of the number of stochastic trends in the system relies on the following sequential testing
procedure:

1. First, assume that the cointegrating rank is zero, i.e. set m = k.

2. Specify the null hypothesis that there are l = m common stochastic trends (H0 : l = m)
against the alternative hypothesis that there are l < m common stochastic trends
(H1 : l < m).

3. Estimate A2 as the m eigenvectors that corresponds with the m largest eigenvalues of
T�1Qêiêi.
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4. De�ne the univariate MSB statistic as

MSBj;i (m) = �min
�
T�1Q

ê
A2
i ê

A2
i

̂�1
�ê

A2
i �ê

A2
i

�
= �min

�
T�1
̂

�1=2
�ê

A2
i �ê

A2
i

Q
ê
A2
i ê

A2
i

̂
�1=2
�ê

A2
i �ê

A2
i

�
= �̂1; (8)

where the subscript j = f�; �g refers to the deterministic component that is used in
the model �� for the Di;t = �i deterministic speci�cation and � for the Di;t = �i+ �it

one �being �1 < � � � < �m the eigenvalues of T�1QêA2i ê
A2
i

̂�1
�ê

A2
i �ê

A2
i

sorted in ascending

order, and �min (�) denoting the minimum eigenvalue operator.

5. Compare the value of the MSBj;i (m) statistic with the corresponding critical values
from the left tail of the distribution �i.e. the null hypothesis is rejected if MSBj;i (m)
is smaller than the critical value.

6. If the null hypothesis of H0 : l = m common stochastic trends is rejected, specify
l = m� 1 and return to step 2. The process continues till either the null hypothesis is
not rejected or when l = 0 is achieved.

The estimation of 

�e

A2
i �e

A2
i
can be obtained in a parametric way from the estimation of

the VECM model speci�cation. Expressed in matrix notation, we have

�eA2i = eA2i;�1�i +�e
A2
i �i;pi (L) + "i

�eA2i (I � �i;pi (L)) = eA2i;�1�i + "i

�eA2i = eA2i;�1�i (I � �i;pi (L))
�1 + "i (I � �i;pi (L))

�1 ;

where pi denotes the number of lags of �e
A2
i;i that are considered. Following Ng and Perron

(2001), we de�ne 
̂V AR
�ê

A2
i �ê

A2
i

=

��
I � �̂i;pi (1)

��1�0
T�1"̂0i"̂i

�
I � �̂i;pi (1)

��1
, where the lag

order of the model pi is estimated using the modi�ed information criterion in Qu and Perron
(2006) assuming that the cointegrating rank is zero �note that under the null hypothesis we
assume that there are m stochastic trends in the system de�ned by the m variables of eA2i;t .
The limiting distribution of the MSBj;i (m) statistic, j = f�; �g, is established in the

following Theorem.

Theorem 1 Let Yi;t, i = 1; : : : ; N , t = 1; : : : ; T , be a (k � 1) vector of stochastic processes
with the DGP given by (1) to (4). Under the null hypothesis that there are m = k�r common
stochastic trends, with pi ! 1 and p3i =T ! 0 as T ! 1, the MSB statistic given in (8)
converges to:

(a) For the only constant model: MSB�;i (m)) �min
�R 1

0
Wi (s)Wi (s)

0 ds
�

(a) For the linear trend model: MSB�;i (m)) �min
�R 1

0
Vi (s)Vi (s)

0 ds
�
;
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where ) denotes weak convergence, Wi (s) is an (m� 1) vector of independent standard
Brownian motions, and Vi (s) =Wi (s)�sWi (1) is an (m� 1) vector of independent Brown-
ian bridges.

The proof of Theorem 1 is given in the Appendix. It has to be stressed that our framework
treats as a special case the situation in which the time series are assumed to be cross-
section independent. Thus, note that if we impose �i = 0 8i, then equation (6) is given by
Yi;t = Di;t+ei;t. The estimation of the parameters of the deterministic component can be done
specifying the model in �rst di¤erences so that yi = zi, where yi =M�Yi and zi =M�ei �as
before,M = IT�1 for the constant andM = IT�1�� (�0�)�1 �0 for the time trend deterministic
speci�cations. Then, de�ning êi;t =

Pt
j=2 yi;j the computation of the MSB statistic proceeds

as above, giving rise to test statistics with the same limiting distribution as the ones reported
in Theorem 1. The critical values for the MSBj (m) statistic, j = f�; �g, are reported in
Table 1 for di¤erent sample sizes. These �nite sample critical values are computed using the
autoregressive spectral density estimator 
̂V AR

�ê
A2
i �ê

A2
i

, where the lag order of the model pi is

estimated using the modi�ed information criterion in Qu and Perron (2006) assuming that
the cointegrating rank is zero. Following Ng and Perron (2001) and Qu and Perron (2006),

we have speci�ed the upper bound for pi as int
�
12 (T=100)1=4

�
.

We need to give further details on the way in which the maximum lag order is speci�ed...
to be speci�c, we need to inform about:

� The maximum number of lags that were used to obtain the critical values for the
di¤erent T :

1. Do we used the rule pi;max = int
h
12 (T=100)1=4

i
? If so, in which cases?

� We need to report "asymptotic critical values" which can be computed assuming that
the disturbance terms are iid and using T = 1000

� We can report the estimated response surfaces to approximate the p-values, or mention
that they are available upon request

The MSB statistic that is presented in the paper is consistent under the alternative
hypothesis that there are less common stochastic trends than the ones speci�ed under the
null hypothesis. The following Theorem presents the rate at which the MSB statistic diverges
under the alternative hypothesis.

Theorem 2 Let Yi;t, i = 1; : : : ; N , t = 1; : : : ; T , be a (k � 1) vector of stochastic processes
with the DGP given by (1) to (4). Under the alternative hypothesis that there are l < m
common stochastic trends we have that MSBj;i (m) = Op (T

�1), j = f�; �g.

The proof is given in the Appendix. The result in Theorem 2 shows that the MSB statistic
diverges under the alternative hypothesis at a faster rate than the cointegrating rank test
statistics proposed, for instance, in Phillips and Ouliaris (1990), Shintani (2001), and Cai
and Shintani (2006). Note that this faster rate of convergence derives from the use of the
autoregressive spectral density estimator 
̂V AR

�êAi �ê
A
i
.
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3 Panel data cointegrating rank tests

The individual MSB statistics can be pooled to de�ne panel data statistics, which are ex-
pected to increase the performance of the statistical inference when estimating the cointe-
grating rank. In this section we de�ne up to four di¤erent panel data statistics depending
on the way in which the individual information is combined. The performance of these four
alternatives is analyzed by simulation in the next section.
The �rst panel data MSB (PMSB) statistic is based on the standardized mean of the

individual statistics

PMSBZ
j (m) =

p
N(MSBj (m)� E(MSBj (m)))p

V ar(MSBj (m))
; (9)

where MSBj (m) = N�1PN
i=1MSBj;i (m), and E(MSBj (m)) and V ar(MSBj (m)) are

the mean and the variance of the MSBj (m) statistic computed from (8). The limiting
distribution of the PMSB statistic is given in the following Theorem.

Theorem 3 Let Yi;t, i = 1; : : : ; N , t = 1; : : : ; T , be a (k � 1) vector of stochastic processes
with the DGP given by (1) to (4). Under the null hypothesis that there are m = k�r common
stochastic trends, with pi ! 1 and p3i =T ! 0 as T ! 1, the PMSB statistic given in (9)
converges to:

PMSBZ
j (m)) N(0; 1):

As in Pedroni (2004), in order to prove Theorem 3 we require only the assumption of
�nite second moments of the random variables characterized as Brownian motion functionals
� �

�
�min

�R 1
0
Wi (s)Wi (s)

0 ds
�
, �min

�R 1
0
Vi (s)Vi (s)

0 ds
��0
, which will allow us to apply

the Lindberg-Levy Central Limit Theorem as N ! 1. The mean and the variance of the
MSBj (m) statistic, j = f�; �g, that have been computed by simulation are presented in
Table 2.
It is possible to de�ne panel data statistics based on the combination of the individual p-

values. Maddala and Wu (1999) de�nes the panel data Fisher-type statistic PMSBF
j (m) =

�2
PN

i=1 ln'i � �22N , where 'i denotes the p-value of the MSBj;i (m) statistic, j = f�; �g.
Although the PMSBF

j (m) statistic is valid for �nite N , Choi (2001) suggests to compute
the following tests when N !1:

PMSBC1
j (m) =

�2
PN

i=1 ln'i � 2Np
4N

) N (0; 1)

PMSBC2
j (m) =

1p
N

NX
i=1

��1 ('i)) N (0; 1) ;

where � (�) denotes the standard cumulative distribution function.

4 Monte Carlo simulation

We now analyze the small sample performance of the MSB panel cointegration rank test for
the two deterministic speci�cations that are considered in this paper. The DGP that is used
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in this section is based on the ones in Toda (1995) and Saikkonen and Lütkepohl (2000) and
has the following form:

Yi;t = Di;t + �iFt + ei;t (10)�
e1;i;t
e2;i;t

�
=

�
 i 0
0 Ik�r

��
e1;i;t�1
e2;i;t�1

�
+

�
"1;i;t
"2;i;t

�
(11)

Fj = �Fj�1 + �Fwt (12)

"i;t = iid N

�
0;

�
Ir �i
�i Ik�r

��
; (13)

where i = 1; : : : ; N , t = 1; : : : ; T and j = 1; : : : ; q. Note that when there is no cointegration
among any of the time series (r = 0) equation (11) reduces to ei;t = ei;t�1 + "i;t with "i;t =
iid N (0; Ik). Besides, when all time series are stationary (r = k) equation (11) reduces to
ei;t =  iei;t�1 + "i;t.
The parameter sets are de�ned as follows. We consider a system de�ned by k = 3

variables. For the deterministic component, we have considered Di;t = �i + �it, with �i �
U [�1; 1] and �i � U [�0:5; 0:5], where U denotes the uniform distribution. The idiosyncratic
cointegrating rank is investigated using  i = aIr with a = f0:5; 0:8; 0:9; 1g. Furthermore, we
de�ne �i = b1r�(k�r) where 1r�(k�r) denotes a r�(k � r) matrix of ones, and b = f0; 0:4; 0:8g.
Note that �i controls the correlation among the "i;t disturbance terms. As for the common
factor component, we specify �i � N (1; 1), � = f0:9; 0:95; 1g, �2F = f0:5; 1; 10g and wt �
N (0; 1), j = 1; : : : ; q, with q = f1; 3g common factors. The number of common factors is
estimated using the panel Bayesian information criterion (BIC) in Bai and Ng (2002) using
qmax = 6 as the maximum number of common factors.
The simulations are performed in GAUSS using the COINT 2.0 library. The empirical size

and power of the statistics are obtained using 1000 replications with the level of signi�cance
set at the 5% level for all di¤erent combinations of individuals N = f1; 20; 40g and number
of time series observations T = f50; 100; 200g. For conciseness, we report only the results
for N = 1 and for N = 20. The results for N = 40 are very similar to those for N = 20 and
they are available upon request. The simulations have used either the critical values or the
mean and the variance in Tables 1 and 2.

4.1 Unit-by-unit analysis

In this section we investigate the performance of the statistic when N = 1, provided that
this is the �rst time that the multivariate MSB statistic is used to estimate the number of
common idiosyncratic stochastic trends.
Tables 3 to 6 present the results for the only constant and the time trend cases. First,

we can see that the results do not depend on the stochastic properties of the common factor,
provided that the performance of the MSB statistics is similar regardless of whether the
common factor is I(0) or I(1), and regardless of the magnitude of the disturbance variance
that participates in the generation of the common factors (�2F ). As for the estimation of
the common factors, the procedure always detects the true number of common factors. The
performance of the MSB statistic depends on how close is the autoregressive parameter a
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to one. Thus, for a = 0:5 (Tables 3 and 5) we can see that the statistical procedure that
has been proposed in this paper selects the correct number of stochastic trends in most
of cases, especially for T > 50. As expected, the behaviour of the procedure worsens for
a = 0:8 (Tables 4 and 6), although it tends to select the correct number of stochastic trends
as T increases. It is worth mentioning that these conclusions are reached regardless of the
deterministic component that is used.

4.2 Panel data analysis

The multivariate results for both the only constant and the time trend cases whenN = 20 are
presented in Tables 7 to A.2. The de�nition of the MSB panel data statistic helps to increase
the ability of the statistical inference to select the correct number of stochastic trends. This
improvement is noticeable for the smaller sample size that we have considered, where the use
of the panel data based statistic reduces the tendency shown by the individual MSB statistic
to overestimate the number of common stochastic trends. Thus, if we compare the results
in Tables 4 and A.2 we can see that the number of stochastic trends that is selected using
the individual MSB test tends to be greater than the true one, whereas this overestimation
feature is not so marked when using the panel data statistic. Examination of Tables 6 and
A.2 reveals a similar pattern for the case of linear trend.
The performance of the statistic improves as the sample size increases. The power of the

panel statistic is one or almost one, especially for T > 50. Another conclusion that arises
from the examination of the results is that the statistic is slightly undersized regardless of
the deterministic speci�cation. As in the univariate case, the procedure always detects the
correct number of common factors. Another similarity with the individual test statistic is
that the multivariate statistic does not depend on the stochastic properties of the common
factor and the magnitude of the disturbance variance that participates in the generation of
the common factors.

5 Conclusion

In this paper we propose a new test statistic to estimate the cointegrating rank both in a unit-
by-unit analysis and in a panel data framework. Our proposal covers the case of cross-section
dependence, which is a relevant situation from both theoretical and empirical point of views.
The set-up that is considered in the paper allows to cover wild cross-section dependence
cases, i.e. cases where the time series of one individual systems are cointegrated with times
series of other individual systems. This situation can be considered as the multivariate
extension of the cross-cointegration concept de�ned earlier in the literature.
The performance of the proposal is investigated with Monte Carlo simulations. In gen-

eral, the panel data based MSB statistic provides with better estimation of the number of
stochastic trends that are present in each individual system.
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A Mathematical appendix

A.1 Proof of Theorem 1

A.1.1 The only constant case

Note that the estimated di¤erence of the idiosyncratic stochastic term is:

ẑi;t = zi;t + �ift � �̂if̂t:

Following Bai and Ng (2003), we can express the model as

ẑi;t = zi;t + �iH
�1Hft � �iH

�1f̂t + �iH
�1f̂t � �̂if̂t

= zi;t + �iH
�1
�
Hft � f̂t

�
�
�
�̂i � �iH

�1
�
f̂t

= zi;t + �iH
�1vt � dif̂t; (14)

where vt =
�
Hft � f̂t

�
and di =

�
�̂i � �iH

�1
�
. Let us de�ne the partial sum process

using the estimated residuals as êi;t =
Pt

j=2 ẑi;j =
Pt

j=2

�
[M �êi]j

�0
, where [�]j denotes

the �le j of the matrix between brackets. By Lemma 3 and C1 in Bai and Ng (2004),

T�1=2
Pt

s=j �iH
�1vj

 = op (1) and T�1=2
Pt

j=2 dif̂j

 = op (1), so that

T�1=2êi;t = T�1=2
tX
j=2

�
[M�ei]j

�0
+ op (1) ; (15)

with
tX
j=2

[M�ei]j =
tX
j=2

�
�e0i;j � [P�ei]j

�
;

where here P is a matrix of zeros provided that for the only constant case we haveM = IT�1.
The cumulated process is equal to T�1=2êi;t = T�1=2ei;t � T�1=2ei;1 + op (1). If we rotate the
vector êi;t and de�ne êAi;t = A0êi;t =

�
(A01êi;t)

0 ; (A02êi;t)
0�0 we can see that T�1=2A01êi;t = op (1)

provided that A01êi;t de�nes the stationary relationships and T
�1=2A02êi;t = Op (1) given that

A02êi;t de�nes the I(1) stochastic trends. Therefore,

T�1=2A0êi;t =
��
T�1=2A01 (ei;t � ei;1)

�0
;
�
T�1=2A02 (ei;t � ei;1)

�0�0
)

�
00r;


1=2
22;i (Wi (s)�Wi (0))

0
�0

�
�
00r;


1=2
22;iWi (s)

0
�0

where 0r is an r vector of zeros, Wi (s) denotes a k � r vector of independent standard
Brownian motions, and Wi (0) = 0. Then, we can see that

T�1QêAi êAi = T�2êA0i ê
A
i

)
�
0 0

0 

1=2
22;i

R 1
0
Wi (s)Wi (s)

0 ds 

1=2
22;i

�
;

11



given that T�2A01e
0
ieiA1 = op (1), T�2A01e

0
ieiA2 = op (1) and T�2A02e

0
ieiA2 = Op (1). There-

fore, using these elements the limiting distribution of the multivariate MSB statistic is given
by:

MSB�;i (m) = �min
�
T�1Qêiêi
̂

�1
�êi�êi

�
= �min

�
T�1QêAi êAi 
̂

�1
�êAi �ê

A
i

�
= �min

�
T�1
̂

�1=2
�êAi �ê

A
i
QêAi êAi 
̂

�1=2
�êAi �ê

A
i

�
) �min

�Z 1

0

Wi (s)Wi (s)
0 ds

�
;

provided that 
̂�êAi �êAi
p! 
�eAi �eAi , where

p! denotes convergence in probability, and where
Wi (s) denotes an m = k � r vector of independent standard Brownian motions.

A.1.2 The linear time trend case

The proof for this deterministic component follows the one for the constant case, but where
the projection matrix M = IT�1� � (�0�)�1 �0. As above, T�1=2êi;t is given by (15) where now

êi;t =
tX
j=2

[M �ei]j =
tX
j=2

�
�e0i;j � [P�ei]j

�
=

tX
j=2

�
�e0i;j �

h
� (�0�)

�1
�0�ei

i
j

�

=
tX
j=2

�e0i;j �
t� 1
T � 1

TX
t=2

�ei;t:

As before, we de�ne êAi;t = A0êi;t =
�
(A01êi;t)

0 ; (A02êi;t)
0�0, with T�1=2A01êi;t = op (1) and

T�1=2A02êi;t = Op (1) provided that A02êi;t de�nes the I(1) stochastic trends. Then,

T�1=2A0êi;t )
�
00r;


1=2
22;i (Wi (s)� sWi (1))

0
�0
;

which implies that

T�1QêAi êAi = T�2êA0i ê
A
i

)
�
0 0

0 

1=2
22;i

R 1
0
Vi (s)Vi (s)

0 ds 

1=2
22;i

�
;

where Vi (s) =Wi (s)� sWi (1) is a vector of independent Brownian bridges. Therefore,

MSB�;i (m)) �min
�Z 1

0

Vi (s)Vi (s)
0 ds

�
;

given that 
̂�êAi �êAi
p! 
�eAi �eAi .
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A.2 Proof of Theorem 2

Let us consider the null hypothesis that there are m = k � r stochastic trends. From
the proof of Theorem 1 we have that T�1A01e

0
ieiA1 = Op (1), T�1A01e

0
ieiA2 = Op (1) and

T�2A02e
0
ieiA2 = Op (1) , so that T�2A01e

0
ieiA1 = Op (T

�1) and T�2A01e
0
ieiA2 = Op (T

�1).
Consequently, under the alternative hypothesis that there are l < m stochastic trends the
rank of the matrix T�1QêAi êAi will be l < m. Using these elements, we can see that the
cross-products involving I(0) stochastic processes in T�1QêAi êAi tend to zero at rate Op (T

�1).
Let us now focus on the estimate of the long-run covariance matrix. Note that under

both the null and the alternative hypotheses T�1"̂0i"̂i = O (1), with T�1"̂0i"̂i
p! �"i. Since

all roots of the determinant of
�
I � �̂i;pi (L)

�
lie outside the unit circle interval, we can

de�ne �̂i;1 (L) =
�
I � �̂i;pi (L)

��1
, with �i;1 (L) = (I + �i;1L+ �i;2L

2 + � � � ) and where
the sequence of matrix coe¢ cients f�i;sg1s=0 is absolutely summable. Then, �i;1 (1) <1 so
that 
̂V AR

�êAi �ê
A
i

p! �0i;1 (1)�"i�i;1 (1). Therefore, the long-run covariance matrix estimator
converges to a positive de�nite matrix under both the null and the alternative hypotheses �
note that this result can be seen as the generalization of the one in Perron and Ng (1998)
and Stock (1999). Finally, note that under the alternative hypothesis that there are l (< m)

stochastic trends rank
�
T�1QêAi êAi 
̂

�1
�êAi �ê

A
i

�
= l, where the elements that cause rank de�-

ciency tend to zero at rate Op (T�1). This proves the consistency of the MSB statistic under
the alternative hypothesis.
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Table 1: Critical values for the MSB� and MSB� statistics
MSB� statistic

T = 50 T = 100 T = 200
k 1% 5% 10% 1% 5% 10% 1% 5% 10%
1 0.0472 0.0697 0.0939 0.0399 0.0613 0.0832 0.0365 0.0595 0.0806
2 0.0307 0.0380 0.0436 0.0246 0.0326 0.0382 0.0217 0.0290 0.0348
3 0.0247 0.0289 0.0318 0.0186 0.0230 0.0259 0.0163 0.0205 0.0232
4 0.0219 0.0244 0.0262 0.0158 0.0182 0.0201 0.0131 0.0159 0.0177
5 0.0203 0.0220 0.0232 0.0140 0.0159 0.0171 0.0113 0.0132 0.0145
6 0.0191 0.0205 0.0213 0.0127 0.0142 0.0151 0.0100 0.0114 0.0124

MSB� statistic
T = 50 T = 100 T = 200

k 1% 5% 10% 1% 5% 10% 1% 5% 10%
1 0.0365 0.0495 0.0600 0.0296 0.0425 0.0527 0.0272 0.0391 0.0487
2 0.0274 0.0331 0.0371 0.0212 0.0266 0.0305 0.0181 0.0240 0.0277
3 0.0240 0.0270 0.0291 0.0172 0.0204 0.0225 0.0146 0.0177 0.0199
4 0.0214 0.0236 0.0249 0.0150 0.0170 0.0185 0.0121 0.0143 0.0158
5 0.0199 0.0215 0.0225 0.0134 0.0150 0.0160 0.0106 0.0123 0.0134
6 0.0189 0.0202 0.0209 0.0123 0.0135 0.0143 0.0096 0.0108 0.0116

k denotes the number of stochastic trends under the null hypothesis. Simulations
are based on 10,000 replications.

16



Table 2: Simulated mean and variance of the MSB� and MSB� statistics
MSB� statistic

T = 50 T = 100 T = 200
k Mean Variance Mean Variance Mean Variance
1 0.54081116 0.37677437 0.51126334 0.33774980 0.49284473 0.30372427
2 0.10188155 0.00443026 0.09426914 0.00392838 0.08896918 0.00377839
3 0.05342706 0.00047627 0.04615793 0.00040768 0.04340242 0.00040678
4 0.03763585 0.00012361 0.03105959 0.00010498 0.02839736 0.00009889
5 0.03007539 0.00004001 0.02391362 0.00003820 0.02113698 0.00003563
6 0.02597402 0.00001818 0.01973492 0.00001666 0.01705470 0.00001597

MSB� statistic
T = 50 T = 100 T = 200

k Mean Variance Mean Variance Mean Variance
1 0.19866958 0.02784316 0.17762218 0.02165034 0.17079184 0.02038170
2 0.07007464 0.00121271 0.06216263 0.00110966 0.05870114 0.00106729
3 0.04458992 0.00022282 0.03705674 0.00019089 0.03399447 0.00017578
4 0.03378692 0.00006865 0.02703102 0.00005969 0.02409582 0.00005412
5 0.02817940 0.00002666 0.02162892 0.00002485 0.01890827 0.00002410
6 0.02498843 0.00001314 0.01825715 0.00001165 0.01566494 0.00001202

k denotes the number of stochastic trends under the null hypothesis. Simulations
are based on 10,000 replications.
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