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Abstract

We consider robust methods for estimation and unit root [UR] testing in autoregres-
sions with innovational outliers whose number, size and location can be random and
unknown. We show that in this setting standard inference based on OLS estimation of an
augumented Dickey-Fuller [ADF] regression may not be reliable, since (i) clusters of out-
liers may lead to inconsistent estimation of the autoregressive parameters, and (ii) large
outliers induce a jump component in the asymptotic null distribution of UR test statistics.
In the benchmark case of known outlier location, we discuss why the augmentation of the
ADF regression with appropriate dummy variables not only ensures consistent parameter
estimation, but also gives rise to UR tests with significant power gains, growing with the
number and the size of the outliers. In the case of unknown outlier location, the dummy
based approach is compared with a robust, mixed Gaussian, Quasi Maximum Likelihood
[QML] inference approach, novel in this context. It is proved that, when the ordinary
innovations are Gaussian, the QML and the dummy based approach are asymptotically
equivalent, yielding UR tests with the same asymptotic size and power. Moreover, the
outlier dates can be consistently estimated as a by-product of QML. When the innova-
tions display tails fatter than Gaussian, the QML approach seems to ensure further power
gains over the dummy based method. A number of Monte Carlo simulations show that
the QML ADF-type t-test, in conjunction with standard Dickey-Fuller critical values,
yields the best combination of finite sample size and power.

1 Introduction

Over the past decade econometricians have seriously entertained the question of how to
improve the power of autoregressive [AR]| unit root [UR] and cointegration tests. A first
major strand of this literature draws on the seminal paper by Elliott et al. (1996), who show
that massive power improvement can be obtained by considering point-optimal tests against
a fixed alternative. A second, important strand of this literature focuses on the distributional
properties of the data, in two respects. First, in the presence of non-Gaussian data — mainly,
excess kurtosis — the asymptotic power envelope generally differs from the Gaussian envelope.
Important papers in this area are Lucas (1995a,b), Rothenberg and Stock (1997), Hodgson
(1998a,b), Abadir and Lucas (2004), Boswijk (2005) and Jansson (2006). Second, econometric
techniques based on M estimation, including non-Gaussian quasi maximum likelihood [QML],
may benefit from substantial power gains over Gaussian QML inference methods; see Lucas
(1995a,b), Franses and Lucas (1998), Lucas (1997, 1998), Franses et al. (1999) and Boswijk
and Lucas (2002). An attempt to compare the two strands of the literature is made by
Thompson (2004).



A prominent case of departure from the Gaussian framework arises when data are charac-
terized by innovational outliers [I0].! The effects of outlying events on UR and cointegration
testing have been extensively studied in the literature; see, inter alia, Perron (1989, 1990),
Perron and Vogelsang (1992), Fransen and Haldrup (1994), Lucas (1997), Lanne et al. (2002),
Bohn Nielsen (2004) and Xiao and Lima (2004); see also Burridge and Taylor (2006) for a
recent reference. Rothenberg and Stock (1997, p.282) implicitly consider an innovational
outlier model and show that Gaussian QML inference leads to UR tests with power far below
the power envelope. Also Lucas (1995b) clearly shows that in the IO case there is room for
power gains when UR tests are based on the optimization of non-Gaussian criterion functions.
In particular, the robust QML methods proposed in Lucas (1997,1998), Franses and Lucas
(1998) and Franses et al. (1999) allow one to obtain important power gains in the presence
of innovational outliers.

The good efficiency and power properties of robust QML techniques somewhat contrast
with the ‘common practice’ of accounting for IOs through the inclusion of impulse dummies
in the model; see, among many others, Box and Tiao (1975), Hendry and Juselius (2001)
and Bohn-Nielsen (2004). The dummy-variable approach can be viewed as an extreme case
of robust inference methods, where outlying observations — given that the outlier dates are
known to the econometrician — are implicitly eliminated by the inclusion of the dummies.
Nevertheless, as far as we are aware, no study has been undertaken in order to assess whether
a dummy-based approach to estimation and UR inference in the presence of outliers allows to
obtain power gains comparable with those of the robust procedures proposed in the literature.

A first aim of this paper is to answer the previous question. In particular, by using
both asymptotic arguments and Monte Carlo simulations, we aim at showing that, when the
ordinary shocks are Gaussian, the dummy-based approach is comparable to robust inference
methods, both in terms of size and power. This result suggests that the use of appropriate
dummy variables may represent a compelling way to increase the power of UR tests, in view
of the further advantages that (i) no new critical values are needed, and (ii) it allows the
practitioner to address the economic interpretation of the outlying events.

Given that the inclusion of impulse dummies is in general unfeasible in practice (unless
the dates of the outlying events are known to the econometrician), we discuss a robust QML
estimator that allows one to construct UR tests with the same asymptotic size and power
properties as the UR tests obtained using the dummy variables approach. Hence, the new
robust QML tests benefit from the power gains associated to the latter (unfeasible) approach.
Moreover, the robust QML method delivers estimators of the model parameters which are
asymptotically unaffected by outliers of relevant size. The QML estimator weights each
observation according to how likely it is an outlier to have occurred at the corresponding
date. In contrast with the dummy variables approach, no a priori information on either
the location or the number of outliers is required, as QML implicitly performs consistent
estimation of the dates where outliers occur. In this respect, a further contribution of this
approach is that it bridges the gap between the robust statistics approach, which, similarly
to ours, requires no identification of the outlier dates and applies continuous weights to the
observations, and the (unfeasible) dummy variable approach.

!Following, inter alia, Franses and Lucas (1998) and Lanne et al. (2002), we focus on IOs, as, with respect
to other types of outliers (e.g., additive), they are more likely to affect economic and financial time series, see
e.g. Lucas (1995b, p.169).



A second aim of the paper is to shed some light on the mechanics behind the power gains
under local alternatives. To accomplish it, we compare the large sample representations of
standard UR test statistics and of statistics constructed using dummy variables. We argue
that power gains are due to the intuitive fact that impulse dummy variables account for the
effect of outliers on the first differences of the data, but not for the long run effect on the levels.
By asymptotic equivalence, the same conclusion applies to the QML estimator. Furthermore,
this result possibly applies to robust estimators in general, as they tend to downweight the
observations corresponding to periods with large innovations, while remaining sensitive to
the long-run effect of such innovations. Notice that, consistently with this conclusion, in the
case of additive outliers, where the long run effect on the levels is zero, the use of dummy
variables and QML leads to no power gains, similarly to what Lucas (1995b) found about
other robust approaches.

Finally, we show that, in the (empirically relevant?) case where outliers cluster together,
the coefficients of the stable regressors of the reference AR model may not be estimated con-
sistently by OLS, with the unfortunate consequence that the usually employed AR, estimators
of the long run variance are not necessarily consistent. The proposed robust QML approach
is also able to fix this problem, as it restores Gaussian asymptotic inference on the short-run
coeflicients.

The outlier model we consider is quite different from those considered in the earlier lit-
erature, in several respects. Specifically, under this model, (i) outliers occur randomly over
time; (ii) the number of outliers is unknown, and only needs to be bounded in probability;
(iii) outliers need not occur independently over time and, in particular, may cluster together;
(iv) the sizes of the outliers are random and of larger magnitude order than the ordinary
shocks driving the AR dynamics; (v) outliers do not need to be independent of the ordinary
shocks.

Notice that (i)-(v) above are rather general. No restrictions or a priori knowledge of
the number or the location of the outliers is assumed. Differently from a strand of the
literature where the number of outliers diverges with the sample size (cf. Balke and Fomby,
1991; Franses and Haldrup, 1994), here this number is kept bounded, hence allowing us to
distinguish between frequent, ordinary shocks and rare, outlying events. A further important
feature of our model is that outliers are large in size, when compared to the ordinary shocks.
This allows us to develop an asymptotic framework that renders the outliers asymptotically
influential, both under the UR null hypothesis and under the alternative, cf. Leybourne and
Newbold (2000a,b) and Miiller and Elliott (2003).

The structure of the paper is as follows. In section 2 we present the reference model and
its assumptions. In section 3 we discuss how outliers affect the asymptotic distributions of the
standard OLS estimator of the model parameters and of the associated standard UR tests.
In section 4 we turn to the analysis of the dummy-based approach under the assumption
that the outlier dates are known. Finite sample comparisons are reported in section 5. The
robust QML approach and the resulting UR tests are proposed and analyzed in sections
6 (asymptotic properties) and 7 (finite sample simulation). Section 8 extends the QML
approach to general deterministic time trends. Some concluding comments are collected in
section 9. All proofs are placed in the Appendix. The following notation is used: ‘=’ denotes

weak convergence and L convergence in P-probability, with Op (1) denoting boundedness

2Cf. Balke and Fomby (1994, section 4.2).



in P-probability; I(-) is the indicator function; I, and 1 are the k x k identity matrix and
the k& x 1 vector of ones. With ‘z := ¢y’ (‘e =: y’) we indicate that = is defined by y (y
is defined by x), and |-| signifies the largest integer not greater than its argument. With
D we denote the space of cadlag functions on [0, 1], endowed with the Skorohod topology.
For a vector x € R™, ||z| := (2'z)Y/? stands for its Euclidean norm, whereas for a matrix
A, ||A|| := [tr(A’A)]Y/2, where tr(-) is the trace operator. For brevity, integrals such as
fol X (s-)dY (s) and fol X (s)Y (s)ds are written as [ XdY and [ XY, respectively.

2 The model

We consider parameter estimation and tests of the UR null hypothesis Hy : o = 1 against
local alternatives H. : @« = 1—¢/T (¢ > 0) and fixed stable alternatives Hs : a = o* (|a*| < 1),
in the model

Yo = ayi—1 + U, t=1-k,..T, W
=0 T e+ 80, t=1,...T,

where, for k > 1, (ug,...,u1_,y—_x) may be any random vector (for k¥ = 0, yp may be any
random scalar) whose distribution is fixed and independent of 7. The model is completed
with Assumptions M and S below.

Assumption M. (a) The roots of I (z) := 1 — Zle 7,7" have modulus greater than 1; (b)
{e;}92, is IID(0, 02), with o2 > 0.

Assumption M prevents y; from being I(2) or seasonally integrated, and ensures that the
so-called long-run variance of u;, hereafter 02 := 02T (1)™2, is well-defined.

The term 6,0 in (1) is the outlier component of the model. Specifically, §; is an unob-
servable binary random variable indicating the occurrence of an outlier at time ¢, with 6;
being the associated (random) outlier size. The (random) number of outliers is given by
Ny = Z;‘FZI 8¢. The following condition is imposed {6, 0;}.

Assumption S. (a) Ny is bounded in probability conditionally on Ny > 1; (b) §; = T'/2y,,
where {n,}X_, and {n;'}L, are Op (1) sequences as T — oo; (c) for all T, {&;}L_, is
independent of {e;}X 1, {n,}] 1, y_x and, if & > 1, of (ug, ..., u1_x)".

For illustrative purposes, we will sometimes strengthen Assumption S by requiring that
the following condition holds.

Assumption S’. Assumption S holds and, as T — oo, Cp () := T—1/2 EtEIJ 0:6; = C(-),
where C' is a piecewise constant process in D.

REMARK 2.1. Assumption S allows us to generalize the single outlier model in several
directions. For instance, the number of outliers N, instead of being fixed, is only assumed
to be bounded in probability. Furthermore, we do not restrict the dependence structure of
{6:}, allowing e.g. for outliers at consecutive dates.

REMARK 2.2. By Assumption S(b) the outliers have the same stochastic magnitude order as
the levels of 4, under Hg or H,. In particular, the effect of outliers does not become negligible

4



in large samples. A similar assumption has been advocated by Perron (1989, p.1372) and
employed by Leybourne and Newbold (2000a,b). The magnitude order T'/2 has also been
used by Miiller and Elliott (2003) to model the size of the initial observation of an AR process
with a root near to unity (notice that the initial observation can be thought of as a large
outlier occurring at the beginning of the sample).

REMARK 2.3. Assumption S(c) rules out dependence between the outlier indicators {6;} and
{et,n;}. However, it should be stressed that this is not a strictly necessary assumption for the
results of the paper, and is made mainly for technical convenience. For instance, S(c) could
be replaced by the assumption that, conditionally on the occurrence of at least one outlier,
the quantities maxy.s,—; |e¢| := maxy<7 |016¢|, maxy.s,—1 |1, and maxs.s,—1 |n;1| are bounded
in probability.

REMARK 2.4. Conditionally on the occurrence of at least one outlier, the smallest jump of
the outlier partial-sum process Cr is bounded away from zero in probability; see Assumption
S(b). Thus, if the occurrence of at least one outlier has non-vanishing probability (the case
where our asymptotic analysis is non-trivial), the tightness condition in Billingsley (1968,
Theorem 15.2) implies that Cr has a limit in D only if the time distance between outliers
diverges at the rate of T. Therefore, Assumption S’ rules out, e.g., outliers occurring in
adjacent periods, at least in large samples. A simple setup where Assumption S’ is satisfied
obtains when {6;} is an IID sequence of Bernoulli random variables with pr := P (6; = 1) =
AT, T>X>0,and {n,} is an IID sequence as well. In this case the limiting process C'is a
compound Poisson process with jump intensity \; see Georgiev (2006).

REMARK 2.5. Since {6;}, {0:} and, under H., also o of (1) depend on T', we are formally
considering a triangular array format for Y7y, 01,07 Unless differently specified, to keep
notation simple we drop the ‘T’ subscript. [

In the analysis of model (1), the following alternative parameterization will be used. Let
v = (71, .,v) and T' = (m,7'), where, under Hp and H., 7 := 0 and v; :=%; (i = 1,..., k)

whereas under Hg the new parameters are defined through the identity (1 — az)['(z) =
l1—(m+1)z— Zle 7,74(1 — 2). Then Ay, has the representation

Ayr=mye1 +7' VY1 + e =T'Yi 1 + ¢, t=1,..,T, (2)

where VY;_1 := (Ayi—1, ..., Ays—x) and Yi—1 := (y4—1, VY,_;)". Under Hp and H; this is a
regression with error term e; = &; 4+ 6:0¢, whereas under H. it is an approximate regression
whose error term differs from &, 4+ 6,0, infinitesimally (see section A.1 of the Appendix). In
view of Assumption M, under Hg or H. the components of VY;_; will be referred to as stable
regressors, whereas under H; the components of Y;_1 will be referred to as such.

3 ADF estimation and testing in the presence of outliers

In this section we discuss the effects of outlying events on the OLS estimator and on the
related UR tests in the AR model (1) under the assumptions introduced in the previous
section. Recall that ADF tests are based on OLS estimation of the regression equation,

Ay = 7y 1 + ' VY1 + errory, (3)

and build on the statistics ADF, := T#/|l'(1)| = T (& —1) /| (1) | and ADF; := #/s (%),
where I' (1) := 1 — Zle 3; (with 4 := (41, ...,9%)" denoting the OLS estimator of v), and



s () is the (OLS) standard error of 7. Under Assumption M and for a = 1 — ¢/T (¢ > 0),
it is well known (see e.g. Chang and Park, 2002, section 3) that in the standard case of no

outliers, 7 £ 0 and o il ~. Moreover, the ADF statistics admit the representation
| Be,rdBr
2
f Bc,T

where B, of (4) lies in D and is defined as

| BerdBr

ADF, = —c+ W +op (1), (4)

+op(l), ADF,=—c([B}p)"?+

[T's] -1 .
BC’T(S) = T71/20';1 20 (1 - C/T)l €|Ts]—is (5)

and By := By . Using B, (s) := fos e~“(5=2)dB (2) to denote an Ornstein-Uhlenbeck process,
B being a standard Brownian motion, when 7" — oo we have that (Phillips, 1987) B r ~ B,,

and that

[ BedB [ BedB
/B2 (f B>

Under the null hypothesis that ¢ = 0, B, = B and the distributions in (6) are the so-called
univariate Dickey-Fuller distributions.

We now turn to the analysis of the OLS approach in the presence of multiple outliers,
starting from the coefficients of the stable regressors in (3). Specifically, in the following
proposition we present some sufficient and necessary conditions for consistent estimation of
these coefficients.

ADF, % —c+ ADF, % —¢([ BH'? +

(6)

Proposition 1 Let 77 := mini<jcj<r {j —i:6;0; = 1} denote the smallest time distance
between two consecutive outliers, and 0o, if at most one outlier occurs. Then, under Assump-
tions M and S, the following results hold as T — oo.

a. A sufficient condition for ¥ il v (and under Hg, for & il 7) is that either v =0 (and
under Hs, also m =0), or 7 L .
b. If v # 0 (or under Hs, m # 0), then for 4 il v (and under Hg, for & LN ) it is

necessary that T LS conditionally on:

- the occurrence of exactly two outliers, if the probability of this event is bounded away
from zero;

- the occurrence of at least two outliers, if the probability of this event is bounded away
from zero, and the variables {n,} are jointly independent and non-degenerately distributed.

REMARK 3.1. In the presence of short-run dynamics (i.e., v # 0) and outliers of non-
negligible size, the coefficients 7, ..., (and 7 under Hy) associated to the stable regressors
Ayi—1,...; Ay (and y;—1 under Hg) may not be estimated consistently. This result has
serious implications on the usual UR testing practice, as it implies that spectral AR estimators
of the long run variance such as those suggested in, inter alia, Berk (1974), Stock (1994),
Chang and Park (2002) and Ng and Perron (2001) may be inconsistent.

REMARK 3.2. A condition that ensures consistent estimation of the short run coefficients
Y15V (and 7m under Hg), whatever the number and the size of the outliers are, is that



the distance between consecutive outliers diverges with the sample size; see part (a). The
condition is obviously satisfied in the case of a single outlier and, according to Remark 2.4, also
under Assumption S’. Notice that many econometric techniques for dealing with multiple
structural breaks (see Bai and Perron, 1998; Perron, 2005) require the distance between
consecutive break dates to diverge with the sample size (that is, 77 — oo in the notation of
Proposition 1).

REMARK 3.3. In the presence of short-run dynamics, the condition 71 % 50 becomes neces-
sary for the consistency of 4 (and 7 under Hy) under quite general circumstances, involving
the occurrence of multiple outliers. The two parts of point (b) are intended to illustrate
this claim. For instance the first part of (b) shows that in cases where two outliers occur,
consistent estimation of v through a simple ADF regression is not possible if the distance
between the two outliers does not diverge with 7.2 O

For the discussion of the asymptotic properties of the UR tests, it is useful to define the
following process in D:

[T's] -1 .
Cer(s) :=T"1/2 ZO (1= ¢/T)'61s) =i | 7s)—i»
i=
and let Hr. := B.1r + Ce1/0e, with B.r as defined in (5) (Cor and Hyr will be abbre-
viated as Cr and Hr, respectively). Should no outliers occur, H.r = B.r. Notice that
if Assumption S’ holds, then C.r has a weak limit in D; specifically, C.r = C,, with
Ce(s) == [y e~<(5=2)dC (2) (cf. Kurtz and Protter, 1991, Theorem 2.7). In the latter case,
H.r % H,., where H, is the jump diffusion H, := B, + C./o..

We may now obtain large-sample representations of the ADF statistics in the presence
of outliers, both under the null hypothesis and under local alternatives. The representations
are formulated in terms of the finite-sample process H. r, similarly to (4), because in general
the ADF statistics need not have weak limits under Assumption S.

Proposition 2 Let Assumptions M and S be satisfied. Then under Hy or He, ¢ > 0, the
following results hold as T — oc.
a. The ADF statistics have the representation

F(l) chTdHT+%0T
ADF, = — —c+ : =) 4+ op(1),
(1) |( JHey )
1 2 \1/2 ch,TdHT + 50,1
ADF, = —1/2(—c(fHC’T)/ AT >+0p(1),
T T

where the expressions for s and s 1 are given in the Appendiz, eqs. (A.9) and (A.12).

38till, it is possible to find particular configurations of multiple outliers where consistency obtains although
77 =1 for all T. For example, if (i) £ = 0, (ii) the autoregression is stable, (iii) |z7/3) = §|7/3)+1 = §|1/2] =
817/3)+1 = 1 (all other being equal to zero), and (iv) 073, = =7 7/3)41 = M 7/2) = N 7/3)+1 = 1 (all other
being irrelevant), then a necessary and sufficient condition for consistency (see eq. (A.11) in the Appendix) is
satisfied, due to the particular degenerate distribution of 7,.



b. A necessary and sufficient condition for o1 = op(l) is that 4 il ~; in this case
—2 T
sar=1+023,_,6m?, and

[ HerdHr 1 [ HerdHr

ADF, = —c + +op(l), ADF=—7( —c([ H2p)"? + —5—=) + op(1).
° [HZp %i/ﬁ( o (f HZT>”2>

Several remarks are due.

REMARK 3.4. Differently from the standard case, see eq. (4), in the presence of outliers the
null and local-to-null representations of the ADF statistics involve the process H. r (i.e., both
the errors ¢; and the outliers 6;) instead of B, alone. Moreover, the contribution of 6; is
asymptotically non-negligible, see also Remark 3.6 below. Unless « is consistently estimated,
also the short-run dynamics has an asymptotically non-negligible effect on the ADF statistics.

REMARK 3.5. In representations (a) and (b), the process H.r appears both as integrand and
as integrator in the term f H.rdH.7. An intuitive explanation is that when the standard
ADF regression is employed to construct UR tests, then (i) outliers have a ‘long run’ effect,
as they affect (through cumulation) the levels of y;, hence implying that H.r appears as
integrand; (ii) outliers have a ‘short run’ effect, as they affect the errors of the ADF regression,
hence implying that H.r appears as integrator.

REMARK 3.6. Under Assumption S’ it holds that 4 il v, see Remark 3.2. In this case, a
corollary of Proposition 2 is that

w H.dH w 1 H.dH

ADF, % —c+ 7ff o ADF, % ETANE ( —c(fHHV? + 7& H3)1/2)’ (7)
where [-] denotes quadratic variation at unity.* These asymptotics generalize those obtained
in the standard case of no outliers, cf. Stock (1994) inter alia. Specifically, the distributions
in (7) have the same structure as the univariate Dickey-Fuller distributions, see (6), but
with B, replaced by the jump-diffusion H.. The asymptotic distribution of the t statistic
also depends on o 2[C.], which measures the relative importance of the outliers with respect
to the innovation variance. Notice also that the result (7) generalizes in several direction
Theorem 1 in Leybourne and Newbold (2000a), where the case of a single fixed outlier
occurring at a fixed (relative) date is considered under Hy and in the absence of short run
dynamics (k=0 in eq. (1)).

REMARK 3.7. It is not hard to see that, under fixed stable alternatives, a sufficient condition
for ADF, L and ADF; il —o0, is that 7 is negative with probability approaching
one and, in particular, that 7 is estimated consistently. It is, however, possible to construct
examples where clusters of outliers, especially if close to the end of the sample, can create
spurious explosiveness. The estimation methods discussed in the sections below are immune
to this problem. [J

In contrast to the common belief that innovational outliers do not affect inference in
autoregressions with a possible unit root (see e.g. Shin et al., 1996, and Bohn-Nielsen, 2004),

4Convergence follows from the continuous mapping theorem, from Theorem 2.7 of Kurtz and Protter (1991)
and from the well-known result that [ BerdBe = | BedBe.



the results of this section suggest that innovational outliers of large size actually do affect the
asymptotic properties of autoregression estimation and UR testing. Notice that this result
is in line with previous findings for stationary time series: for instance, Tsay (1988) clearly
recognizes that ‘The effect of multiple 1Os, (...), could be serious’.

A further, more important result, is that the presence of outliers, when properly accounted
for, may be exploited in order to boost the power of UR tests. This crucial issue is investigated
in the next section.

4 Dummy variables accounting for outliers

In this section we examine estimation and UR testing based on an ADF regression augmented
with the inclusion of one impulse dummy variable for each outlier. Unless in cases where the
outlier indicators ¢; are observable, see Liitkepohl et al. (2001) and Lanne et al. (2002)
for a discussion, the results of the section are mostly of theoretical interest, and serve as a
benchmark for the estimator we introduce in section 6. The key result we provide is that,
by properly accounting for the outliers, not only is it possible to ensure consistent parameter
estimation, but also to boost the power of UR tests beyond that attainable under standard
conditions.
The ‘dummy augmented” ADF regression has the form

Ayt =TY—1 + ’Y/VYt—l + SO/Dt -+ errorg, (8)

where Dy := (D1, ---,DNT,t), is the vector of impulse dummies, one for each outlier. The
ADF tests are based on the statistics ADFP := T% /| (1) | and ADEFP := 7 /s (%), where the
superscript ‘™’ now indicates that estimates are computed upon the inclusion of the vector
of dummy indicators in the ADF regression.

As in (2), let T := (7,7')" and Y;—1 := (-1, VY,_1)". The dummy variable estimators
of I' and o2 are given by

Fim (N0-8(YiaYiy) X0 - 60(Yiran) ©)
52 = (éu—5t))_1§1(1—6t)<Ayt—f'Yt_1)2

As Zthl 8t = Op (1), the inverses in both lines are well-defined with probability approaching
one. The counterpart of Propositions 1 and 2 for the dummy ADF approach is given next.

Proposition 3 Let Assumptions M and S be satisfied. Then the following results hold as
T — o0.

a. v il v, and under Hg, 7 2o

b. Under Hy or H., ¢ > 0, the ADF statistics have the following representation:

[ HerdBr
JHEr

| HerdBr

ADFP = —c+ J e TTIT
(J Hor)?

+op(l), ADFP = —c(f H2;)"* +

c. Under Hs, ADFP L o and ADFpP L .



REMARK 4.1. In contrast with Proposition 1, upon the inclusion of a set of impulse dummy
variables (one for each outlier) the estimator of the short-run parameters is consistent, even
in the case of clustering outliers. As a consequence, under Hy or H. the ADFP statistics are
asymptotically independent of the short-run dynamics (i.e., of 4, ...,y ), while under Hy UR
tests based on these statistics are consistent.

REMARK 4.2. Similarly to standard ADF tests, see Remark 3.5, also when impulse dum-
mies are included in the estimated regression, the large-sample representations of the ADF
statistics involve the process H.r instead of B.r alone. However, now H.r appears as an
integrand only, and not as an integrator. The reason is that the inclusion of the dummy
variables cancels the short run effect of the outliers, but not their long run effect on the levels
of Yt-

REMARK 4.3. Under assumption &', from Proposition 3 it follows that the dummy-based
ADFP statistics have asymptotic distributions

[ H.dB
JHz

[ H.dB

Dw _ e
ADF, — —c+ (B2

and ADFP % —c([ H2)Y? +

under the null and local alternatives. [J

A further important issue about UR testing in ADF regressions which incorporate impulse
dummies is related to the power of UR tests. Specifically, since the dummy approach is a
special case of the robust approach (where the effect of outlying observations is trimmed
down by adding impulse dummies to the estimated model), we expect it to benefit from the
power gains featured by the robust approaches to UR testing in the presence of non-Gaussian
data (Lucas, 1995, 1997). To shed some more light on this intuition, we now carry out
an analytical experiment where the influence of outliers is taken to the extreme. A related
exercise is made by Lucas (1995b, p.156-7) for the case of a single outlier with fixed location.

Let Assumption &’ hold, implying that the ADF statistics have limiting distributions.
These distributions were given in Remarks 3.5 and 4.3, and are now collected in the second
column of Table 1, the first column reporting the standard case where no outliers occur. In
the limiting distributions we replace the process C' by hC, and let h — oo, conditioning on
the occurrence of at least one outlier. This is a simple way to make the process C' dominant
in the limit. The obtained h-limits are collected in the third column of Table 1; details on
their derivation are provided in the Appendix.

[Table 1 about here]

The following points can be made about this analysis.

REMARK 4.4. The most striking qualitative difference in the h-limits occurs under local al-
ternatives. Whatever the critical value is, under local alternatives the probability of rejecting
the UR null hypothesis converges to 1 as h — oo if the dummy-based ADFP statistic is
used, and the same holds for the coefficient statistic ADFP if —c is smaller than the critical
value. This is in contrast with the standard OLS-based statistics ADF,, ADF;, whose corre-
sponding rejection probabilities are bounded away from 1. It suggests that, in the presence of
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outliers, the dummy-based tests can have an advantage in terms of power over the standard
tests, with power gains increasing with the size (and possibly with the number) of outliers.

REMARK 4.5. The power gains of the ADF/ test are formally due to the fact that outliers,
through the long-run effect process C., make [ H? large, which upon the inclusion of dummy
variables is not offset by an analogous effect on the estimator of the residual variance. A
similar phenomenon occurs with the ADF(? test. This means that, in terms of power, we have
no interest in eliminating the long-run effect of outliers from the asymptotic distributions.
For this reason we do not discuss estimation with step dummy variables, which do cancel the
long-run effect of outliers and (as is well known from the UR literature under trend breaks,
cf. Perron, 2005) may cause a power loss.

REMARK 4.6. In terms of size, if standard Dickey-Fuller asymptotic critical values (see Fuller,
1976) are used, the ADF} test can be expected to behave better than the ADFP test, which
may be undersized. This is because in the h-limit ADEP approaches a N (0, 1) distribution
(assuming independence of B(-) and C(-)), whereas the coefficient statistic ADFL tends to
0. Regarding the size of standard ADF tests, their size distortions are expected to decrease
as the number of outliers increases, since the terms ([ C2)™1/2 [ CdC and ([ C?)~! [ CdC
equal 0 for a single outlier (implying 0 size as h — 00), and have distribution approaching
the Dickey-Fuller counterparts ([ B2)~'/2 [ BdB and ([ B?)~! [ BdB when the number of
outliers grows. [

5 Finite sample comparisons

In this section we present a Monte Carlo study of standard and dummy-based ADF tests
under a variety of innovation outlier models. Specifically, we want to assess whether (i)
the power gains predicted in the previous section for the dummy-based tests are of relevant
magnitude in finite samples, and (ii) size distortions for inference based on DF asymptotic
critical values are substantial.

The employed DGPs are as follows. Data are generated for sample sizes of T' = 100, 200, 400
observations according to model (1) with k =1, 5 := 5, € {-0.5,0,0.5}, yo = 0 and uy drawn
from the stationary distribution induced by the equation v; = Jv;_1+¢;. We consider the UR
case, which obtains by setting a = 1 in (1), and the sequence of local alternatives « = 1—¢/T
with ¢ := 7.

In addition to the case of no outliers (6; = 0 for all ¢) — denoted with Sp in the following
— we consider four models for the outlier component:

e Sy (two fixed outliers): two outliers occurring at fixed sample fractions ¢;, i = 1,2,
with ¢; := |0.27'| and t5 := |0.6T'|, and with size magnitudes 6, := —0.47"/2 and
0, == 0.35171/2;

e Sy (four fixed outliers): four outliers occurring at fixed sample fractions ¢;, i = 1, ..., 4,
with t1,t2 as in Se above, t3 := [0.47'| and t4 := |0.87'|; the corresponding size magni-
tudes are 0;,, s, as in Sy above, 0, := —0.35T"/2 and 6;, := —0.4T"/2,

e S, (random outliers): the number of outliers is Ny ~ 3+ B(7/T,T), (B (-,-) denoting a
Binomial distribution), i.e. at least 3 and 10 on average, and their positions 41, ..., 0N,
are independent uniformly distributed on {1,...,T}; the outlier magnitudes sizes 0; are
independent and distributed as a Gaussian r.v. with mean 0 and variance 0.097'.
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e S (cluster of three outliers): three consecutive outliers at positions t; := |T/2], ta =
t1 + 1, t3 = t1 + 2, all of magnitude —0.3571/2,

For our selection of T, models S2, 54 and S, generate outliers of size between 4 and 8
standard deviations of the ordinary shocks. For model S,, the random size of the outliers
has standard deviation between 3 and 6 times the standard deviation of the ordinary shocks.
These outlier magnitudes, although large, are not unrealistic; see the discussion in Vogelsang
and Perron (1998, p.1090).

The innovations are zero-mean, unit-variance IID r.v. following either a N (0, 1) distri-
bution or a standardized ¢ (5) distribution.

We consider both standard ADF tests (ADF,,ADF};) and the dummy-augmented tests
(ADFP ADFP), the latter being based on the assumption that the outlier locations are
known. All tests are performed at the 5% (asymptotic) nominal level, with critical values
taken from Fuller (1976, Tables 10.A.1 and 10.A.2). Computations are based on 10,000
Monte Carlo replications and are carried out in Ox v. 3.40, Doornik (2001). Results are
reported in Table 2 (Gaussian errors) and in Table 3 (Student ¢ errors).

[Tables 2-3 about here]

The following facts are worth noting.

(i) For outlier models Sz, Sy and Sy, under which the representations in Proposition 2(b)
hold, the presence of outliers does not seem to affect the size of standard ADF tests. This is in
line with, e.g., the findings of Lucas (1995, Table 1). On the other hand, for model S., under
which outliers cluster together, the size of ADF tests appears to be bounded away from the
nominal level. The tests tend to be undersized (resp. oversized) for negative (resp. positive)
values of 7. This dependence on the short run dynamics agrees with the representations in
Proposition 2(a).

(ii) The presence of outliers does not substantially affect the size of the dummy-based ADF}
test, even when outliers cluster together. In all the cases considered, size is about 5%. In
contrast, outliers do affect the size of the ADFP test, which appears to be undersized. This
finding is in line with the predictions based on the h-limits of the previous section.

(iii) The local (size-adjusted) power of ADF tests is slightly affected by the outliers, especially
in small samples. For models Sy, Sy and S, power is generally below the approximate
50% power characterizing the tests in the absence of outliers. Interestingly, when outliers
cluster together (model S.), ADF tests display power slightly above 50%. This is of little
practical importance, however (given the size distortions of ADF tests, the empirical rejection
frequencies drop to as low as 25% for v = —0.5). In general, there are no significant differences
between the ADF,, and the ADF; tests.

(iv) The use of impulse dummies substantially increases the local power, again as predicted
previously. The power gains increase with the number of outliers. For instance, under model
So the addition of the dummy variables increases the local power of ADF tests from about
50% (no outliers) to above 60%. Under Sy, power increases to above 75%. In general, the
ADFP test performs slightly better than the ADFP test in terms of local power. Differences
between ADFP and ADFP tests, however, becomes substantial when the empirical rejection
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frequencies are considered, mainly because the ADFP test is undersized. These results show
that the ADFP test is largely preferable over the ADFP test.

(v) The dummy-based tests perform very well under model S, (a cluster of outliers), again
as predicted by the theoretical analysis of section 4. Although the ADFP test has slightly
higher power than the ADFtD test, in terms of the empirical rejection frequencies the latter
test is clearly more appealing.

(vi) Results for the case of ¢ innovations do not substantially differ from those obtained in
the Gaussian case.

In summary, our Monte Carlo experiment shows that the inclusion of dummy variables which
account for the short run effects of outliers is an important device for boosting the power of
unit root tests. The ADEP statistic used in conjunction with standard critical values, gives
rise to a test with good size properties and with considerably higher power than the standard
ADF tests which neglect the presence of outliers. As far as we are aware, these power gains
have not been discussed extensively in the literature.

With respect to robust inference methods, an obvious drawback of the dummy-based
approach is that it is unfeasible in practice, except in cases where the outlier dates are
known. In the next section we will obtain a feasible ¢ test based on a robust QML procedure,
and will discuss an important connection between this robust method and the dummy based
approach.

6 Robust QML estimation and UR testing

In this section we discuss a robust inference technique, based on Quasi Maximum Likelihood
[QML], for autoregression estimation and UR testing. In contrast with the dummy-based
approach, QML can be used when there is no a priori information on either the location or
the number of outliers, mainly because QML implicitly involves consistent estimation of the
outlier dates. In addition, our robust method attains the same asymptotic power gains as
the (unfeasible) dummy-based estimators discussed earlier.

The proposed robust inference method is based on a quasi likelihood which places more
probability mass in the tails of the error distribution. As is standard in outlier robust statis-
tics, each observation is implicitly ‘reweighted’ on the basis of how likely it fits the postu-
lated model (cf. Lucas, 1996, Ch.1): the less an observation fits the model, the less weight
is assigned to that particular observation. In this respect, our QML is close to the robust
techniques advocated in Lucas (1997), Franses and Lucas (1998), Lucas (1998) and Franses
et al. (1999). On the other hand, our approach differs in several directions. First, the quasi
distribution of the innovations is a mixture distribution, where the two mixing components
have different orders of magnitude. This allows us to study robustification with respect to
outliers of relevant size. Second, we provide a full asymptotic analysis of both parameter
estimators and the corresponding UR test statistics. Finally, we are able to establish the
relation between our robust inference method and the unfeasible dummy variable approach.

In the next subsection the estimator is defined; its asymptotic analysis is reported in
subsection 6.2. The finite sample properties are analyzed in section 7.
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6.1 Definition

Our robust QML method builds on the observation that the innovation term of the reference
model, see eq. (1), has a mixture distribution, with mixing variable §; and mixture compo-
nents ¢; (when 6; = 0) and &;+6; (when §; = 1). Notice that in Assumption S no parametric
hypothesis on the joint process {e,0;} is made. Nevertheless, it is still possible to jointly
estimate the outlier indicators and the parameters of interest in a QML framework.

Specifically, consider a QML estimator based on the following ‘quasi distributions‘: (i)
the innovations ¢; are normally distributed; (ii) the outlier indicators 6; are Bernoulli random
variables with P(6; = 1) = A/T, T'> X > 0; (iii) the outlier magnitudes 7, are Gaussian with
mean 0 and finite variance o7; (iv) {e/}, {6;} and {n,} are IID and mutually independent.
Notice that (i)-(iv) do not necessarily hold in general under Assumption S.

Let 6 := (I',02,02,)\)'. Under (i)-(iv) and conditional on the initial values, the quasi
likelihood function is, up to an additive constant, given by

NN A
A©) =Y In (th(e, 1)+ (1 - T)zt(e,())), (11)
t=1

where

1
(02 + T@'U%)lm

(Ayt — F/Yt_1)2 >

(0,7) = 2(02 + Tio})

exp(—

In the following we will make use of the weights

o )\lt(97 1)
WO) = @) T (T~ Nia(0,0)

(12)

which under (i)—(iv) correspond to the expectation of é; (i.e., to the probability of occurrence
of an outlier at time ¢) conditional on the data.

By equating to zero the derivatives of A(f) and rearranging terms we find the normal
equations

0= (0) (13)

where ® := (®F, ®¢, &7 *)" : R¥+4 — RF+4 is the random map with components

oh(0) = t;wt(H)(AytYi_l) t;wt(e)(thleli—l) N(0) = édt(@

SO TV g T Ay - Y
i (1= di(0)) TY i di(0)
and wy(0) := dy(0)/(0? + TO'?]) + (1 —dy(9)) /o2
A QML estimator could be computed, e.g., by iterating the map ® in (13). After the QML
estimates are computed, the ADF statistics obtain as ADFS := T#/IT'(1)] and ADFt(‘2 =

7/s(#), where s(7t) := {[X 1 we(0)(Yeo1Y)_)] " 1t

T T i|71
)

2

o
i : _Ze
(9) T

REMARK 6.1. If @ is a stationary point of A such that {d;(#)} are sufficiently close to {é¢},

then @ could be expected to be close to the dummy-variables estimator 0 := (T, 5?, 5%, ),
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with I' and 62 defined in (9), and 62 = 3, 8:;(Ay; — I"Y—1)?/(T'Nr)~* (conditionally
on Np > 1), A := Np. Since {6:} is unobservable, 0 is empirically unfeasible; however, its
relationship with 6 is useful in the asymptotic analysis of 0, see the next section.

REMARK 6.2. The quasi likelihood function could be based on a mixture of non-Gaussian
distribution for ¢; and 7,; e.g., a mixture of Student ¢ distributions. This would allow the
asymptotic analysis in the next section to be carried out without assuming normality of &;.
Extensive Monte Carlo simulations have shown that in practice the normality assumption
allows to obtain good results under a various range of distributions for the errors. Thus, for
ease of exposition, we stick to the Gaussian distribution in what follows. [J

6.2 Asymptotic analysis

In this section we discuss various asymptotic results for the QML approach. Asymptotics are
derived under the assumption that the errors €; are normally distributed; deviations from
normality are investigated by Monte Carlo simulation in the next section.

First, we discuss the properties of the QML estimator 6 of the parameter 0, and its
relation to the dummy-based OLS estimator discussed in section 4. In addition, we discuss
an important by-product of the QML approach; that is, an associated estimator of the outlier
indicators based on the weights dy().

The main results are presented in the following theorem, where with a subscript ‘0’ we

denote the true parameter values.

Theorem 1 Let Assumptions M and S be satisfied, with {e;} being normally distributed.
Let P denote the induced probability measure conditional on the occurrence of at least one
outlier. Introduce also Dy := diag(Tﬁl/Q,l,...,l) under Ho or He, and Dr = 141 under
stable alternatives, Hs. Then there exists a random (k-+4) x 1-vector sequence O (abbreviated
to 9) with the following properties as T — oo.

a. 0 is a local mazimizer of A(0) with P-probability approaching one.

b. S 1di(B) — 6¢) = Op(TP=Y/2) for all p > 0.

c. TV2DL YT —Tg) = TV2D;N (T —Tg) + op(1);

d. (X, 62,62) = (Nr,0%,Qr) + op(1), where Qr := Ny S .

Some remarks are in order.

REMARK 6.3. By part (a), we refer to 6 as a QML estimator. As is also the case with other
robust approaches, see e.g. Lucas (1995b), the quasi likelihood function may have multiple
local maximizers, and parts (b) to (d) refer to one which is sufficiently close to the true
value. Differently from Lucas (1995b), we prove the existence of such a maximizer instead
of assuming it; notice, however, that we use more specific assumptions than Lucas (1995b).
Possible multiplicity of maximizers created no difficulties in the simulations of section 7.

REMARK 6.4. According to part (b) of Theorem 1, the sequence {d;(f)} is a consistent
estimator of the outlier indicators {6;}. This estimator is not binary, rather, d;(f) can be
interpreted as measuring how likely it is an outlier to have occurred in period ¢, given the
data. A binary estimator can be constructed by setting d; := I(d;(0) > &) for some & € (0, 1),
or for a sequence kr such that 1 — kp = Op(T?~1/?) for some p > 0. By inverting dy(-), this
estimator can be written in the form d; := I(|Ay; — I"Y;_1] > ¢(0)) for some threshold ¢(8),
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which is the traditional form of a residual-based outlier detection rule (see e.g. Tsay, 1988,
and Chang et al., 1998). Theorem 1(b) implies that d; are consistent for &; in the sense that,
with probability approaching one, d; = 6, for all t = 1,...,T. Although this is an important
by-product of our QML approach, it is worth stressing that the QML approach itself does

not require the choice of any threshold for its implementation.

REMARK 6.5. The main result is given in part (c) of the Theorem, where it is asserted that
DT —T) = op(T~/?), T being the (consistent) dummy-based estimator of the autore-
gressive parameter I', see eq. (2). This means that the QML estimator I' is asymptotically
equivalent to [. In particular, I is also consistent for T, and asymptotic inference on T is the
same in the QML and the dummy-based approach. This statement is made more precise in
Corollary 1 below.

REMARK 6.6. Part (d) of the theorem states that the estimators A, 2 and 6,27 are consistent
respectively for the number of outliers N, for the variance of the ordinary shocks 02, and
for the sample second moment of the outlier sequence, N, ! Z;le Sm?. O

We are now ready to formulate the inferential implications of Theorem 1.

Corollary 1 Under the conditions of Theorem 1 and under the measure P introduced there:
a. ADFS = ADFP + op (1) and ADF? = ADFP + op (1);
b. ¥ Eil v and, if {et}1_, is independent of {&m,}E 1, then ¥ is asymptotically Gaussian.

Under Hg, the same result holds for 7t LS

REMARK 6.7. According to Corollary 1, in the presence of outliers of the very general form
defined through Assumption S, the QML approach delivers ADF UR tests with the same
asymptotic properties as obtained by using the unfeasible dummy-augmented ADF regression.
In particular, ADF UR tests based on the QML estimates enjoy the same asymptotic power
gains as the corresponding dummy-based tests. A further advantage of the QML approach
is that asymptotic normality of the estimators of the ‘short term’ parameters v allows one to
use standard econometric techniques for lag order determination.

REMARK 6.8. It is important to keep in mind that the asymptotic equivalence between
QML UR test and the dummy-based UR is proved in Theorem 1 and Corollary 1 under the
assumption of Gaussian innovations. This result may not hold in general: for instance, if
the innovations are not normally distributed, the two approached may not deliver the same
asymptotic power function. The Monte Carlo simulations reported in the next section provide
some support to this statement.

REMARK 6.9. Given the asymptotic equivalence of the QML-based and the unfeasible
dummy-based UR statistics, under the null hypothesis the ADF® statistics do not have
Dickey-Fuller asymptotic distributions. However, since the size distortions experienced by
the dummy-based tests are in general negligible (see section 4), we advise — in line with
what suggested by Lucas (1995b) — to use the QML approach in conjunction with standard
Dickey-Fuller critical values.> This choice is supported by the finite sample results that will
be presented in the next section. [

® An alternative approach for asymptotic critical value determination is to use Monte Carlo methods based
on the QML residuals and on the estimated quasi expectations, d;(6), of the outlier indicators §;. However, for
a wide range of economically plausible models, we have found no significant size improvement over standard

asymptotic critical values when Monte Carlo methods are implemented.
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7 Finite sample properties of QML

In this section we analyze the finite sample properties of the robust QML UR tests of the
previous section. In addition, the QML tests are compared with the robust ‘M’ ¢ test proposed
by Lucas (1995b), ADFF hereafter.® Although Lucas (1995b) does not discuss a coefficient
version of this test, we introduce it for comparison with the ADFCCQ2 test, and denote it by
ADF(f . The same Monte Carlo design as in section 5 is used. QML estimates are computed
by iterating the map @, see eq. (13), until convergence, starting from OLS initial values. For
the ADF® tests, we use the standard Dickey-Fuller critical values as reported in Fuller (1976,
Tables 10.A.1 and 10.A.2), for the ADFL tests the asymptotic critical values are simulated
by the authors along the lines suggested in Lucas (1995b). The nominal level is 5%. Results
are reported in Table 4 (Gaussian innovations) and in Table 5 (Student ¢ innovations).

[Tables 4-5 about here]

The following points are worth noting; points (i)—(v) compare the size and power properties
of the robust ADF® tests with those obtained for the dummy-based ADFP tests (as well as
for the standard ADF tests), while point (vi) discusses the differences between the ADF®
and the ADFF tests.

(i) Under the null hypothesis, for samples of T = 100 observations the QML-based tests
are only marginally more liberal than the dummy ADF tests. In the case of the coefficient
test ADFO;Q , this partially offsets the size distortion of the dummy-based ADF? test. For
samples of T = 200,400 observations, the size of the ADF® tests gets close to that of the
corresponding ADFP tests, and in particular, the ADFtQ test has very good size properties.

(ii) As noticed for the ADFP tests in sections 4 and 5, in the presence of outliers the ADF®
tests exhibit (size-adjusted) power gains over standard ADF tests. Under Gaussian errors, in
terms of empirical rejection frequencies there is essentially no difference between the ADFP
tests and the ADF® tests.

(iii) There are no substantial differences in terms of (size-adjusted) power between the ADF¥
and the ADFtQ tests. However, since the former test tends to be undersized, the latter one
is largely preferable, see the empirical rejection frequencies.

(iv) Some interesting properties can be noticed in the case of no outliers. Under Gaussian
errors, the size and power of QML tests are roughly the same as those of standard ADF
tests. That is, the use of robust QML tests instead of standard ADF tests does not imply
deteriorated finite sample properties. Under ¢ errors, the size of ADF® tests is quite close
to the nominal level, with the ADFOC;2 test slightly undersized. However, under ¢ errors the
ADF® tests (in particular, the ADFtQ test) dominate the standard ADF tests in terms of
power. This evidence suggests that the proposed QML approach can exhibit power gains
when the innovations are not normally distributed, even if there are no outliers in the sense
of Assumption S.

(v) An important finding, related to what was noticed in point (iv) above, concerns the
relation between the power of dummy-based and robust QML tests. In the Gaussian case,

5The choice of Lucas’ test as a benchmark follows from the results in Thompson (2004).
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it was proved in section 6 (and confirmed by the finite sample results in tables 2 and 4)
that the dummy-based ADFP tests attain the same asymptotic power as the ADF® tests.
That is, the use of dummy variables, given that the econometrician is able to identify the
outlier dates correctly, allows to obtain the same power as if the robust inference method
was employed. This result — which obviously favors the ‘common practice’ of using dummy
variables to account for outlying observations — seems not to hold when the errors are not
Gaussian. Specifically, by comparing the results in tables 3 and 5, it can be seen that QML
tests (in particular, the ADFtQ test) are more powerful than their ADFP counterparts when
the innovations are ¢ distributed. This evidence holds for all the model considered in our
Monte Carlo exercise.

(vi) In terms of (size-adjusted) power, the behavior of the robust M tests of Lucas (1995b)
— ADFT in Tables 4 and 5 — is quite close to that of the ADF® tests. However, for the
models considered here both the coefficient version and the ¢ version of the M tests tend to
be undersized, in particular as the number of outliers grows. As a consequence, under local
alternatives the empirical rejection frequencies of the ADFT tests are much lower than those
obtained using the ADFtQ test. Once again, a UR test based on the ADFtQ statistic seems
to constitute the best compromise in terms of size and (size adjusted and raw) power.

To sum up, under Gaussian innovations the robust QML tests have size and power prop-
erties similar to those of the unfeasible dummy-based tests, in agreement with the theoretical
discussion of the previous section. Under Student ¢ innovations, however, the dummy-variable
approach tends to be inferior to the robust QML tests in terms of power, although QML ex-
ploits no preliminary information on the outlier dates. For a variety of models, the ‘¢’ version
of the robust test, ADFtQ, has very good size properties when used in conjunction with
standard Dickey-Fuller critical values; hence, no new tables of critical values are needed in
practice. The use of a robust inference method such as the ADFtQ test seems to constitute a
better practice than the use of dummy variables, unless innovations, once having been cleaned
from the outlying events, are approximately Gaussian.

8 Robust QML under deterministic time trends

Thus far we have assumed that the process of interest has no deterministic components.
However, it is not difficult to generalize the robust QML approach to the case where the
data are generated according to y; := d; + y;, where y; is as previously defined in (1), and
dy := 'z, 2z being a vector of deterministic components. As in Ng and Perron (2001), we
now consider the pth order trend function, z; = (1,¢, ..., "), with special focus on the leading
case of a linear trend (p = 1), although the analysis remains valid for more general cases,
including, for example, the broken intercept and trend models discussed in Perron (1989,
1990) and Perron and Vogelsang (1992); cf. Phillips and Xiao (1998).

In order to improve power against local alternatives, instead of augmenting the ADF re-
gression with the deterministic terms, we suggest a sequential procedure where initially, along
the lines suggested, e.g., in Ng and Perron (2001), y; is replaced by its detrended counterpart,
say 9, and subsequently the robust QML approach is applied to the detrended series ¢;. This
approach allows us to use detrending methods different from the OLS detrending method,
which implicitly obtains when the ADF regression is augmented by the inclusion of z; among
the regressors.
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In details, and restricting our attention to GLS detrending (Elliott et al., 1996), our
suggested procedure is as follows:

1. a new series §; is constructed by GLS-detrending y; using standard methods” (i.e.,
ignoring the presence of the outliers);

2. robust QML estimation is carried out using ¥ instead of y;;

3. the robust ADF statistics, ADF® and ADFtQ are computed accordingly to the esti-
mates of step 2.

We do not report a formal asymptotic analysis of the model. However, in finite samples
results do not substantially differ from those reported in section 7 for the case of no determin-
istics, as it can be noticed from Table 6. In the table we evaluate the properties of the tests
using pseudo-GLS detrending at & := 1 — ¢/7T", with ¢ = 13.5; size adjusted power and raw
power are computed under ¢ = 13.5. For samples of size T' = 100 and 17" = 200 critical values
are taken respectively from tables 3 (7' = 100) and 7 (7" = 200) in Xiao and Phillips (1998);
for samples of size T' = 400, asymptotic critical values as reported in Ng and Perron (2001),
Table I, are used. For space constraints, results are reported for models Sy (no outliers) and
Sy (four outliers, see section 5) only; the full set of results is available from the authors upon
request.

For T = 200 and T = 400, the behavior of the ADF® tests is quite close to the behavior
of its unfeasible dummy-based counterpart, ADFP. The size of the test is largely acceptable
and the tests allow to obtain sensible power gains with respect to standard ADF UR tests.
Again, the ADFtQ test is preferable over the ADF(i2 test in terms of size and empirical
rejection frequencies. For T = 100 the ADFtQ test is slightly oversized, while under local
alternatives its size-adjusted power is slightly inferior to the power of the unfeasible dummy
tests, ADFP. The coefficient test, ADFOC;?, has good size for T' = 100, but lower power with
respect to its t-based counterpart, ADFtQ.

[Table 6 about here]

Finally, it is worth noting that the size distortions of the standard ADF tests decrease
as the number of outliers increases, as predicted in the theoretical discussion based on the
assumption of no deterministic components.

9 Concluding remarks

In this paper we have analyzed the effect of (random) outliers on (i) inference on the presence
of a single UR, and (b) inference on the coefficients of the stable regressors in a finite-order
autoregression, with or without a UR. With respect to the existing literature, our assumptions
on the outlier process is rather general, allowing for multiple random outliers occurring at

7§iven a time series x¢, t = 0, 1,..., T, the pseudo-GLS detrended series at @ := 1 —¢/T (¢ > 0) is defined
as 7§ = z§ — ¥z, where (z§,z¢) = (w0, (1 —aL)z:), (25, 28) := (20, (1 —@L)z2;) and @ minimizes

S(6™) = 20, (aF — 7272,
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unknown dates and possibly clustering together. Despite the generality of our model, we have
been able to show three general results. First, that in the presence of outliers the null and
local-to-null asymptotic distributions (when they exist) of ADF-type statistics are expressed
as functionals of a Wiener process and a jump process. Second, that clusters of outliers (e.g.,
outliers at consecutive dates) in general lead to inconsistent OLS estimation of the coefficients
of stable regressors. Third, the addition of impulse dummies to the ADF regression allows one
not only to estimate consistently the coefficients of the stable regressors, but also to obtain
UR tests with high power. Notice that the dummy-based approach is unfeasible in practice,
unless the outliers dates are known to the econometrician or, at least, detected correctly.

In the light of these results, we have proposed a feasible, robust QML approach to au-
toregression estimation and UR testing which permits to obtain (asymptotically) the same
consistency and power gains as with the dummy approach but without requiring the knowl-
edge of either the number of outliers or the outlier dates. Two further advantages of the QML
approach is that it can be used in conjunction with standard Dickey-Fuller critical values, and
it allows the practitioner to focus on the economic interpretation of the outlying events, since
a by-product of QML is the consistent estimation of the outlier dates. The QML approach
seems to work quite well in finite samples as well.

Throughout the paper, we have assumed that the lag order of the reference autoregressive
process is known. This assumption should not be viewed as too restrictive. Specifically, since
the autoregressive parameters are estimated consistently by QML when the employed lag
order is not lower than the actual order, standard general-to-specific modeling strategies
such as the sequential Wald test discussed in Ng and Perron (1995) may be used. Simulation
results® (not reported) confirm this claim.

Finally, we believe that the interest of the results obtained for the robust QML approach
goes beyond its ability of delivering UR tests with good size and improved power. Specifically,
in the econometric and statistical literature on modeling outlying events there is often an op-
position between dummy methods and robust methods. The results obtained here show that,
in some circumstances, this opposition is actually inexistent, as the robust QML approach and
the dummy-based approach are asymptotically equivalent. Similarly, while dummy methods
are often considered handy and ad hoc methods without deep roots in statistical theory, here
we show that a dummy-based approach has solid foundations as it arises naturally as the
limit of a (Q)ML approach.

A Appendix

A.1 Preliminaries

First, we note the following direct consequence of the assumption that N7 = Op (1).

Lemma A.1 For any sequence of random variables {z;} which is bounded in P-probability,
also maxi<7 {6¢|2|} = Op (1) as T — oc.

Next, we introduce the companion form version of representation (2). Denote by Z;_; the
stable regressors in (2), i.e., Zy—1 := (Ays—1, ..., Ay;_x) under H. (¢ > 0), and Zy—1 := Y,

8These are available from the authors upon request.
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under Hs. Then
Zt = Hzt,1 + iet, t= 1, ...,T, (Al)

where, with 0 :=0(;_1)x1, we have defined II := (v, (Ix-1: 0)')’, i := (1: 0)" and e; := & +
610y — (¢/T)T'(L)ys—1 under H, (¢ > 0), and II := ((a,7')", T, (0 : I_1: 0)'), i := (1,1,0")
and e; := g; + 60, under Hs. The different meaning of some symbols under H. (¢ > 0) and
Hs should cause no confusion in what follows.

A.2 Standard OLS approach

Lemma A.2 Let Assumptions M and S be satisfied. Then, as T — oo, the following repre-
sentations hold under H. (¢ > 0) and Hs, unconditionally and conditionally on the occurrence
of at least one outlier:

a. S,, =T 12 ZtZ{5 = Fr + op(1 ), where Amin(Fr) is bounded away from 0 in
probability and Fr := o2 ZZ: I (TT4) + Z (Z’; (1)11216,5 M) (3 Hiiét,mt,i)’.

b. Sye:=T71 Zthl Zi_1e. = Gr+op(1), where Gr = thl(Zfzi H’_li(st,mt,i)(&mt).

Further, the followmg representatwns hold under He (¢ >0):

¢ Sy =Tyt =0 [H 27 +op(l).

d. S,y =TS Zwy = 140% [ HerdH, 1 — Fr(1 — 1)y 4 Jp + op(1), where
Jr =0p(1) is deﬁned before eq. (A. 8)

e. Sye:=T! Zt 1yt 160 = 0’T'(1) [HerdHer — ' (I =10 7'Gr + op(1).

f See =T '] €2 =02+ Q4 +op (1), where Q. := S|, 6.

PrOOF. We present the derivations under H. (¢ > 0); those under Hy are analogous. For
convenience initial values are set to zero in this proof.

Let Uy := (ug, ..., us_ps1) and (L) := (L, ..., LF)'. With ¢’ := 7 (I — ].'I)*1 under H, the

following representations are implied by the model equations (1)-(2): Z; = Uy — (¢/T)¢(L)yt,
=1 _
Ur = 3 Wilee + 6-ibr—i) = (1) 'Li(er +6:6,) — LI~ 1) AU, (A2)
i=0
y = oTHer(t/T) — g'Us+ (¢/T)vr, (A.3)

er;erle vy = Zf (1)( —¢/T)'g'Uy_1_;. Introduce also U§ := Z’;(l) IT*e;_; and U? =
Yoico I1%i6;_;0;_;, so that U, = U5 + U , and observe that for a scalar sequence a;,

T
HT_l/Qt;UfatH < (maxa)] Z Z T[Sl 7, s < (max|a|)(max \m\)NT(Z%HH’H)

t=01i=0

= Op(max|a). (A4)

The following magnitude orders hold too: maxi<r ||U3|| = op(T/?) by, e.g., (B.17) of Jo-
hansen (1996), max;<7 |[|[UY|| = Op(T1/2) by (A.4), max;<r |vs| = Op(T'/?) by the weak
convergence of max;<r || T-1/2 3/ (1 —¢/T)"Us_,_,|| and by (A.4) for max;<r || Zfé(l -
¢/T)U? | .|. Similarly, maxe(o1] | Her(s)| = Op(1), and by combining the previous con-
clusions with (A.3), max;<7 |y¢| = Op(T"/?).
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Ttem (a) follows from the relations T-* S UZ(Us) il o232 () = Var(Uf)
(with the latter matrix strictly positive definite), 77! Zthl ud(uly = Fr — Var(U3),
71! 23;1 U?(U35) = op(1) and T2 ZUt[ (L)y:]" = op(1) (both by (A.4), since maxi<7 |y¢| =
Op(T"/?) and maxi<r |[Ug|| = op(T"?)), T2 S[(L)ye][e(L)ye) = op(1) and T2 - Ugu(L)ye)' =
op(1) (by the same uniform evaluations of y; and U¥).

We Write S,e as Gp + /ﬁg + kg — Ky, where (i) Gr = 71 Zthl Uf_lét(%; (i) ke =

- (Zt 1 U e + Zt L US_16:0; — (¢/T) Z;‘L()l UST(L)y:) = op (1) respectively by an
LLN by Lemma A. 1 and since max;<7 [|[Us|| = op(T?) and max<r |y)| = Op(T?);
(i) kg == TS, UL e — (¢/T) S0 UIT (L)) = 0p(1) by (Ad): (i¥) hy = iye + iy,
Ry = <c/T2>2t:1 (Lot ~ (/TN (L)1) = op(1) since maxezr ] = op(T12) and
max;<r |y;| = Op(T"?), whereas kyp := (c/TQ)Zthl t(L)y:6:0; = op(1l) by Lemma A.1.
Thus, S,. = Gr + op(1) as asserted in (b).

Further, from (A.3) it follows that

Syy—a2fH2

T-1
T2 3 g Ui(g'Us — 20T Hep(¢/T))| + 0p(1)
=0
3/2 PR -
T7%2(20)|g Z‘b U{H,r(t/T))| + op(1) = op(1),
t=

the first equality since max;<7 || Uy||, max;<r [v¢| and maxe(o 1) [T 12H,1(s)| are Op(T'/?),
the second one since max;<7 |U¢|| = op(T*/?), and the last one from (A 4). This proves (c).

Next, as thl vi_16¢ = op(T?), tTol v (L)y; = Op(T?) and Zt 1 V1000 = Op(T),
the former two since maxi<r |vy| = Op(Tl/ ), maxi<r |yt| = Op(T1/2) and max;<r |et] =
op(T"/?), and the latter one by Lemma A.1, it holds that, up to an op(1) term,

M’ﬂ

Sye = TV (TY20H r((t —1)/T) — g'Us_1)(e¢ + 8:0¢) — (¢/T?) j}__jol v L(L)y:

o? [ HordHr — cSyy] — ¢ Gr + Op(T71S.y) + op(1) (A.5)

1

.—.H.
Il

by an LLN for 7' S°7 U &, by Lemma A.1 for T-' S°1 U2 ,6,0;, by evaluation (A.4)
for 71 Zt 1 UY &, and since 71 Zt 0 Ly (T(L)—T(1))y is a linear transformation of Sy
Still further, we find using (A.3) that

T-1
Sy = TV Zy(T?0Her(t/T) — g'Zi — (¢/T)g'v(L)ys + (c/T)vr)
t=0
T-1 T—1
= T7'2c Y, UHer(t/T) — T~ %0c 3 o(L)yeHex(t/T) — Szzg + op(1) (A.6)
t=0 t=0

since 71 ZtT:_Ol Z.g't(L)y; is a linear transformation of S,, and S,,. Here

T2 5 Lot/ T) = Luo [ Hip +op() (A7)
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similarly to Sy, and
1 2T—l 1/2 T—-1 T—1
T 20 U H.7r(t/T) =T %( zo Uy Hor(t)T) — 20 AUy Hep(t)T))
t= t= t=
T-1
=T Z‘b (C) M klerrs + 410511) — (T =)~ + D) AU 1) Her(t/T))
t=

T-1
=140 [ H.pdHy — T7V21 -7 Y AUy H 1 (2/T),
t=0
the first equality by (A.2). The term T~1/2 ZZ:OI AUy 1 Her(t/T) equals
T T
T Y2UrHe (1) — T ot S Usler + 6:0;) + T~3/2 5" U H, 1((t — 1)/T)
t=1 t=1
T
T~Y2U%H, 1(1) — 0ci — T7Y2671 3 Ulsim, + 0p(1)
t=1

since U5 = op(T/?), T~} Zf:l fet il o%iby an LLN, 71 23:1 U560 = op(1) by Lemma
AL, TP Ul = op(1) by (A4), T32 3] | UsH,1((t — 1)/T) = op(1) by evaluating
the summands uniformly, 7-32Y"T  UYH.r((t — 1)/T) = op(1) by (A.4). Introducing
Jr =01, — (1= 1) toT~V2[USH.7(1) — o' 3.1, U%6m,], we find that

T—1
T-1/2 Z UtHC,T(t/T) = 1k0'fHC7TdHT + O'ile + Op(l), (A.8)
t=0

which in conjunction with (A.6) and (A.7) gives representation (d). In particular, S,, =
Op(1), and returning to (A.5) we obtain also (e).
Finally, See — 771 Zthl e7 — Q' equals

7172 i (1 — (¢/T)T(L)ys_1)816: — (¢/T?) i (er — 60T (L)yer = op(1),

as can be seen from Lemma A.1 and the relations max;<7 |e¢| = 0p(T"/?) and maxi<7 |y;| =

Op(T"?). B

PROOF OF PROPOSITION 1. We start by deriving a large sample representation of T'w under

the hypothesis H. (¢ > 0); it will be useful also in the proof of Proposition 2. Then we discuss,

simultaneously under H, and Hg, how the coefficients to the stable regressors are estimated.
Under H. (¢ > 0), we defined Z; = (Ayy, ..., Ayy—g4+1)’, so that 7 = My ¢ /M, with

T~ 'Myp = Sye — 54,5..'Sze and T My := Sy — T8, 5,15, = Syy + op(1),

2y zz

the magnitude order by Lemma A.2(a,d). Introduce
sor = —LD(1) 1y [ HerdH.r + 0~ 2J7) Fr ' Gr. (A.9)

Inserting the expressions for My p and Ma r into ©# = My r/Msr, and applying Lemma A.2
to the terms of these expressions, we get

Tr = f(l)[(f HQTdHT + %O,T)(f HZ,T)_l — C] + Op(l), (A.lO)
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since Sy, is bounded away from zero in probability. The last expression is Op(1), and hence,
T =0p (Tﬁl).

Let = collect the coefficients to the stable regressor Z;—1 in (3) under both H. (¢ > 0)
and Hs. We have under these hypotheses that

(é — E), = S;zl (Sze - Til Z;-Erzl Zt—lrt)’

where = is the OLS estimator of = from the regression of Ay, on Y;—1 (Y; = Z; under Hy
and Yy = (yt, Z¢)’ under H., ¢ > 0); r, = 0 under Hy, and r, = 7y;—1 under He, ¢ > 0.
From T-'*S°7  Z; 11y = op(1) (Lemma A.2(d) and 7 = op (1) under H.), and from Lemma
A.2(a,b), it follows that (£ — ) = F'Gy 4 op(1). Thus, = — Z = op (1) if and only if

T t—1
Gr = > (3 T Yis—imy ;) (emy) = op(1), (A.11)
t=1 i=1
where the subscript T of 7 is subsumed. If = = 0, then Ili = 0, G = 0, and consistency of

= for = is trivial. On the other hand, if 7 Lt oo, then

T t—1 00
. . P
1G]l < (max n,)® 3 37 I H|6p—s8¢ < (max 7,)*Np 3 17| = 0
t:6:=1 t=1i=1 t:61=1 =7

since maxy.s,—17; = Op (1), Nr = Op (1) and Y 3%, |[IT|| < oc. This proves the sufficiency
part of the proposition.

We argue next that if = # 0 and if the probability for exactly two outliers to occur
(event Fjs, say) is bounded away from zero, then the divergence 7 L % conditional on FEs is
necessary for Gr = op(1), and hence, for consistency of 2. Indeed, conditionally on Fs,

T
Gl = HHT_lit; Ot—rbemye—r || = IITIT_liII(t}j%ig1 )7,

and since (miny.s,—17;)? is bounded away from zero in probability (also conditional on Es,
since Es has non-vanishing probability), if Gr = op(1) (again also conditionally on FEj), it
follows that ||TI7—1i|| Zo conditionally on Fs, and further, that 7 K conditionally on FEs.
The latter because (possibly upon substitution of II by one of its leading submatrices, and

of i by a matching subvector) we can write ||TI”~1i]| Lo together with Apin(IT) > 0 (because
Z #0), and then, if Il = V~1JV is the Jordan decomposition of II,

V(I 4 > (D) Amin (ATTHTT) > e[ A (S )],

where ¢ := Apin (V'V) Amin ((V*I)'V*I) > 0, and Apin(J'J) > 0 since Apyin(IT) > 0.
Alternatively, let us condition on the occurrence of at least two outliers (event F, ). Let
t:=min{t € {2,...,T} : 6:64—r = 1 and 6;6,—; = 0, ¢ < 7}. Then G = Grin; + Gr,2, where
Gr and Gro depend on {(6,7,) : t # t}. We argue first that if Gr = op(1) conditionally
on ., then also Gr; = op(1) conditionally on E. Indeed, if Gr; would be bounded away
from zero along a subsequence of sample sizes, we would have that n; + Gr2/Gr1 = op(1),
conditionally on E, along that subsequence (we write as if it is the entire sequence). Since the
distribution of 77, is non-degenerate by hypothesis, there exist a > 0 and disjoint closed sets of
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real numbers Fr 1 and Fr such that P (n; € Fr;|Ey) = P(n € Fry) > a,i=1,2. Let Uz
and Ur; be disjoint open sets such that Fr; C Ur,;, i = 1,2. Then, since n; + Gr2/Gr1 =
op(1) conditionally on E,, it should hold that P(Gr2/Gr1 € Ura|E+,n; € Fra) — 1
and P(Gr2/Gr1 € Ura|E+,n; € Fra) — 0, contradicting the joint independence of {n;}
(recall also Assumption S(c)). Therefore, Gr1 = op (1) conditionally on E,. But Gr; =

o7 tin:_ . + Zf;i 1 17167_;m_,;, and by a similar independence argument, II" i = op (1)
conditionally on E,, and 77 — oo conditionally on F, as argued earlier for F>. B
PROOF OF PROPOSITION 2. The expression for ADF,, in (a) follows from (A.10). Note that
9 = op(1) if and only if Gz = op(1), which in the proof of Proposition 1 was shown to be
necessary and sufficient for the consistent OLS estimation of v (= Z under H,, ¢ > 0).
Besides M1 and My 7 introduced earlier, let T*IMg,T = See — 51,5156 = See —
GLFE'Gr + op(1), the last equality by Lemma A.2(a,b). As My r/T = Op (1) was shown
to hold, and M3 /T is bounded away from 0 in probability (by A.2(f) and the inequality
Qr — G}F:FlGT > 0), we find that

ADF, = Myg/T(MagMsr/T? — MEp/T%) V2 = Ta(Mag/T?) (M3 /T) ™2 + 0p (1)
= (f HQTdHQT + %O,T)(%l,T f HC2,T)71/2 + Op(l)

as asserted in (a), with
T = 14+ 0';2(QT - Gr/TijlGT) (A.12)

The expressions in (b) obtain by inserting Gr = op(1) and 4 = v + op(1) into those of (a).
|

A.3 Dummy-based approach

We start from the counterpart of Lemma A.2. A key difference is item (b), where convergence
to zero ensures consistent estimation of the coefficients to the stable regressors.

Lemma A.3 Let Assumptions M and S be satisfied. Then, as T — oo, the following repre-
sentations hold under H. (¢ > 0) and Hg, unconditionally and conditionally on the occurrence
of at least one outlier:

a. S;z_‘s =71 Zleu—ét)zt,lzg_l = F%76+0p(1), where )\min(F%f‘s) is bounded away
from 0 in probability and FF° := Fr — =t 61;(2?;3 Hiiét_mt_i)(zz;é 46, im,_;)

b. SL0 =T 'S (1 —6)Z—1e; = 0p(1).

Further, the following representations hold under H. (¢ >0):

c. SL0=T72 1 (1= 6y, =0? [H2p+op(1).

d S0 =T71S " (1-6)Zi—1yi—1 = Op(1).

e. SI0 =T S0 (1 —6)y—1ee = o*T(1)[[ Hr,edBr —c [ HE ]+ op(1).

foS0 =T (1 6t)et = o2 +op (1).

PROOF. The proof is similar to that of Lemma A.2 and we omit the details. We only note that

Til ZZ:l 6tZt,1et = GT+0P (1), Til Zz;l 6t€t2 = Qép—i-OP(l) and Til Z’f:l 6tyt71(5t+9t) =
o [ HerdCr —~'(I—1I)"'Gr 4 op(1), which together with Lemma A.2(b,f) and (A.5) gives

25



items (b), (f) above, and the relation T=* 321 (1 = 6;)y,—16¢ = 0*T(1) [ H.pdBr + op(1).
Thus,

M=

(= buer = é (1= 80)prer — (¢/T)E(1) é (1~ 631 + op (T)

= To’T'(1)[[ Hr,dBr — ¢ [ H7 /] + op(T),

t

as asserted in (e¢). W
PROOF OF PROPOSITION 3. We follow the steps from the proofs of Propositions 1 and 2.
Under H, (¢ > 0), we have # = M; /M, with

T Mg =Sy ® — (S5,0)(S5%) 1S and T My = Sp % — (SL,70)(S5%)71SE 2,

and by Lemma A.3,

T M1 = o*T(1)[[ Hr.dBr — cfH%C] +op(1) and T *My7 = o ngT +op(1).

Inserting the above expressions for MLT and M2,T into that for 7, we conclude that
T% = T()[(f HordBr)([ Hi) ™ - |+ op(1), (A.13)

since T2 Zle y? ;| is bounded away from zero in probability. Hence, @ = Op(T~1).

Let = denote the dummy-based estimator of = (the coefficient vector associated to Z;_ 1)
from the regression of Ay on Y1 (Y = Z; under Hy and Y, = (y, Z¢)" under H.). With
7+ = 0 under Hy and r; = wy;—1 under H., we have that

(E-2) =(SL) S - T (1 — 8)Zy—1 ).

AsT'S T (1-6)Z 17 = op(T~'/?) (Lemma A.3(d) and 7 = Op (T~1) under H), from
Lemma A.3(a,b) we obtain that = — Z = op(1). Furthermore, notice for reference later that

- T
TV2(E-2) = (SLO)'T Y2 (1 - 6)Zi—12¢ + op(1). (A.14)

=1
The expression for ADFP in (b) follows from (A.13) and the fact that I'(1) is esti-
mated consistently. Further, let T_1M37T = See — 57.(S,.) "1 Se. As My 7/T = Op (1) and

Msr/T L o2 by Lemma A.3(a,b,f), as for the ADF; statistic, we find that

ADFP = T#a(Myr/T*)Y?(M31/T)"% + 0p (1)
= ([ HerdBr)([ H2p) ™2 = c(f H2p)'? + 0p(1)

as asserted in (b).
From the conclusion that 7 is consistent under Hy, it follows that T'(7 — 1) L .

Further, |T(1)] = Op(1) since 4 has a finite probability limit, while s(7) = Op(1) since
(i) the (1,1) element of (S1;%)~! is Op(1) by Lemma A.3(a), and (ii) 62 = Op(1) by its
consistency for o2, implied by the discussion of the coefficient estimators. B
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Next, we present the derivations underlying the third column of Table 1. Upon substitu-
tion of C' by hC', we find

[H? = W*[C2+2h[C.B.+ [BZ=h*[C2+0p(h),
[HdH = h*[C.dC +h([CdB+ [ B.dC)+ [ BedB = h? [ CcdC + Op(h),
[HdB = h[CedB+ [BedB=h[CedB+Op(1).

Substituting also [C] by [hC] = h? [C], accounting for the fact that [C] > 0 a.s. conditionally
on the occurrence of at least one jump, and letting h — oo gives directly the limit in the OLS
case. In the dummy-variable case, for ¢ = 0 the limit of ADFP is ([ C?)~/2 [ CdB, which
by the independence of C' and B is standard Gaussian. For ¢ > 0, its limit is formally

(—c)oo+ ([ C?)™12 [ CdB = —o0 + Op(1) = —cc.

The limits of the coefficient statistic follow similarly.

A.4 QML approach

Let p € (0,1/4) be arbitrary, but fixed in the sequel. Let Ay := AL x A%, x Al x A}, with
AL = {T € R¥: [TV2DZI (T — To)|| < (nT)Y4}, A5, = [020/(1+ £), 20%], AL := [1/2,2]
and A}, := [—~1/2,2]. Define on A the random function w by

w(l, 02, 2", 2*) = (", 02, 2"Qr, x> + Nr)'.

Note that w is a.s. invertible conditionally on the occurrence of at least one outlier.

To streamline the exposition, the proofs in this section are presented under the hypotheses
Ho and H,. The extension to H. (¢ > 0) requires to incorporate the term —(c/T)T'(L)y;_1
into the error e;, see (A.1), which poses no conceptual difficulties.

We start from the following crucial Lemma, where supy,. f(w) := sup,ca,. f(w(x)) for any
matching f.

Lemma A.4 Let Assumptions M and S hold. If P denotes probability conditional on the
occurrence of at least one outlier, the following relations hold as T — oc.

a. supy, Zthl |dy(w) — 8| = Op(TP~/2) and supy,, 23:1 O¢|dy(w) — &4 20 faster-than-
algebraically.

b. sup, [[(97 (@) — I")DF' T2 = op(1).

c. supy, [[(%(w) — 02y, 2"(w) — Qr, @Mw) — Nr)|| = op(1).

PROOF. We write w” and w* for 27Qr and x* + Np. Tt holds that 3./, |di(w) — 8] =
ST (1= 80)de(w) + 27, 64(1 — dy(w)), and we start from the first sum. It satisfies

T NT L (1, w)
1—46)d < —t 1-46 :
R B =S
wr/T 0. T (Ay —T'Y; 1) 1 1
= 1-6 - _
1= w/T (02 + Twm)i/2 21 =) exp 2 (52~ o)
NT + 2 20’50 T (Ayt — F/Yt,1)2
< 1-¢
T — Np + 1/2 (030/(2 +p) + TQT)l/Q ;::1( t) exp( 20? )
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at every point in Ar. As Ny = Op(1) and Qr is bounded away from 0 in P-probability, the
term in front of the summation above is Op(T~3/2). Further, as (1 — 6;)(Ay; — T'Y¢_1) =
(1 —="6¢)(et + (o —T')Y¢—1), on Ap the summation itself does not exceed

(et +(To —T)Y;1)? ar e

= ) < explg (1 + 5) 3 explz (14 5))

T
2 exp(
t=1
where (i) ar is defined in the first line below:
1 2 2 -1 _
17" (I" = Do) " max || Dr Y| + 2st 1D (I" = o) max | Dr Y-y [| max [e|
< (T'ImT)Op(T) + (T I T)20p(TV?)Op((InT)"?) = Op(T*/*),
and (ii) Zle exp(e?(1+ p/2)/(20%,)) = Op(T+3°/%) both using the Gaussianity of ;, and

(ii) using also Lemma 7(a) in Georgiev (2005). Thus,

sup i (1= 6)di(w) < Op(T3/Op (TP Op(THH30/4) = Op(TP/?). (A.15)
Ar t=1
As 1 —dy(w) < [(1 —w?/T)/(w*/T))I:(0,w)/ls(1,w), we find that

T B 1-NT I
t;ét(l—dt(w)) = (I+T 5)1/2 T

(Ayt — F/Yt_1)2( 1 _ i))

t=1 2 Ug + T(/Jn Ug

mathT(Ayt - 1sz&—1)2 ) ox (_mint:(St:l(Ayt - F/Yt—1)2
2(02 + Twn) P 202

> O exp(

< Op(T??)exp( )

uniformly on Ar, since sup,,, w" = Op(1), whereas infy,. w* and infy, 02 are bounded away
from 0 in P-probability. Further, as Ay, — "Y1 = TY26m, 4+ e¢ + (Do — T) Y1,

v 2 - 2 2 /2 2 —1/2~7 112
max(Ay; —T"Y;1)" < 3T max )y + 3maxey + 3sup [[T775(I — o) [|" max [TV

Ar
= OP(T) + OP(IHT) + Op(lnT) = Op(T) (A.16)
uniformly on Ap, so that
maxy<r(Ay; — 'Yy 1)? Op(T)
) 1 < = =
supexp( W SR < oxp(Si ) = exp(Op (1)) = Op(1),

since Q7 is bounded away from zero in P-probability. Finally,

Igun (Ay; —T'Yy 1) > T I(ISHH n? — 21?2 max |nt|(max|et| —l—sup |TY2( —Tp)| max||T 12y,
t:6:=1 t:6:=1 t:6

=T T3/4.
t{ggllerOP( )

It follows that infs, ming.s,—1(Ay — ['Yi—1)? L  at a linear rate, since ming.g,—1 77 is
bounded away from 0 in P-probability, and hence,

mings,—1(Ay; — 'Y, )?
sup exp(—

infa, ming.s,—1 (Ay; — F/Yt—l)g) P
A 202

— 0

< _
) < exp( =
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faster-than-algebraically. By combining the above magnitude orders, we can conclude that

SUp,,., S 661 — dy(w)) Lo faster-than-algebraically, which is the second relation in (a).
Combining it with (A.15) yields the first relation there.

Given part (a), the remaining conclusions of the lemma follow naturally. We proceed with
part (b). Let wd(w) := (1 — &;)/02, so that wi(w) — wd = K1 (w)(ds(w) — ;) + Ka(w)ds, with

1 1
52

o2 o2+ Twn

sup [K1(w)| = sup| =O0p(T7).
Ap

Arp

= Op(1l) and sup|Ks(w)| =sup ———
| = Op(1) Af| 2(w)] P T

We show that if w;(w) are replaced by wf in the expression for ®', the effect is asymptotically
negligible. Specifically,

(®"(w) —TH) Dt = i wy(w)(eg + 6:04)(Dp Y1) t; wi(w)Dr Y1 (DrY 1) |
B - (A.17)

where, first, || N7, (wi(w) — wd) (¢ 4 6:0:)(DrYs—1)'| is bounded by

T

I t;l 8¢ [K1(w)(di(w) = 1) + Ka(w)] (¢ + 00)(DrYia)'|| + [K1(w)]] é(l = 6)di(w)er(DrY i)'

The two norms are evaluated separately. The first of them does not exceed
1/2 I
(maxc|ee| + 1777 max [,]) max [| Dr Y-l [!Kl(W)! t;l 61(1 — di(w)) + [K2(w) | N7
T
= Op(T)| 32 (1 — ds(w)) + Op(T™)] = Op(1),
=1
see part (a). The second norm is bounded by

T
— = 2p
mae o max | Dr Y| 25 (1 = 8)dy(w) = Op(T™)

uniformly on Az, by (A.15) and the Gaussianity of ;. We conclude that, also uniformly,

i ’(Ut((x))(ft + (Stet)(DTYt,l)/ = iZ i(l — 6t>(€t + 6t0t)(DTthl)/ + OP(T2P). (A18)

t=1 Oz t=1
Further, similarly, | S, (wi(w) — wf)(DrY,—1)(DrY,-1)'| is bounded by
I /
| 22 [Ki(w)(de(w) = 6¢) + K2(w)6e] (DrYe—1)(DrYi—1)||
t=1

T
< max | DrYe|?|[Ki()] X [di(w) = 8] + [ Ka(w)| N7 | = Op(T7H1/?),
= t=1
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uniformly on Ar, so that, also uniformly,

té wt(w)(DTYt_l)(DTYt_l)’ = i 3 (1 — 6t)(DTYt_1)(DTYt_1)/ + OP(TP+1/2). (Alg)

o i3
Inserting this and (A.18) into (A.17), we see that (®'(w) — To) D T2 equals
-1

T T
T71/2 Z (]. — 6t)(5t + (Stet)(DTYt_l)/ |:T71 Z (]. — 6t)DTYt_1(DTYt_1)/ —+ OP(].)
t=1 t=1

uniformly on Ar, since the matrix in brackets convergence to a positive definite limit, see
Lemma A.3. The main term in the above display is (I' — Fo)’D:FlTlﬂ, which proves (b).

Consider next part (c). We have supy,. |®*(w) — Np| < supy,,. ST |de(w) — 6] = op(1)
by (a). From here,

(1= de(w), Ny de(w)) (Aye = T'Y'e-1)?

M=

ap = sup ||(®°(w), ®"(w)) — T~ *

Ap t=1

dMNw) Np — dMNw)

= sup [[(2°(w), ®"(w) + T~"0?) diag( T ) = (0,77 a2)|| = op(1).

Ar Nr
Next, from the triangle inequality,
T
sup [|(®°(w), " (w)) =T S (1 - 6, NT_lét)(Et +640:)%|| < ar + By + s (A.20)

Ap t=1

with ap defined and evaluated above, and with
T
By =T"" Sup Y211 = di(w), Ny de(w)) = (1= 8¢, N '60))(Aye — T'Y )7
T t=1
T
< T+ N2 max(Agy — T 1)) 3 16— du(w)| = Op(17712)
< i=1
using the upper bound from (A.16) for max;<r(Ay; — F’Yt,l)Q, and
1 a 1 / 2 & 1 2
’}/T = T_ S&lp H Zl(l — (St, Nr; 6t)(Ayt — F Yt—l) — Z(l — 6t, N,IT (St)(Et + 6t9t) H
r o i= i=1

As Ay —T"Y 1 = &1 + 6104 + (T — T9) Y¢—1, we have for v € {§,1 — 6} that

T
T3 we((Aye = T'Ye1)® — (60 + 6:81)*) = (L = Lo)' Dy Sy D7 (T — To) + 2(I" — L)' D' Sy
t=1

with sup,,, [| D7 (I' = To)|| = o(1) and

M=

T
=T o(DrYe1)(DrYen) = Op(1), Sip:=T""
t=1 t

Ut(DTYt—l)(Et + Ut(st@t) = Op(l),

1
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the display as a consequence of Lemmas A.2 and A.3. Hence, also vy = op(1), and so is ag +
Br 4y in (A.20). As T ST (1—68;, Nt o) (64 +8:00)2 = (T 1 €2, Qr) +Op(T~1/?),
the proof is completed.

We are now ready to prove Theorem 1.
PROOF OF THEOREM 1. We define #, whose existence is asserted in (a), as w(¢), where

¢ = (I ,62,577,5/\)’ is a measurable global maximizer of A o w on Ap. The existence of ¢
follows, e.g., from Property 24.1 in Gourieroux and Monfort (1995). To show that 0 is a local
maximizer of A w.p.a.1, we check that ( is interior for Ar w.p.a.1. Specifically, we give the
details for interiority of I for A:FF and omit the rest, which is similar.

Since the function |[T%/2D;*((-) — T'g)|| is differentiable at all points different from T,

and I'g is interior for A:FF, it follows that I' satisfies the first-order condition

(A ow) TY2DZHT - T)

o Py (A-21)

where ;1 > 0 is a Lagrange multiplier such that u(|T"/2D; (' — Tp)|| — (InT)'/4) = 0.
Inserting the expression for the derivative yields

T . . .
3 w0)Yiea (A = YeaF) = I T) D (E - 1),

and further, since Ay, = Y] 1o + &t + 6404,

M=

wi(0) DrYi—1(er + 8:0; + (DrYy-1)' D3N (To — 1)) = uT2(InT) V4T — Tp).

t=1

Using (A.18) and introducing Sllf‘s(é) = T7! Zle w(0)Dr Y1 (DrYy_1), we find next
that

TS15° +TSi°(0) D' (T — ) + Op(TY?) = p&>T 2 (InT) V4T - T),

where 150 = T3] (1 — 6)DrY—16, = Op(T~/?). Premultiplication by (I' — I'p)' D
gives

S —1 1-8/7\1 1 - - —1 1/2y <2 (f - FO),D:Fl(f —Io)
(- FO)IDT TSy (9)]DT (Lo =T)+ (' - IjO),DT Op(T / ) = o T71/2(ln T)1/4

Finally, by majorizing the left side, for outcomes such that g > 0 (and hence, I # Ty), it
follows that

— T2 DN (T = To) [P Amin (1% (0)) + (T' = To) D7 Op(TY/?) > 0.
However, for such outcomes the defining constraint of Ag constraint is binding, so that
—(In 7)Y Amin (S11%(0)) + Op((In T)M4) > 0.

AS Anin(S172(0)) = 022 Amin(S177°) +0p(1) by (A.19), and Amin(Si?) is bounded away from
zero in P-probability by Lemma A.3, the inequality in the above display can only hold with

31



P-probability approaching zero. Consequently, P({ > 0}) — 0, meaning that I' w.p.a.1
satisfies the first-order condition (A.21) in the form (9(A o w)/0I")[; = 0, or equivalently,
[" = &p(0). From Lemma A.4(b) and the fact that T'/2D;' (T —T'g) = Op(1) it follows that
TY2DZHT — Tg) = Op(1), and from the definition of AL, T is interior for AL w.p.a.l. A
similar argument for the other components of ¢ lets us conclude that  is a local maximizer
of A (0) w.p.a.l.

The remaining asserted properties of 0 are straightforward from ¢ € A7 and Lemma A 4.
|

PROOF OF COROLLARY 1. Consistency in part (b) and the statement about ADFE follow
from Theorem 1(c) and Proposition 3(a), whereas the statement about ADFtQ follows from
Theorem 1(c) and (A.19), with w; evaluated at . For asymptotic normality, note that by
Theorem 1(c) it is enough to establish it for the dummy variables estimator. From (A.14)
and the representation Z; = U; — (¢/T')¢(L)y; (see the proof of Lemma A.2 for notation), we
have that T'/2(Z — 2) equals
e L& 0 710\ ~1p—1/2 I e 0
(Var(U5) +T tzl (1-6)UNTY)) T tzlu —6¢)(Uf_1 + Ug_q)es + op(1).

By the assumed independence of {U$} and {U?}, the main term above converges weakly to
N (0,1) conditionally on {UY}, and hence, also unconditionally. B
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TABLE 6: EMPIRICAL SIZE, SIZE ADJUSTED POWER AND EMPIRICAL REJECTION FREQUENCIES OF
STANDARD (ADF), DuMMY-BASED (ADFP) AND ROBUST QML (ADF?) ADF TESTS. GAUSSIAN
ERRORS, TRENDED DATA.

Size Model Sy Model Sy

T v  ADF, ADF, ADFQ ADF? ADF, ADF, ADFP ADFP ADFQ ADFP

100 —0.5 4.5 4.5 4.5 4.6 6.2 6.4 1.6 4.3 3.8 6.8
0 4.4 4.4 4.4 4.6 6.6 6.6 1.9 4.5 4.2 7.2
0.5 4.6 4.4 4.6 4.5 6.6 6.4 2.1 4.3 4.3 7.0

200 —05 5.5 5.6 5.4 5.7 7.8 8.0 2.1 5.3 2.5 6.0
0 5.0 5.1 5.0 5.3 7.3 7.6 2.0 4.6 2.3 5.3
0.5 5.4 5.4 5.4 5.5 7.4 7.6 2.4 5.1 2.7 5.7

400 —0.5 4.9 5.2 4.9 5.3 7.1 7.5 2.0 4.6 2.1 4.8
0 5.0 5.1 4.9 5.2 6.9 7.2 1.8 4.5 1.9 4.7
0.5 4.9 5.0 4.9 5.2 6.9 7.2 1.8 4.6 1.9 4.7

Power Model Sy Model Sy

T v  ADF, ADF, ADFQ ADF? ADF, ADF, ADFP ADFP ADFQ ADFP

100 —05 496  50.5 49.6 50.7 49.9 499 69.2 72.2 55.4 60.9
0 474 479 A7.4 46.9 44.8 446 64.1 68.0 51.1 56.8
05 382 389 38.1 38.8 372 373 50.3 58.6 41.1 47.3

200 —0.5 497 504 49.9 50.3 486 484 69.3 72.3 67.3 70.8
0 512 512 51.1 51.2 488 494 70.0 73.3 67.7 71.8
0.5 434 437 43.5 44.0 432 431 59.8 65.2 58.4 63.6

400 0.5 507 507 50.9 50.7 49.8  49.8 71.0 75.0 70.5 74.9
0 499 503 49.8 50.3 50.0  49.4 72.7 75.3 72.4 745
0.5 473 481 47.1 AT.4 46.6 466 67.0 70.9 66.5 70.8

Empirical Model So Model Sy

power

T v  ADF, ADF, ADF®? ADF? ADF, ADF, ADFP ADFP ADFQ ADFF

100 —0.5 470 480 47.0 48.6 55.6  56.4 41.7 68.6 47.8 68.9
0 449 452 44.8 45.6 53.0  52.9 39.0 65.4 45.1 65.2
05 362  36.0 36.2 36.5 44.5 439 30.9 54.7 37.4 55.3

200 —05 521 536 52.0 53.9 60.8  62.1 48.0 73.9 48.8 74.9
0 512 522 51.1 52.4 59.2  60.2 45.8 71.9 47.1 73.3
0.5 455  46.3 45.6 46.7 54.0  54.8 40.9 65.7 42.1 67.0

400  —05 499 516 49.9 51.8 58.8  60.4 45.9 73.3 46.2 74.0
0 497 511 49.5 51.4 581  59.7 45.9 73.0 46.0 73.2

0.5 46.7 48.3 46.6 48.6 55.6 56.9 41.6 69.0 42.0 69.7






