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Abstract

To forecast at several, say h, periods into the future, a modeler faces two techniques: iterating one

step ahead forecasts (the IMS technique) or directly modeling the relation between observations

separated by an h-period interval and using it for forecasting (DMS forecasting). It is known that

unit-root non-stationarity and residual autocorrelation benefit DMS accuracy in finite samples.

We analyze here the effect of in-sample location shifts on the performances of the two forecasting

techniques and relate them to the size of the post-break window and to the forecasting horizon of

interest. We also consider two versions of intercept correction (IC), a robust forecasting technique.

We show analytically and by simulation that breaks provide a rationale for using other methods

than IMS: DMS and IC particular. IMS only performs well relative to the other techniques for shifts

occuring towards the end of the sample. In an empirical application, we revisit an oft-used dataset

of G7 macroeconomic series and corroborate our theoretical results.
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1 Introduction and framework for analysis

When a forecaster uses a model with a given periodicity but wishes to forecast at several, say

h > 1, periods into the future, she is faced with a choice between iterating one-step ahead forecasts

(iterated multi-step of IMS) or directly modeling the relation between the end-of-sample observation

and its hth successor in order to forecast the latter (direct multi-step, or DMS). The direct technique

has a long pedigree but it was originally thought that it brought no benefit, until Weiss (1991)

found asymptotic relevance in matching estimation and forecast efficiency criteria, in particular

in the presence if model misspecification. From them, many authors have produced theoretical

analyses. In particular Tiao and Xu (1993), Clements and Hendry (1996), Chevillon and Hendry

(2005) and Proietti (2008) studied misspecified ARIMA processes, Bhansali (1996, 1997), Brodsky

and Hurvich (1999) and Bhansali and Kokoszka (2002) analyzed long memory processes, Haywood

and Tunnicliffe-Wilson (1997) focused on the frequency domain, Schorfheide (2005) allowed for

asymptotically vanishing misspecification. Recently Findley, Potscher and Wei (2004) and Ing

(2003, 2004) derived results for very general settings, see Chevillon (2007) for a survey of the

literature.

These theoretical studies have spurred a number of empirical analyses of the relative merits of

IMS and DMS forecasting. Many have concluded, like Weiss (1991), that the theoretical benefits

did not appear clearly in practice. Indeed, Lin and Tsay (1996), Kang (2003), Eklund and Karlsson

(2005), Jorda and Marcellino (2007), Schumacher and Breitung (2008) and Proietti (2008) found

evidence both in favor and against DMS. Together with the major analysis of 171 U.S. monthly

macroeconomic time series by Marcellino, Stock and Watson (2006), which strongly favours itera-

tive forecasting techniques, all these forecast comparisons do not point towards a real improvement

brought by DMS. By contrast, Tiao and Tsay (1994) and Tsay (1993) do find significant benefits

in using DMS. Yet, many authors who found evidence against direct multi-step used post-war

U.S. data (although over extended periods). The United States has not undergone massive shifts

in this era and by aggregation over such a large economy, some relative macroeconomic stabil-
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ity is expected. But several theoretical analyses—as in Peña (1994) for breaks, Bhansali (1997)

whose framework of long memory can be seen in the light of Perron and Qu (2007) as relevant for

regularly occurring breaks, and Chevillon and Hendry (2005) for negative serial correlation that

could be induced by occasional location shifts—point towards deterministic shifts as a potential

source for the success of DMS in finite samples. This has led **** (2009) to perform a forecast

comparison using data for South Africa, an economy that has suffered many regime changes over

the last decades. Focusing on the GDP and using 779 different techniques, this author has found

substantial evidence sustaining the use of DMS in multivariate models: it outperformed iterated

methods, unless the latter were ‘intercept corrected’ as in Clements and Hendry (1998).

In view of the recent evidence, we propose in this paper to analyze the theoretical properties of

DMS forecasting in the presence of breaks. As shown in Clements and Hendry (1999), there is no

hope to render a forecasting model systematically robust to future breaks in the data generating

process: we must therefore focus on breaks occurring prior to the forecast period. Clements and

Hendry (1999, 2006) also note that the class of breaks most detrimental to the forecast accuracy of

econometric models is that of deterministic shifts, and the most pernicious are location, or intercept,

shifts which are often modeled by impulse or step dummies. This result has been confirmed

by Pesaran and Timmermann (2005) who consider the impact of location shifts and breaks on

autoregressive coefficients: the latter induce no systematic bias in conditional and unconditional

forecasts. Since we intend to assess the properties of direct multi-step forecasting, and given that

we intend to generate ‘post-break’ forecasts, a specific case comes naturally: when the shifts occur a

few periods before the forecast origin, so that, depending on which technique is used, their influences

on estimation vary. Pesaran and Timmermann (2005) derive optimal one-step ahead estimation

windows for autoregressive models in this framework. Here, we allow for varying horizons and, in

addition, we analyze the improvements that intercept correction brings to forecasting.

The plan of this paper is as follows: we first present the VAR model under analysis and then,

in section 3, the properties of multi-step VAR forecasting when the DGP undergoes a location

shift and where we abstract from estimation issues. In the following sections, we then focus on

3



the influence of the break on estimation (section 4) and then on forecasting with a misspecified

model (section 5). We provide results from simulation in section 6. In section 7, we proceed to an

empirical application. Finally we conclude about the use of multi-step methods in the presence of

breaks in section 8.

2 The model

In this paper, we analyze the particular case of a data generating process which can be written as

the n–variate VAR(1):

xt = γ + Πxt−1 + εt, for t = 1, ..., T, (1)

where the disturbances, εt, are covariance stationary, with zero mean and variance-covariance

matrix Ωε (we will restrict the dynamics of the disturbances below). We allow for the eigenvalues

of Π to be less than or equal to unity in modulus, thus inducing integration and cointegration. The

vector xt can be quite general, but we assume that it does not comprise a deterministic component,

yet nonzero γ and |Π− I| = 0 together imply that the series may exhibit deterministic trends. We

assume that we are interested in the univariate process {yt}, where there exists P ∈Rn, such that

yt = P′xt.

In this context, intercept breaks can be modeled by an innovative shift from γ to γ∗ = γ +∇γ, at

the date T0 = T − k, where k ≥ 0. We denote by {x∗t } the process when a break occurs and {xt}

the underlying, no-break, process. Hence, for i ≥ 0, letting Π{i} =
∑i−1

j=0 Πj , (and Π{i} = 0, for

i ≤ 0), then:

x∗T0+i = Π{i+1}∇γ + xT0+i. (2)

This choice of break is motivated by which is corroborated by Pesaran and Timmermann (2004,

2005): namely that it is location shifts that are the main source of forecast failure. The impact of

the break on estimation and forecasting depends on whether xt is stationary. It is well known that
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if xt ∼ I (0) then in Π{i+1} → (In −Π)−1 as i →∞, i.e. the location shift in (2) is felt progressively

and induces an asymptotic mean change. By contrast, for xt ∼ I (1) , Π{i+1} = O (i + 1) and ∇γ

induces a deterministic trend shift. Since our purpose is location shifts, we mainly focus below on

I (0) processes, but will occasionally comment on integrated variables.

In this article, we compare four forecasting techniques. Two are based on the VAR(1), but

with different estimation methods: when (1) is estimated by ordinary least-squares, the corre-

sponding multi-step parameter estimates and forecasts as referred to as iterated multi-step (IMS).

Alternatively, DMS consists in OLS estimation of the multi-step model, for h > 1

xt = γh + Πhxt−h + υt, for t = h, ..., T, (3)

where υt is not modeled, but still assumed to have zero mean. Parameter estimates are in turn

used to compute the forecast of xT+h from a forecast origin at T . Two additional methods will

be examined. Their aim is to put the forecast ‘back on track’ by adding to the forecasts from the

previous two models the differences between the observed forecast origin and its in-sample fitted

values from the estimated models (see Hendry (2006) for an analysis of its use in forecasting with

econometric models). We refer to these methods as one-step and multi-step intercept corrections

depending on the sample residual used. One-step intercept correction necessarily uses the IMS

model (and we refer to it as IC), whereas multi-step can relate to either of IMS or DMS (and hence

IMSIC or DMSIC).

3 Forecasting in the presence of breaks

We first assume that the presence of a structural break does not affect estimation significantly and

that the model used for forecasting is therefore the pre-break one. This hypothesis corresponds

to cases where k is small relative to the sample size and the model is well-specified for the data

generating process in the absence of the break. Pesaran and Timmermann (2005) show that in

such a situation, it can be optimal not to estimate the model uniquely using post-break data owing

to the small available sample.
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3.1 Multi-step forecasting

If it is desired to forecast h periods ahead from an end-of-sample forecast origin T , we denote by

x̂∗T+h|T the IMS forecast resulting from the wrong—assumed constant—model, as given by:

x̂∗T+h|T = Π̂{h}γ̂ + Π̂hx∗T ,

where Π{h} =
∑h−1

i=0 Πi. Neglecting parameter estimation as a first analysis, so Π̂ = Π, we express

the values with respect to the no-break (unobserved after T0) process, xt, generated by (1). From

(2), x̂∗T+h|T decomposes into:

x̂∗T+h|T = Π{h}γ + Πhx∗T =
(
Π{h}γ + ΠhΠ{k+1}∇γ

)
+ ΠhxT ,

where the component ΠhΠ{k+1}∇γ corrects the misspecification effect in the forecasting model

and arises from using the observed, post-break, x∗T , instead of the hypothesized xT . Now, the

actual realized value is: x∗T+h = Π{h}γ∗+Πhx∗T +
∑h−1

i=0 ΠiεT+h−i, with resulting forecast error:

ê∗T+h|T = x∗T+h − x̂∗T+h|T = Π{h}∇γ +
h−1∑
i=0

ΠiεT+h−i. (4)

ΠhΠ{k+1}∇γ does not appear in (4) since it is the true post-break forecast origin which is used

by the forecaster; yet the forecast is biased:

E
[
ê∗T+h|T

]
= Π{h}∇γ, and V

[
ê∗T+h|T

]
=

h−1∑
i=0

ΠiΩεΠi′ + 2
h−1∑
i=0

h−1∑
j=i+1

ΠiΘ|i−j|Πj′, (5)

where Θm = E
[
εtε

′
t−m

]
. The DMS forecasts are:

x̃T+h|T = γh + Πhx∗T , (6)

with forecast errors

ẽ∗T+h|T = Π{h}∇γ+
(
Π{h}γ − γh

)
+
(
Πh −Πh

)
x∗T +

h−1∑
i=0

ΠiεT+h−i

which differ from the IMS only insofar as γh 6= Π{h}γ and Πh 6= Πh. Hence, analysis of their

properties requires that we focus on model estimation. But we, beforehand, consider intercept

correction.
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3.2 Intercept Correction

A modeler could suspect that a break has occurred and intercept-correct the model to produce a

more robust forecast. If she has no hypotheses about the date of the break and simply uses the

IMS model, then the correction from the latest observation is δIC = x∗T − x̂∗T |T−1 = ∇γ + εT , and,

added to the IMS forecast, yields the IC forecast error:

ê∗IC
T+h|T = x∗T+h −

(
x̂∗T+h|T + δIC

)
=
(
Π{h} − In

)
∇γ +

h−1∑
i=0

ΠiεT+h−i − εT .

so that the forecasts are, now, unbiased for h = 1. At longer horizons, the behavior of the forecast

bias is similar to the non-corrected version, bounded if xt ∼ I (0) and monotonic in h for integrated

processes. Yet, the bias of IC is smaller than that of the non intercepted since
∥∥Π{h} − In

∥∥ < Π{h}.

Only two situations bring new patterns: first if the dynamics only depends on extraneous variables,

i.e. Π = 0n×n, then IC forecasts are unbiased. Second, in the case of over-differenced series were

Π = −In, then IC brings unbiasedness at odd horizons. These results hold whether IMS or DMS

is used since these methods do not differ when the model is well-specified (but for the break) and

parameters are known. When Π = 0n×n, the result is in line with the approach in Clements and

Hendry (2004). Here the extraneous variables are contained in εt, they can be correlated and

undergo location shifts that will translate into nonzero ∇γ.

As seen in Clements and Hendry (1998), the IC forecast error variance is not necessarily larger

than in the uncorrected case if εt is autocorrelated:

V
[
ê∗IC

T+h|T

]
= V

[
ê∗T+h|T

]
+ Ωε − 2

h−1∑
i=0

ΠiΘ|h−i|

The forecast errors of the IMS and IC models do not depend so far on the date of the break. So no

information about this event is yet necessary; but if the modeler has some belief about whether and

when this may have happened, she could try to take advantage of it and use multi-step methods.

When using an intercept correction, with DMS forecasting:

δDMSIC = x∗T − x̃∗T |T−h = x∗T −
(
γh + Πhx∗T−h

)
(7)

which rewrites as δDMSIC =
(
Π{k+1} −ΠhΠ{k−h+1})∇γ +

∑h−1
i=0 ΠiεT−i. The forecast error
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results in:

ẽ∗DMSIC
T+h|T = x∗T+h −

(
x̃∗T+h|T + δDMSIC

)
=

(
Π{h} −Π{k+1} + ΠhΠ{k−h+1}

)
∇γ +

(
1− Lh

) h−1∑
i=0

ΠiεT+h−i

with variance

V
[
ẽ∗DMSIC

T+h|T

]
= 2V

[
ê∗T+h|T

]
− 2

h−1∑
i=0

h−1∑
j=0

ΠiΘ|h+i−j|Πj′.

Whereas the DMSIC forecast error variance is larger than that of IMS and IC, except for some

values of {Θm}, there exists a possibility that the bias may be lower. With known parameters,

DMSIC and IMSIC coincide and Πh = Πh. Then

E [δDMSIC ] =


0n, if h ≤ k + 1,(
Π{h} −Π{k+1})∇γ, if h > k + 1.

(8)

so that the DMSIC forecast bias is zero as long as the forecast horizon is ‘low’ compared to the

post-break sample size, k. Even at horizons beyond k + 1, the forecast bias is lower than obtained

by the other methods. This result obviously comes at the cost of higher variance if εt ∼ i.i.d.,

although not necessarily so, depending on the autocorrelation structure of {εt}.

For h > k + 1, if the process is stationary Π{h}
z −Π{k+1}

z = (Ir −Πz)
−1 (Πk+1

z −Πh
z

)
,where,

for h > k + 1,
∣∣Πh

z

∣∣ <
∣∣Πk+1

z

∣∣ . As for integrated variables, the second line on the right-hand side

of (8) becomes a trend O (h− k − 1) . Asymptotically, for ∇γ 6= 0 and h > k + 1

xT+h ∼ I (0) : E
[
ẽ∗DMSIC

T+h|T

]
→


(In −Π)−1 Πk+1∇γ, if h →∞, and k constant,

0n, if k, h →∞,

xT+h ∼ I (1) :
∥∥∥E [ẽ∗DMSIC

T+h|T

]∥∥∥→ +∞, if |h− k| → ∞, (k constant or not).

We summarize these results in the following proposition.

Proposition 1 In the known-parameter model (1) with εt covariance stationary and mean zero,

break date T0 = T − k < T and where the forecast is intercept corrected using expression (7),

denoting by h the forecast horizon, then:

1. The forecast bias is zero if the dynamics of xt only depends on stationary extraneous variables
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2. At ‘low’ horizons (i.e. h ≤ k + 1), the forecast bias is zero.

3. At ‘longer’ horizons:

(a) For xt stationary, the forecast bias is finite and tends to zero as both h and k become

large.

(b) For xt over-differenced (Π = −In), the forecast bias is (−1)k−(−1)h+1

2 ∇γ

(c) For xt integrated of order one, the forecast bias is of the order of (h− k − 1)∇γ

If the process is stationary, and for fixed k, the DMSIC forecast bias is therefore zero for low

horizon h, but converges to a fixed value as h increases; but this value is decreasing in k the

time interval between the break date and the forecast origin. In the non-stationary situation, the

forecast bias would explode to infinity with (h − k − 1)∇γ if the model were never re-specified

after the break had occurred. Indeed k only becomes large if the sample size so does but if the

modeler does not notice that a break has occurred. This is unlikely in practice unless ∇γ is small

compared to γ. Point 2 in the previous proposition is crucial for the interest in multi-step intercept

correcting: this technique is beneficial when the time interval between the shift and the forecast

origin is larger than the horizon.

We have shown that, in the context of known pre-break parameters, multi-step methods can be

useful as corrections for the shift. We must analyze the case of estimated parameters to determine

whether DMS can improve the accuracy of the forecasts. This is what we explore next.

4 Estimation in the presence of a location shift

This section shows how, in the presence of an intercept shift, parameter estimators can be thought

of as weighted averages of those obtained over the pre- and post-break subsamples. For this, we

let k/T → c ∈ [0, 1] and define g such that ∇γ = γg (if γ 6= 0, or we let ∇γ = g)
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4.1 Iterated multi-step estimation over two regimes

In the framework above and in the context of an intercept shift, we assume that the parameters

(γ∗,Π) are estimated by ordinary least-squares. We denote by Π̂( ) the pre-break slope estimator,

using the sample up to T0− 1 and Π̂(∗) using the remaining observations. The overall estimator is

Π̂, which can be written as (In − λ) Π̂( ) + λΠ̂(∗) with weight λ =
(
Π̂− Π̂( )

)(
Π̂(∗) − Π̂( )

)−1

.

Let ∆̂Π = Π̂(∗) − Π̂( ), then in finite samples E
[
∆̂Π

]
6= 0 but it vanishes asymptotically and is of

order Op

(
T−1

)
(see below). More generally, as (k, T ) → (∞,∞) the three estimators Π̂, Π̂( ) and

Π̂(∗) converge to Π and we can assume that ‖E [λ∞]‖ ≤ ∞, where λ∞ = plim(k,T )→(∞,∞)λ. We

disregard the case where k is held constant while T →∞ for which ‖λ‖ diverges. We also let the

intercept estimator weight µ =
(
γ̂ − γ̂( )

)(
γ̂(∗) − γ̂( )

)−1

and xi = T−1
∑T

t=1 xt+i, then

γ̂ = x− Π̂x−1 =
(

1− k

T

)[
x( ) − Π̂x( )

−1

]
+

k

T

[
x(∗) − Π̂x(∗)

−1

]
→

T→∞
γ (In + cg) (9)

hence for T → ∞, µ → cIn, which we can rewrite as µ → c, i.e. the weight is asymptotically

scalar.

Our interest lies in the iterated multistep parameters
(
Π̂h, γ̂{h}

)
. First the slope estimator, by

Taylor expansion of
(
Π̂( ) + λ∆̂Π

)h

yields λ{h} = hλ+op

(
∆̂Π

)
, but using

(
Π̂(∗) + (λ− In) ∆̂Π

)h

leads to
(
In − λ{h}

)
= h (In − λ) +op

(
∆̂Π

)
. By interpolation we obtain λ{h} ≈ hλ (In − λ) +op

(
∆̂Π

)
.

This is an approximation that can be shown by induction to hold except around a neighborhood

of k = T/2. Now, the multi-step intercept estimator is γ̂{h} =
(∑h−1

i=0 Π̂i
)

γ̂. We show in the

appendix that this rewrites as

γ̂{h} =
(
I + λ{h}

)
γ̂

( )
{h} − λ{h}γ̂

(∗)
{h} + Op

(
∆̂Π

)
(10)

The multistep weights µ{h} are therefore defined as −λ{h}.

The conclusion from this analysis is that the intercept estimated over the whole sample is a

weighted sum of those over the pre- and post-break subsamples, with respective weights that are

non-linear. In terms of IMS estimators, the weights for the slope are linear in h.

In order to obtain a finite sample approximation, we resort to univariate processes since they

capture the main message. Yet, Pantula and Fuller (1985), Maekawa (1987), Grubb and Symons
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(1987) and several articles by Kiviet and Phillips (1999 and with Schipp, 2005) have derived

properties of the autoregressive slope in more general ARX processes which could also be used.

Unfortunately, allowing for exogenous variables poses a problem when the aim is forecasting since

the modeler must then avail herself of accurate forecasts thereof. Hence we restrict our attention

to autoregressive processes and the AR(1) in particular as finite sample approximations exist in

the literature. We denote by (γ, π) the univariate parameters.

First regarding the one-step estimators, the approximation by Kendall (1954), which was shown

by Nankervis and Savin (1988) to work well for |π| < 0.8, is

E
[
π̂( ) − π

]
= −1 + 3π

T − k
+ O

(
1

(T − k)2

)
.

This implies that the value of the intercept does not matter for the slope estimator bias. Hence

using the corresponding expressions for equivalent approximations concerning π̂(∗) and π̂

λ =
k

T

k

2k − T
+ Op

(
T−2

)
→

T→∞

c2

2c− 1
(11)

which is negative if c < 1/2 and not defined if c = 1/2 since the approximation then yields ∆̂Π ≈ 0.

In practice, the finite sample expectation of the estimator also depends on the initial value of the

process in the sample. Kendall’s approximation does allow for this and it will in practice depend

on xT0 . Yet we use (11), as we will see in section 6 that it is accurate enough to serve our purpose,

and it yields:

λ{h} = −µ{h} →
T→∞

−h
c2 (1− c)2

(2c− 1)2
.

This approximation cannot apply for large horizons h > [Tc] , but it yields λ{r} ≈ −Tr c2(1−c)2

(2c−1)2
if

we let h/T → r < c.

4.2 Direct multi-step estimation

The case of multi-step estimation is very comparable to one-step. But, in OLS estimation of (3),

the size of the post-break subsample is k, irrespective of the horizon h, whereas the number of

observations in the pre-break subsample decreases with h. The loss of information essentially occurs
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by dropping the first observations of the sample. The efficiency loss generally attributed to DMS

estimation may not be so acute here, given that there is a focus on the most recent observations.

We define the DMS slope estimator weights λh such that Π̃h = (In − λh) Π̃( )
h + λhΠ̃(∗). λh

depends on the relative values of h and k. An equivalent of the Kendall (1954) approximation was

derived by Marriott and Pope (1954),

E
[
π̃

( )
h − πh

]
= − 1

T − k − h + 1

[
(1 + π) π{h} + 2hπh

]
+ O

(
T−2

)
hence, using equivalent approximations for π̃

(∗)
h and π̃h, yields

λh ≈
k − h

T − h

k

2 (k − h)− T

so, λh/λ ≈ 1 for h finite and large (T, k) , but when h/T → r, then

λh ≈
c− r

1− r

c

2 (c− r)− 1

Now, γ̃h = x∗ − Π̃hx∗−h =
(
1− k

T−h+1

) [
x( ) − Π̃hx

( )
−h

]
+ k

T−h+1

[
x(∗) − Π̃hx

(∗)
−h

]
and let

µh = k
T−h+1 so that (see appendix)

γ̃h = (1− µh) γ̃
( )
h + µhγ̃

(∗)
h + Op

(
∆̃Π

)
→

T→∞

(
1− c

1− r

)
γr +

c

1− r
γ∗r

where γr = Π{h}γ if r = 0 (we assume that h is then held constant) and γr = (In −Π)−1
γ if

r > 0. We define γ∗r similarly. Notice that contrary to IMS, the weights for multi-step intercept

estimation are scalar and hence identical in all directions. Also, the weight attributed to γ̃
(∗)
h

is increasing in both the post-break window and the horizon r. Next, we observe the resulting

implications for forecasting.

5 Multi-step forecasts

In order to compare the forecasting performances of IMS and DMS, we first decompose their

forecast errors across to the two subsamples. This is done in the appendix, where we show that the

iterated multi-step forecast error can be written as the weighted sum of those issuing from using
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the pre- and post-break models, but that an additional component arises from the misspecification.

The latter has non-zero expectation, even asymptotically:

êT+h|T =
(
I + λ{h}

)
ê( )

T+h|T − λ{h}ê
(∗)
T+h|T

+
(
I + λ{h}

) [
Π{h} +

(
Πh − Π̂( )h

)
Π{k+1}

]
∇γ (12)

+Op

(
∆̂Π

)
The same can be done for the direct multi-step forecast and the same property arises, with corre-

sponding estimators and weights:.

ẽT+h|T = (1− µh) ẽ( )
T+h|T + µhẽ

(∗)
T+h|T

+(1− µh)
[
Π{h} +

(
Πh − Π̃( )

h

)
Π{k+1}

]
∇γ (13)

+Op

(
∆̂Π

)
These results allow to formulate the following proposition.

Proposition 2 In the model presented in proposition 1 where the parameters are estimated using

least-squares, where the regressors and disturbances are such that the slope estimators are unbiased,

the forecast errors resulting from iterated and direct multi-step have non-zero expectations and these

are functions of the weight attributed to the pre-break model in estimating the intercept:

E
[
êT+h|T −

(
I− µ{h}

)
ê( )

T+h|T − µ{h}ê
(∗)
T+h|T

]
=

(
In − µ{h}

)
Π{h}∇γ

E
[
ẽT+h|T − (1− µh) ẽ( )

T+h|T − µhẽ
(∗)
T+h|T

]
= (1− µh)Π{h}∇γ

The previous proposition shows that for models that are well-specified over each—pre- and

post-break—subsamples, so that ê( )
T+h|T , ê(∗)

T+h|T , ẽ( )
T+h|T and ẽ(∗)

T+h|T have zero expectation, the

forecast computed from the model estimated over the whole sample is biased. Its bias depends on

the interaction between the break size and the characteristic roots of the lag polynomial presiding

over the dynamics of xt. In addition, irrespective of the relative performance of IMS and DMS

forecasting for well-specified and constant models, multi-step forecast biases are function of the

weight attributed to the pre-break multi-step intercept estimator.

We showed earlier that these weights are scalar for DMS, but vectorial for IMS. In addition,

they are decreasing in both c and r, and hence so are the absolute forecast biases. In the univariate
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Figure 1: Plot of the function θ defined as in expression (14) for (r, c) ∈ [0, 3]2 and T ∈ {10, 50, 100}

(left column) with corresponding two dimensional projection contours (right column).

and stationary framework considered above, the relative bias is then

1− µ{h}

1− µh

≈
(1− r)

[
(2c− 1)2 − Trc2 (1− c)2

]
(1− r − c) (2c− 1)2

= θ (T, r, c) (14)

which is valid for r < 1− c, i.e. if DMS is computable on the pre-break subsample. The function

θ is drawn in figure 1: at T = 10, it only takes positive values, but for larger sample sizes θ is

negative when both c and r are low. Hence very small samples, long horizons and not-so-recent

breaks favor DMS over IMS according to expression (14).

Proposition 2 concerns the forecast bias, not the mean-square forecast error. But expressions

(12) and (13) show that the forecast error variances are approximately that of the well-specified

models (yet with differing weights). Since IMS forecasting is well known to yield smaller error

variances than DMS in the absence of misspecification, it is hence mainly with respect to the
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forecast bias that DMS can bring an accuracy benefit (the different µ{h} and µh could yet mitigate

this).

We do not consider intercept correction here as we show in the next section that the known

parameter framework is sufficiently general.

6 Monte Carlo

In this section, we present the results from a Monte Carlo simulation of forecast errors resulting

from the previous models.1 We consider autoregressive processes with i.i.d. innovations where we

let the sample size vary from T =10 to 90, by steps of 10, with 0 ≤ k ≤ T − 5 (which implies

T0 ≥ 5) and h ≤ T/2. The parameters are γ = 1, ∇γ = g ∈ {−3,−1, 1, 3} , and π ∈ {0.5, 1} . This

results in 53,400 combinations, with 2,000 Monte Carlo replications each.

In the case of stationary processes, i.e. for π = 0.5, a response surface was fitted to the case

g = 1 and r < 1− c which yielded for the 10,299 observations considered:
̂

log

∣∣∣∣∣E
[
êT+h|T

]
E
[
ẽT+h|T

] ∣∣∣∣∣ = 0.769
(8.63×10−3)

+ 0.166
(1.79×10−3)

log

∣∣∣∣∣∣
(1− r)

[
(2c− 1)2 − Trc2 (1− c)2

]
(1− r − c) (2c− 1)2

∣∣∣∣∣∣
R2 = 45.5%, σ̂ = 0.643 (15)

where E is the Monte Carlo mean. When estimating the same equation only for the larger sample

sizes increases the goodness of fit. According to section 5, the ratio
E[êT+h|T ]
E[ẽT+h|T ] of mean forecast

errors is independent of g. In order to assess this property, we report in figure 2 the scatterplots of

the log ratios and of the Monte Carlo parameters. Panel d shows that the amplitude of the break

impacts on that of the ratio: the variability of the ratio is smaller for g = −1 than for the other

values thereof. This case is atypical in that the break offsets the intercept: the process shifts from

an expectation of 2 to zero. Hence the approximation above is limited in that it does not take into

account this type of effect. Also, panel e shows that the amplitude of the log ratio increases with

the sample size but this corresponds to more experiments in the Monte Carlo and may hence be

spurious.
1Computations were carried out using Oxmetrics and the Ox programming language, see Doornik (2006). Figure

panels are labeled alphabetically from left to right, top to bottom.
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Figure 2: Logarithm of the absolute ratio of the IMS mean forecast error over that of DMS for a

range of parameters.
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By contrast, the effect of the break date is nonlinear: on panel b, the mean IMS error is smaller

than that of DMS for recent breaks (low c). The relative performances reverse for c slightly above

0.2. For less recent breaks, the relative performances are more difficult to compare properly from

this setting but DMS outperforms IMS in terms of mean forecast bias when r < 1− c.

Now, figure 3 presents scatterplots of the log ratios of the absolute biases of IMS over that of

IMSIC, and DMS over that of DMSIC For both IMS and DMS, intercept correction improves the

average forecast error for recent breaks, but the gain is strictly positive until older breaks using

DMSIC. As for the horizon, improvements that IC brings to IMS and DMS varies: for the iterated,

panel c shows that the distribution of the log ratios is mostly positive, whereas that of DMS has

an mean that decreases with r. Hence the benefit to DMS disappears, whereas that to IMS remains

both when r and c become large. With respect to the sample size, no pattern emerges clearly for

DMS: the amplitude is wider for larger samples but as previously, it may be a simulation artifact;

by contrast the distribution moves from being symmetric around zero positive values for larger T.

Intercept correction therefore benefits IMS more in larger sample but the number of observations

does not matter to DMSIC.

Finally, for intercept correction, section 3.2 provided expression (8) in the known parameter

case. In order to validate it, figure 4 records the Monte Carlo mean forecast error of DMSIC. The

upper panel shows that the known parameter expression explains the observed biases when the

latter are negative, but not when they are positive. To understand patterns better, the lower panel

records the same mean biases, but ordered according to the Monte Carlo experiments: letting T,

then c then r vary. We observe that the DMSIC error is largely negative for very recent shifts and

that again is well explained by expression (8) and does not depend on the sample size. The bias

tends to increase with c as long as r < 1−c and this comes from estimation error. When r ≥ 1−c,

E [ẽDMSIC ] is much closer to zero and this is the situation where (14) cannot be derived since

DMS cannot be estimated over the pre-break subsample only.
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Figure 3: Monte Carlo log ratio of the IMS (and DMS) absolute mean forecast error over that of

IMSIC (and DMSIC): scatterplot against the experiment parameters.
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Figure 4: Monte Carlo DMSIC mean forecast error. The upper panel presents a scatterplot against

the known-parameter theoretical expression (8). The lower panel presents the same but against

the range of parameters used in the simulation. r < 1− c is an indicator variable that takes value

1 if the inequality holds.
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7 Empirical Analysis

We assess the previous analysis by revisiting the forecasting exercise in Pesaran and Timmermann

(2005). These authors evaluate the forecasting properties of various estimation schemes using the

Stock and Watson (2004) dataset, which is quarterly and covers the period 1959-99. This consists in

forecasting growth in industrial production and real GDP, the inflation rate and the short interest

rates for six of the seven G7 economies (Canada, France, Germany, Japan, the UK and the US).

To see the impact of a break on forecasting, we used rolling window estimation of AR(1) models

over samples of 40 observations (the long rolling window in Pesaran and Timmermann, 2005). We

also estimated the date of a unique break using the method and code proposed by Bai and Perron

(2003): the resulting post-break window size averaged over the 121 subsamples is denoted by k

and is reported in table 1 together with the ratios of RMSFE. Values of the RMSFE ratio below

unity favor IMS against the alternative.

Overall the table shows that IMS is not preferred except for the forecasts of interest rates in

Germany. This variable is specific inasmuch as it exhibits the lowest k by a large margin. Also IMS

outperforms DMS at low horizon for French interest rates which exhibit the second lowest k = 12.

Hence, as expression (14) showed, it is recent breaks and low horizons that benefit IMS over DMS.

For all the other cases. The most precise technique out of the four is IMSIC which is most

accurate in 40 instances, followed by DMSIC in 31, then DMS in 13, with IMS only beating the

other in four cases. Hence some form of intercept correction is really to be advocated for. When

looking at the details according to the horizon, we see that at h = 2, 15 times out of 22 IMSIC is

best, only beaten in the remaining cases by DMSIC (four instances) and the other two in three cases.

At horizons 5 and 10, rankings are reversed: DMSIC is best in respectively 13 and 9 instances,

IMSIC in 6 and 8, and DMS also proves most accurate in 2 and 4 cases. It is at long horizons

that DMS performs best, being the most accurate in 6 cases, with IMSIC in 11 cases but DMSIC

only in 4. Since for all series and samples breaks occur, the conclusion from observing table 1

is that in the presence of breaks iterated multi-step forecasting performs very poorly and that it
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seems preferable to use techniques that are more robust to breaks: at very short horizons, IMSIC

performs best, at intermediate horizons DMSIC is preferred and at long horizons all but IMSIC or

DMS are equivalent, except in the presence of a very recent break.

To refine these recommendations, we report in table 2 the same ratios of RMSFE according to

the value of k in the estimation sample. The results are then more strongly in favour of intercept

correction, be it IMS or DMS as they perform best in 10 and 6 instances respectively, pure DMS

in 4 and IMS never. Forecast accuracy follows the same patterns in relation to the horizon as in

table 1. With respect to k, recent breaks favor IMSIC, ancient ones DMSIC, whereas for breaks

that occur towards the end of sample, IMSIC benefits for low horizons and DMS catches up at large

h.

8 Conclusions

The aim of this paper was to show that, when economic series undergo location shifts, there exists a

rationale in using direct multi-step estimation for forecasting purposes. We have demonstrated that

breaks matter to the relative performances of multi-step forecasting techniques and not only if they

occur towards the forecast origin. Indeed, as the post-shift sample size vary, so do the forecasting

properties of DMS and IMS. We have seen that the rationale for using IMS no longer applies when

the process undergoes a break, unless the latter happens very close to the forecast origin, the

forecast horizon is small and the sample size is large enough. By contrast, robust methods such as

intercept correction do perform well at all horizons and whenever the break occurs in the sample.

We analyzed two techniques of intercept correction and showed (i) that direct multi-step intercept

correction performs better when the horizon is not too large with respect to the sample size, (ii)

that IMSIC is best at very low or large horizons and (iii) that DMS improves with the horizon.

When it is desired to forecast at an horizon which is relatively large compared to the available

sample (towards h = T/2), then intercept correction did not seem to provide such a robust superior

forecast performance and standard DMS may prove sufficient.
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IMS over DMS IMS over IMSIC IMS over DMSIC

k h = 2 h = 5 h = 10 h = 20 h = 2 h = 5 h = 10 h = 20 h = 2 h = 5 h = 10 h = 20

Inflation

Canada 18 1.30 2.42 1.08 1.39 2.48 3.30 3.00 5.08 1.87 3.25 2.28 1.91

France 21 1.34 1.54 1.74 1.36 4.81 2.57 3.20 7.79 1.98 3.43 3.16 3.29

Germany 17 1.10 4.20 0.97 2.76 2.81 2.89 5.20 1.52 4.00 4.37 8.38 1.87

Japan 22 1.39 1.35 1.14 1.53 1.84 4.83 7.53 2.22 1.80 2.63 3.13 3.01

UK 19 1.57 1.61 1.21 1.98 4.92 2.77 5.55 4.09 2.52 3.16 8.64 1.51

US 18 1.15 2.33 1.83 2.19 2.24 3.19 1.93 3.00 2.00 2.48 18.44 1.50

Industrial production growth

Canada 19 1.47 1.74 1.28 1.57 1.88 1.14 5.69 1.62 1.73 1.38 6.62 1.31

France 20 1.44 1.42 1.12 7.61 1.64 1.25 3.06 1.73 1.20 1.68 1.76 3.97

Germany 21 1.08 1.18 1.25 1.43 9.34 1.79 2.10 1.25 1.88 1.26 2.72 1.16

Japan 20 1.07 2.19 2.47 1.42 3.34 3.03 0.75 7.70 2.94 1.39 1.00 2.53

UK 28 1.43 2.13 1.64 4.48 1.64 3.39 1.14 1.79 2.44 4.17 1.50 1.83

US 21 1.28 1.54 1.28 1.51 16.28 1.75 2.10 1.77 1.75 5.28 1.74 1.63

Real GDP growth

Canada 20 1.30 1.33 3.60 1.62 3.24 1.45 29.09 2.98 1.84 3.34 3.33 5.13

France NA NA NA NA NA NA NA NA NA NA NA NA NA

Germany 23 1.15 1.44 1.19 1.22 1.29 5.12 1.65 16.86 1.58 1.53 9.99 2.88

Japan 18 1.34 1.26 1.40 1.74 6.59 2.42 3.60 1.48 2.31 79.13 3.74 4.22

UK 21 1.27 1.61 1.20 1.39 2.36 1.44 20.57 1.34 2.01 4.42 3.37 1.39

US 22 1.96 1.04 1.79 1.37 1.42 1.52 2.79 5.43 1.73 1.73 3.78 2.54

Interest rate

Canada 18 1.17 3.36 4.85 4.52 3.19 3.10 2.60 7.42 3.58 3.43 2.43 2.02

France 12 0.60 1.09 0.99 1.50 1.61 2.18 3.47 1.90 1.34 2.40 1.23 1.39

Germany 7 0.39 0.49 0.49 0.53 0.47 0.42 0.40 0.47 0.42 0.93 0.74 0.78

Japan NA NA NA NA NA NA NA NA NA NA NA NA NA

UK 22 1.88 3.44 24.25 3.67 1.97 2.50 3.92 2.45 1.80 6.68 3.18 2.04

US 19 2.67 2.80 2.08 2.55 2.51 2.28 2.55 1.97 4.76 1.18 5.10 1.26

Table 1: Out-of-sample forecast performance for the G7 economies: the table reports the average

ratios of root-MSFE.

IMS over DMS IMS over IMSIC IMS over DMSIC

k h ∈ {2} [3, 5] [6, 10] [11, 20] {2} [3, 5] [6, 10] [11, 20] {2} [3, 5] [6, 10] [11, 20]

k ∈ [0, 5] 2.5 0.85 1.32 0.92 1.43 4.96 1.83 9.88 1.67 1.87 25.71 2.65 1.28

(5, 10] 8.0 1.18 1.74 1.97 2.44 2.28 2.81 3.39 2.37 1.99 3.23 2.01 2.21

(10, 20] 15.4 1.55 2.57 2.37 3.00 5.62 2.50 2.95 2.12 1.77 2.48 3.02 2.26

(20, 30] 25.7 1.60 1.55 5.83 1.93 2.45 2.40 4.09 6.45 2.45 1.81 4.61 2.39

(30, 40] 35.4 1.29 1.98 1.73 2.22 2.23 2.75 5.71 4.90 2.55 2.88 7.78 2.71

Table 2: Out-of-sample performance according the post-break window size: the table reports the

average ratios of root-MSFE.
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The analysis that we have performed here mostly focused on autoregressive forecasting in the

presence of a unique break. In line with work by Pesaran and Timmermann, it appears that we

should also compare our results with the cases of models with more parameters (more lags) and

exogenous variables. Also, evaluating the performance via the forecast error first two moments

may not be enough and it would be of interest to consider directional and asymmetric assessment

of forecasting performances. Yet, this paper shows that robust forecasting methods are available

when the data generating process is not constant.
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9 Appendix

9.1 Two-regime estimation

We compute the approximation to IMS estimators:

γ̂{h} =

(
h−1∑
i=0

Π̂i

)
γ̂ =

(
I− Π̂

)−1 (
I− Π̂h

)
γ̂

=
(
I− Π̂( ) − λ∆̂Π

)−1

γ̂ −
(
I− λ{h}

) (
I− Π̂( ) − λ∆̂Π

)−1

Π̂( )hγ̂

−λ{h}

(
I− Π̂(∗) − (I− λ) ∆̂Π

)
Π̂(∗)hγ̂

and
(
I− Π̂( ) − λ∆̂Π

)−1

=
(
I− Π̂( )

)−1

+ Op

(
∆̂Π

)
hence

γ̂{h} =
(
I− Π̂( )

)−1 (
I−Π̂( )h

)
γ̂ − λ{h}

[
Π̂(∗){h} − Π̂( ){h}

]
γ̂+Op

(
∆̂Π

)
=

(
I + λ{h}

)
Π̂( ){h}γ̂ − λ{h}Π̂(∗){h}γ̂ + Op

(
∆̂Π

)
We replace γ̂ with (I− µ) γ̂( ) + µγ̂(∗) and rearrange

γ̂{h} =
(
I + λ{h}

)
Π̂( ){h}

[
(I− µ) γ̂( ) + µγ̂(∗)

]
−λ{h}Π̂(∗){h}

[
(I− µ) γ̂( ) + µγ̂(∗)

]
+Op

(
∆̂Π

)
=

(
I + λ{h}

)
(I− µ) γ̂

( )
{h} − λ{h}µγ̂

(∗)
{h}

+
(
I + λ{h}

)
Π̂(∗){h}µγ̂(∗) −

(
I + λ{h}

) [
Π̂(∗){h} − Π̂( ){h}

]
µγ̂(∗)

−λ{h} (I− µ) Π̂( ){h}γ̂( ) − λ{h} (I− µ)
[
Π̂(∗){h} − Π̂( ){h}

]
γ̂()

+Op

(
∆̂Π

)
=

(
I + λ{h}

)
γ̂

( )
{h} − λ{h}γ̂

(∗)
{h}

−
(
I + λ{h}

) [
Π̂(∗){h} − Π̂( ){h}

]
µγ̂(∗)

−λ{h} (I− µ)
[
Π̂(∗){h} − Π̂( ){h}

]
γ̂( )

+Op

(
∆̂Π

)
We use

[
Π̂(∗){h} − Π̂( ){h}

]
= Op

(
∆̂Π

)
then

γ̂{h} =
(
I + λ{h}

)
γ̂

( )
{h} − λ{h}γ̂

(∗)
{h} + Op

(
∆̂Π

)
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Now the DMS slope estimator is Π̃h = (In − λh) Π̃( )
h + λhΠ̃(∗) and the multi-step intercept:

γ̃h =
(

1− k

T − h + 1

)[
x( ) − Π̃hx

( )
−h

]
+

k

T − h + 1

[
x(∗) − Π̃hx

(∗)
−h

]
=

(
1− k

T − h + 1

)[
x( ) −

(
Π̃( )

h + λh∆̃Π

)
x( )
−h

]
+

k

T − h + 1

[
x(∗) −

(
Π̃(∗)

h − (In − λh) ∆̃Π

)
x(∗)
−h

]
=

(
1− k

T − h + 1

)
γ̃

( )
h +

k

T − h + 1
γ̃

(∗)
h + Op

(
∆̃Π

)
.

9.2 Forecasting

First, the IMS is

êT+h|T = Π{h}γ∗ − γ̂∗{h} +
(
Πh − Π̂h

)
x∗T +

h−1∑
i=0

ΠiεT+h−i

= Π{h}γ∗ −
[(

I− µ{h}

)
γ̂

( )
{h} + µ{h}γ̂

(∗)
{h}

]
+
(
Πh −

(
I− λ{h}

)
Π̂( )h − λ{h}Π̂(∗)h

)
x∗T +

h−1∑
i=0

ΠiεT+h−i + Op

(
∆̂Π

)
We let appear the forecast errors from the two submodels

êT+h|T =
(
I− µ{h}

) [
γ{h} − γ̂

( )
{h}

]
+ µ{h}

[
γ∗{h} − γ̂

(∗)
{h}

]
+
(
I− µ{h}

)
Π{h}∇γ

+
(
I− µ{h}

)(
Πh − Π̂( )h

)
xT − µ{h}

(
Πh − Π̂(∗)h

)
x∗T

+
(
I + µ{h}

)(
Πh − Π̂( )h

)
[x∗T − xT ]

−2µ{h}

[(
Πh − Π̂(∗)h

)
x∗T −

(
Πh − Π̂( )h

)
xT

]
+

h−1∑
i=0

ΠiεT+h−i + Op

(
∆̂Π

)
=

(
I− µ{h}

)
ê( )

T+h|T + µ{h}ê
(∗)
T+h|T

+
(
I− µ{h}

)
Π{h}∇γ

+
(
I + µ{h}

)(
Πh − Π̂( )h

)
[x∗T − xT ]

−2µ{h}

[(
Πh − Π̂(∗)h

)
x∗T −

(
Πh − Π̂( )h

)
xT

]
+ Op

(
∆̂Π

)
Now x∗T − xT = Π{k+1}∇γ hence, since Π̂( )h − Π̂(∗)h = Op

(
∆̂Π

)
êT+h|T =

(
I− µ{h}

)
ê( )

T+h|T + µ{h}ê
(∗)
T+h|T

+
(
I− µ{h}

) [
Π{h} +

(
Πh − Π̂( )h

)
Π{k+1}

]
∇γ

+Op

(
∆̂Π

)
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And for DMS

ẽT+h|T = Π{h}γ∗ − γ̃∗h +
(
Πh − Π̃h

)
x∗T +

h−1∑
i=0

ΠiεT+h−i

= Π{h}γ∗ −
[
(1− µh) γ̃

( )
h + µhγ̃

(∗)
h

]
+
(
Πh − (I− λh) Π̃( )

h − λhΠ̃
(∗)
h

)
x∗T +

h−1∑
i=0

ΠiεT+h−i + Op

(
∆̂Π

)
= (1− µh)

[
Π{h}γ − γ̃

( )
h

]
+ µh

[
Π{h}γ∗ − γ̃

(∗)
h

]
+ (1− µh)Π{h}∇γ

+(1− µh)
[
Πh − Π̃( )

h

]
xT + µh

[
Πh − Π̃(∗)

h

]
x∗T +

h−1∑
i=0

ΠiεT+h−i

+(µhI− λh)
[
Πh − Π̃( )

h

]
xT + (λh − µhI)

[
Πh − Π̃(∗)

h

]
x∗T

+(I− λh)
[
Πh − Π̃( )

h

]
[x∗T − xT ] + Op

(
∆̂Π

)
i.e.

ẽT+h|T = (1− µh) ẽ( )
T+h|T + µhẽ

(∗)
T+h|T

+(1− µh)Π{h}∇γ + (I− λh)
[
Πh − Π̃( )

h

] [
Π{k+1}∇γ

]
+(µhI− λh)

[
Πh − Π̃( )

h

]
xT

+(λh − µhI)
[
Πh − Π̃(∗)

h

] (
xT + Π{k+1}∇γ

)
+ Op

(
∆̂Π

)
= (1− µh) ẽ( )

T+h|T + µhẽ
(∗)
T+h|T

+(1− µh)
[
Π{h} +

(
Πh − Π̃( )

h

)
Π{k+1}

]
∇γ

+Op

(
∆̂Π

)
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