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Abstract

This paper considers large sample approximations to the covariances of a nonstationary
fractionally integrated processes with the stationary increments of another such process �
possibly, itself. Questions of interest include the relationship between the harmonic repre-
sentation of these random variables, which we have analysed in a previous paper, and the
construction derived from moving average representations in the time domain. The limiting
integrals are shown to be expressible in terms of functionals of Itô integrals with respect to
two distinct Brownian motions. They have an unexpectedly complex structure but possess
the required characteristics, in particular an integration by parts formula. The advantages of
our approach over the harmonic analysis include the facts that our formulas are valid for the
full range of the long memory parameters, and extend to non-Gaussian processes.
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1 Introduction

Let xt and yt be linear processes having the MA(1) forms

xt =

1X
j=0

bjut�j (1.1)

yt =

1X
j=0

cjwt�j (1.2)

where ut, wt are zero mean independent processes, and the coe¢ icient sequences fbjg and fcjg
decay hyperbolically. Fractional noise processes are a well-known simple case, in which

bj =
�(j + dX)

�(dX)�(j + 1)
cj =

�(j + dY )

�(dY )�(j + 1)
(1.3)

for �1
2 < dX ; dY < 1

2 . Considerably greater generality will be permitted but parameters dX and
dY , subject to these constraints, will in all cases index the rate of lag decay. De�ning the partial
sum processes Xn and Yn on the unit interval by

Xn(�) = n�1=2�dX
[n�]X
t=1

xt; Yn(�) = n�1=2�dY
[n�]X
t=1

yt; 0 � � � 1 (1.4)

it is known that (Xn; Yn)
d! (X;Y ) under fairly general assumptions, where the limit processes

are fractional Brownian motions as de�ned by Mandelbrot and van Ness (1968). These results
are given under the best known conditions by Davidson and de Jong (2000) (henceforth, DDJ).
For representative case Y , the well-known formula is

Y (�) =
1

� (dY + 1)

�Z �

0
(� � �)dY dBw (�) +

Z 0

�1

�
(� � �)dY � (��)dY

�
dBw (�)

�
(1.5)

for 0 � � � 1, where Bw is regular Brownian motion on R.
Our interest here is in the limiting distribution of the stochastic process Gn : [0; 1] 7�! R

where 1

Gn(�) =
1

K(n)

[n�]�1X
t=1

tX
s=1

xsyt+1; 0 � � � 1. (1.6)

and K(n) is a function of sample size, which for the case of (1.3), at least, can set as n1+dX+dY .
In applications we shall typically wish xt and yt to be respectively column and row vectors,
and hence Gn to be a matrix, but these cases are notationally burdensome and it is convenient
to derive the main results for the scalar case. The required extensions are obtainable by very
straightforward generalizations, as required

Expressions of the form of Gn arise in the theory of cointegrating regressions. For example,
in the standard case where xt and yt are I(0) processes, they appear (with � = 1) in the formulae
for the Dickey-Fuller statistics and cointegrating regression errors-of-estimate, with yt having the
interpretation of a stationary error term, and xt the di¤erences of the trending regressor. In
this paper we explore the form of the limit distributions. A companion paper (Davidson and

1The notation [x] denotes the largest integer not exceeding x. Sums for which the lower bound exceeds the
upper take the value 0 by convention.
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Hashimzade 2007b) derives the weak convergence results that formally connect (1.6) with the the
limit case.

These results are known for the harmonic representation of the variables, in the cases where
where this is de�ned. In the fractional noise case,

xt =

Z �

��
eit�(i�)�dXWu(d�) (1.7)

yt =

Z �

��
eit�(i�)�dYWw(d�) (1.8)

where i is the imaginary unit and (Wu;Ww) is a vector of complex-valued Gaussian random
measures with the properties (for j; k = w; u)

Wj(�d�) =Wj(d�) (1.9a)

EWj(d�) = 0 (1.9b)

EWj(d�)Wk(d�) =

�
!jkd�; � = �
0; otherwise.

(1.9c)

Chan and Terrin (1995) is a well-known study that analyses the weak convergence of fractionally
integrated processes under the harmonic representation. The model these authors analyse is
di¤erent from the usual �causal�(backward-looking) model considered here. However, Davidson
and Hashimzade (2007a) extend their analysis, and apply it to this case in particular. The weak
limits of the partial sum processes (1.4) take the form

X(�) =
1p
2�

Z 1

�1

ei�� � 1
i�

(i�)�dXWu(d�)

Y (�) =
1p
2�

Z 1

�1

ei�� � 1
i�

(i�)�dYWw(d�)

and also that Gn(�) has the weak limit2Z �

0
XdY =

1

2�

Z �

0
dr

�Z 1

�1

ei�r � 1
i�

(i�)�dXWu (d�)

Z 1

�1
ei�r(i�)�dYWw (d�)

�
(1.10)

For the case dX + dY > 0, the expected value of this random variable is derived (for � = 1) as

E

Z 1

0
XdY =

!uw
2�

Z 1

0

Z 1

�1

1� e�i�r
i�

j�j�dX�dY e�i�(dX�dY ) sgn(�)d�dr

=
!uw� (1� dX � dY )

�(1 + dX + dY )(dX + dY )
sin�dY : (1.11)

In this paper, we explore the counterpart of this solution in the time domain. There are several
reasons why this alternative approach provides an essential extension. The general weak conver-
gence proofs given by Davidson and Hashimzade (2007a) are restricted to the case dX + dY > 0,
and the �standard�case dX = dY = 0 is especially intractable, because the harmonic representa-
tion of the integral breaks down (with unde�ned expectation) when the processes have summable
covariances. While there is no di¢ culty in constructing more general dependence models than the
fractional noise example given, there is the drawback that the harmonic representation requires
Gaussian, identically distributed shocks �a restrictive requirement for econometric modelling.
Working in the time domain allows all these limitations to be relaxed.

The speci�c assumptions to be adopted are as follows.

2Strictly, this is shown in the cited paper for the case � = 1, but the generalization is direct.
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Assumption 1 The collection fut; wt; t 2 Zg are identically and independently distributed with
zero mean and covariance matrix

E

�
ut
wt

� �
ut wt

�
= 
 =

�
!uu !uw
!uw !ww

�
(1.12)

and �4uw = E(u2tw
2
t ) <1. ut = wt is an admissible case.

These random variables will de�ne the �ltered probability space on which our processes live,
denoted (
;F ; P;F ) where

F = fFt; t 2 Z; Ft � F all t, and Ft � Fs i¤ t � sg:

The pair (ut; wt) are adapted to Ft, and in this setup we may also use the notation F(r) = F[nr]
for 0 � r � 1 where n is sample size.

Assumption 2 The sequences fbjg10 and fcjg10 depend on parameters dX 2 (�1
2 ;
1
2) and dY 2

(�1
2 ;
1
2), respectively, and sequences fLX(j)g and fLY (j)g that are at most slowly varying at

in�nity. These sequences satisfy one of the following conditions, stated for fbjg as representative
case:

(a) If 0 < dX < 1
2 then bj = �(dX)

�1jdX�1LX(j):

(b) If dX = 0 then 0 < j
P1
j=0 bj j <1, and bj = O(j�1��) for � > 0:

(c) If �1
2 < dX < 0 then b0 = a0 and bj = aj � aj�1 for j > 0 where aj = �(1+ dX)�1jdXLX(j)

and LX(j + 1)=LX(j) = 1 + o(n�1):

The condition on LX in 2(c) is mild, noting that it holds in particular for the cases (log j)�, for
any real �.

Under these assumptions, we set

K(n) = n1+dX+dY LX(n)LY (n) (1.13)

in (1.6). While the �pure fractional�cases represented by (1.3) satisfy Assumption 2, the assump-
tion only controls the tail behaviour of the sequences, and allows arbitrary forms for a �nite
number of the lag coe¢ cients. In particular, the xt and yt processes may be stable invertible
ARFIMA(p; d; q) processes. Suppose more generally that

xt = (1� L)�dX�(L)ut (1.14)

where �(L) is any lag polynomial with absolutely summable coe¢ cients, speci�cally, where �j =
O(j�1��) for � > 0. Letting for dX > 0 the identity a(L) = (1�L)�dX de�ne the coe¢ cients aj ,
such that aj s �(dX)�1jdX�1,3 and let

b(L) = a(L)�(L): (1.15)

Then note the following fact.

Proposition 1.1 If (1.15) holds then bj s �(1)�(dX)
�1jdX�1 as j !1:

3The symbol �s�here denotes that the ratio of the connected sequences converges to 1 as j !1:
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(All proofs are given in the Appendix.) The slowly varying component can be de�ned to represent
the ratio of bj to the approximating sequence. Also, since 
 is unrestricted, we could impose the
normalization �(1) = 1, if desired, with no loss of generality.

The cases dX = 0 and dY = 0 are deliberately restricted under Assumption 2(b) to rule out
the �knife-edge� non-summable case, to avoid complications of doubtful relevance. Be careful
to note that � is not a fractional di¤erencing coe¢ cient in this case. Also note that the pure
fractional model, represented by (1.3) has b0 = 1 and bj = 0 for j > 0, in the case dX = 0.

The case dX < 0 under Assumption 2(c) has the �overdi¤erenced� property, implying in
particular that j

Pj
k=0 bkj = O(jdX ). The lag coe¢ cients are summable, but more important,

their sum is 0. In the pure fractional case these coe¢ cients are all negative for j > 0:
A typical multivariate analysis would wish to consider VARFIMA models, which in the bi-

variate case would have a Wold representation of the form�
yt
xt

�
=

�
(1� L)�dY 0

0 (1� L)�dX

� �
�Y Y (L) �Y X(L)
�XY (L) �XX(L)

� �
wt
ut

�
:

Note that the observed series are represented as sums of terms of the form (1.14),

yt = (1� L)�dY �Y Y (L)wt + (1� L)�dY �Y X(L)ut
xt = (1� L)�dX�Y Y (L)wt + (1� L)�dX�XX(L)ut:

In this example, (1.6) becomes a sum of four terms of the basic type we wish to analyse. Extending
our results to general linear models of this type is therefore a simple application of the continuous
mapping theorem to the limit distributions we explore in this paper.

2 Some Properties of Gn

The key step is the following decomposition of expression (1.6). First, expand it by substituting
from (1.1) and (1.2) as

Gn(�) =
1

K(n)

[n�]�1X
t=1

tX
s=1

1X
j=0

1X
k=0

bkcjus�kwt+1�j :

Decompose this sum into three components,

Gn = G1n +G2n +G3n: (2.1)

where

G1n(�) =
1

K(n)

[n�]�1X
t=1

tX
s=1

1X
k=0

k+t�sX
j=0

bkcjus�kwt+1�j

=
1

K(n)

[n�]�1X
t=1

tX
s=1

1X
j=0

1X
k=maxf0;j+s�tg

bkcjus�kwt+1�j (2.2)

G2n(�) =
1

K(n)

[n�]�1X
t=1

tX
s=1

1X
k=0

bkck+t�s+1us�kws�k (2.3)

and

G3n(�) =
1

K(n)

[n�]�1X
t=1

tX
s=1

1X
k=0

1X
j=k+t�s+2

bkcjus�kwt+1�j : (2.4)
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Thus, G1n contains those terms, and only those terms, in which s � k 6 t � j, so that the time
indices of w strictly exceed those of u; and hence E(G1n(�)) = 0. In G2n, s� k = t+ 1� j such
that the time indices of u and w match. In G3n, s� k > t+ 1� j such that the indices of u lead
those of w, and E(G3n(�)) = 0. In this section we consider the behaviour of the sequence E(G2n).
Broadly speaking, the nature of the limit depends on the sign of dX + dY , and we consider the
various cases in turn.

Proposition 2.1 If dX + dY > 0 then E(G2n(�))! �XY �
1+dX+dY where

�XY =
!uw

�(dX + 1)�(dY + 1) (dX + dY )

�
dY

(1 + dX + dY )
+Z 1

0

h
dY (1 + �)

dX+dY + dX�
dX+dY � (dX + dY )(1 + �)dY �dX

i
d�

�
(2.5)

Letting �Y X denote the same limit with xt and yt interchanged, also note that

�XY + �Y X =
!uw

�(dX + 1)�(dY + 1)
��

1

(1 + dX + dY )
+

Z 1

0

�
(1 + �)dX � �dX

��
(1 + �)dY � �dY

�
d�

�
=  XY (2.6)

where

 XY = lim
n!1

1

K(n)
E

� nX
t=1

xt

nX
t=1

yt

�
:

This is the o¤-diagonal element of 	, the long-run covariance matrix of the processes, according
to equation (3.12) of DDJ. Considering the decomposition

E

� [n�]X
t=1

xt

[n�]X
t=1

yt

�
=

[n�]X
t=1

E(xtyt) +

[n�]�1X
t=1

tX
s=1

E(xsyt+1) +

[n�]�1X
t=1

tX
s=1

E(ysxt+1) (2.7)

where the second term on the right corresponds to K(n)E(Gn(�)), note that

E(xtyt) = �XY = !uw

1X
j=0

bjcj <1: (2.8)

The �rst right-hand side term in (2.7) is O(n), and hence this term is of small order under the
normalization K(n). The other two terms converge to �XY and �Y X respectively under the same
normalization, as indicated by (2.6).

Observe that �XY depends only on dX , dY and !uw since any short-run parameters have
been absorbed into the functions LX and LY ; compare Lemma 1.1 for example. The sign of �XY
matches that of dY , and if dY = 0, then �XY = 0. When dX > 0, the cases where yt is i.i.d., and
is merely short memory, are equivalent asymptotically. In the pure fractional model in which cj
is de�ned by (1.3), so that cj = 0 for all j > 0 when dY = 0, note that E(G2n) = 0 exactly, for
all n: In the general case of weak dependence covered by Assumption 2(b), the proof of Lemma
2.1 shows that the expectation of the triple sum in (2.3) is of O(n), so that with dX > 0 the
expression converges to zero.

We give these results in their most easily interpretable form, but for computational purposes,
closed-form expressions are more useful. These are as follows.

6



Proposition 2.2 (i) �XY =
!uw�(1� dX � dY )

� (1 + dX + dY ) (dX + dY )
sin�dY :

(ii)  XY =
!uw�(1� dX � dY )
(1 + dX + dY )

�
sin�dX
�dX

+
sin�dY
�dY

�
:

Observe that the �rst of these formulae is the same as (1.11), indicating that the harmonic and
moving average approaches to constructing fractional processes yield equivalent results.

Next, consider the cases where dX + dY is zero or negative. In the latter case, E(G2n(r))
diverges.

Proposition 2.3 If dX + dY � 0 and !wu 6= 0, then E(G2n(r)) = O(n=K(n)):

In this instance there is no decomposition of  Y X into components of the form �XY , and the
three terms in (2.7) are each of O(n). We may write n�1

P[n�]
t=1E(xtyt) = �XY � , but also,

1

n

[n�]�1X
t=1

tX
s=1

E(xsyt+1)! ��XY �

1

n

[n�]�1X
t=1

tX
s=1

E(ysxt+1)! ��Y X�

where the limits are �nite constants, denoted with a ���to distinguish them from the cases with
normalization K(n). Unlike �XY and �Y X , ��XY and �

�
Y X may depend on the initial lag weights;

in other words, dropping a �nite number of terms from the front of the lag distribution does not
a¤ect the limit in Lemma 2.1, because the terms are non-summable, whereas dropping terms from
the sums following Lemma 2.3 would change the limit. Note that E(

Pn
t=1 xt)

2 = O(n2dX+1) and
E(
Pn
t=1 yt)

2 = O(n2dY +1) (compare DDJ Lemmas 3.1 and 3.3), so for dX+dY < 0, the left-hand
side of (2.7) is necessarily o(n) by the Cauchy-Schwarz inequality. Hence, in this case

�XY + �
�
XY + �

�
Y X = 0: (2.9)

All these conclusions assume !uw 6= 0. If ut and wt are contemporaneously uncorrelated,
which implies under Assumption 1 that the cross-correlogram is zero at all orders, then each of
the terms in (2.7) is zero identically. Then, (2.6) holds trivially whatever the sign of dX + dY ,
since �XY = �Y X = 0.

The last result of this section shows that under our assumtions, G2n is a consistent estimator
of the mean �albeit not a feasible one. More important is the fact that that the limit distribution
of G1n + G3n matches that of the mean deviation of Gn, not forgetting that the mean diverges
under the given normalization when dX + dY < 0:

Theorem 2.1 If Assumptions 1 and 2 hold, G2n � E(G2n)
L2! 0:

3 Stochastic Integrals

In this section we construct limiting forms of the termsG1n andG3n using heuristic approximation
arguments. Write, informally, the convergences G1n(�) ! �1;XY (�) and G3n(�) ! �3;XY (�) as
n ! 1, where these symbols will denote the (putative) respective limits. Letting �XY =
�1;XY + �3;XY , we need to show that

Gn � E(Gn)! �XY
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In view of what is known about the orders of magnitude of G2n, we conjecture the existence of
limits for Gn of the following types, depending on the values of dX + dY .

Proposition 3.1 Let Assumptions 1 and 2 hold. For 0 � � � 1,

(i) If dX + dY > 0,
Gn(�)! �XY (�) + �XY �

1+dX+dY :

(ii) If dX + dY = 0,
Gn(�)! �XY (�) + �

�
XY �:

(iii) If dX + dY < 0 and ��XY 6= 0 then

K(n)

n
Gn(�)

L2! ��XY �:

(iv) If �1
2 < dX + dY < 0 and ��XY = 0, and

Gn(�)! �XY (�):

Here the arrows denote conjectured convergences, which in Davidson and Hashimzade (2007b), we
show to exist as weak convergences in the space of cadlag functions equipped with the Skorokhod
topology. However, note that case (iii) has been shown in Lemma 2.1 to hold in mean square,
subject to the components G1n and G3n being of smaller order. In case (iv) there is an extra
condition limiting the the joint degree of anti-persistence permitted, placing a lower bound on
dX + dY . We show in the paper cited that the condition violated without this extra assumption
is the a.s. continuity of the integrand process appearing in parentheses in the representation of
�1;XY in (3.12) below. Note that this condition is contained in Assumption 2 except in cases
where both dY < 0 and dX < 0.

Consider the characterization of an integral with fractional integrator by �rst recalling the
de�nition of a fractional Brownian motion Y in (1.5). Let fF(�); � 2 Rg denote the �ltration
generated by Brownian motions Bu; Bw. A fundamental representation theorem is the following.

Theorem 3.1 Y has the representation

Y (�) =

Z �

0
�Y; 0 � � � 1

where

�Y (r) =
1

� (dY )

Z r

�1
(r � �)dY �1 dBw (�) dr (3.1)

Be careful to note our choice of notation here, in which ��Y �� rather than �dY �� is used to
represent this specialized concept of di¤erential. This is to avoid confusion with the usage already
established, in expressions such as (1.10). In this context, the latter notation means something
very di¤erent, as we shall see in the sequel. Equation (3.1) is formally equivalent to the Riemann-
Liouville fractional integral of the integrable �function�dBw (see e.g. Samko et al 1993, Chapter
2). As is well known, the fractional Brownian motion has correlated increments, and this property
is embodied precisely in formula (3.1).

A natural generalization suggests de�ning the integral with respect to the di¤erential process
�Y of some general function F ,Z �

0
F�Y =

1

� (dY )

Z �

0

Z r

�1
F (�; r; �) (r � �)dY �1 dBw (�) dr (3.2)
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for 0 � � � 1, where for complete generality we let F = F (�; r; �), for � � r � �: However, the
dependence of F on r and � as well as � introduces a generalization of the usual fractional integral
formula. Although equation (3.2) can be rearranged formally as

R �
�1

�F (�; �) dBw (�) where

�F (�; �) =
1

� (dY )

Z �

maxf0;�g
F (�; r; �) (r � �)dY �1 dr (3.3)

it can be characterized as an Itô integral only in the case where F (�; r; �), and hence also �F (�; �),
is adapted to F(�). In other cases, its status is undetermined. However, in the case where
F = F (�; �), not depending on r, the integral can be written equivalently using (1.5) asZ �

0
F�Y =

1

� (dY )

Z �

0

Z r

�1
F (�; �) (r � �)dY �1 dBw (�) dr

=
1

� (dY + 1)

�Z �

0
(� � �)dY F (�; �)dBw (�)+Z 0

�1

�
(� � �)dY � (��)dY

�
F (� ; �)dBw (�)

�
: (3.4)

If in addition F does not depend on �, and F (�) = 0 for � < 0, the formula further simpli�es toZ �

0
F�Y =

1

� (dY + 1)

Z �

0
(� � �)dY F (�)dBw (�) : (3.5)

A case in point would be where F represents another fractional Brownian motion on the unit
interval, say X, as de�ned as in Lemma 3.1. This clearly denotes a well-de�ned random processR
X�Y although, as already intimated, this is a di¤erent process from the one represented by

(1.10). We now show by heuristic arguments that the limit of G1n + G3n does not assume the
form of (3.5).

Consider Gn1 �rst. Replacing the summation over j in (2.2) by the summation over m =
t+ 1� j, and the summation over k by the summation over i = s� k, rewrite Gn1(�) as

Gn1(�) =
1

K(n)

[n�]�1X
t=1

tX
s=1

tX
m=�1

minfs;mgX
i=�1

bs�ict�muiwm+1

=
1

K(n)

[n�]�1X
t=1

tX
m=�1

ct�mwm+1

0@ tX
s=1

minfs;mgX
i=�1

bs�iui

1A : (3.6)

A form for the limit random variable can then be constructed under Assumption 2 by making the
substitutions dBu(�) for u[n� ]=

p
n, dBw(t) for w[nt]=

p
n, � (dX)

�1 sdX�1ds for (LX([ns])ndX�1)�1b[ns],
and � (dY )

�1 rdY �1dr for (LY ([nr])ndY �1)�1c[nr]. Replacing sums with the integrals in the limit
as n!1 and noting that LX([nr])=LX(n)! 1 we obtain Gn1 ! �1;XY where

�1;XY (�) =
1

� (dY )

Z �

0

�Z r

�1
ZX (r; t) (r � t)dY �1 dBw (t)

�
dr (3.7)

where, for r 2 [0; �] and t 2 (�1; r],

ZX (r; t) =
1

� (dX)

Z r

0

 Z minft;sg

�1
(s� �)dX�1 dBu (�)

!
ds
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=
1

� (dX)

Z maxf0;tg

0

�Z s

�1
(s� �)dX�1 dBu (�)

�
ds

+
1

� (dX)

Z r

maxf0;tg

�Z t

�1
(s� �)dX�1 dBu (�)

�
ds

= X(t) + �X(r; t) (3.8)

(say). The last equality makes use of Theorem 3.1, and de�nes �X(r; t). It follows that

�1;XY (�) =

Z �

0
X�Y +

Z �

0
�X�Y: (3.9)

Note thatX(t) has the fractional integral representation corresponding to that of Y (t) in Theorem
3.1, with X(t) = 0 for t � 0. However, �X(r; t) is not a comparable integral of �increments��X(t),
because s 6= t. From (3.6), �X(r; t) can be viewed as the limiting case of

�Xn(r; t) =
1

n1=2+dXLX(n)

[nt]�1X
i=�1

0@ [nr]X
s=maxf1;[nt]�1g

bs�i

1Aui (3.10)

and it can be written in the equivalent form

�X(r; t) =

8>><>>:
1

� (1 + dX)

R t
�1[(r � �)

dX � (t� �)dX ]dBu (�) t > 0

1

� (1 + dX)

R t
�1[(r � �)

dX � (��)dX ]dBu (�) t � 0:
(3.11)

However, it is important to note that �X(r; t) is adapted to F(t), and this means that it can
be constructed as an Itô integral following (3.3). We have an alternate form of (3.7) as an Itô
integral on (�1; �] with respect to an F(t)-adapted integrand process,

�1;XY (�) =

Z �

�1

 
1

� (dY )

Z �

maxf0;�g
ZX (r; t) (r � t)dY �1 dr

!
dBw (t) : (3.12)

In this representation it is clear that �1;XY (�) is adapted to F(t), and a martingale.
Next, consider Gn3. Proceeding to the limit in the same way as before, setting m = t+ 1� j

and i = s� k, we obtain from (2.4)

Gn3(�) =
1

K(n)

[n�]�1X
s=1

n�1X
t=s

1X
k=0

1X
j=k+t�s+2

bkcjus�kwt+1�j

=
1

K(n)

[n�]�1X
s=1

sX
i=�1

bs�iui

0@[n�]�1X
t=s

i�1X
m=�1

ct+1�mwm

1A ;

and hence

Gn3(�)! �3;XY (�)

=
1

� (dX)

Z �

�1

�Z �

�1
	Y (r; t; �) (r � t)dX�1 dr

�
dBu (t)

=
1

� (dX)

Z �

0

Z �

�1
	Y (r; t; �) (r � t)dX�1 dBu (t) dr
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=

Z �

0
	Y �X (3.13)

where, for r 2 [0; �] and t 2 (�1; r],

	Y (r; t; �) =
1

� (dY )

Z �

r

Z t

�1
(s� �)dY �1 dBw (�) ds

=
1

� (1 + dY )

Z t

�1
[(� � �)dY � (r � �)dY ]dBw (�) (3.14)

Note that 	Y (r; t; �) is adapted to F(t), and hence for given � and r can also be constructed as
an Itô integral.

Thus, from (3.9) and (3.13) it emerges that the weak limit of Gn � E(Gn) has three distinct
components. All are adapted to F(t) so all have the Itô integral characterization, although in
one case with respect to a di¤erent Brownian motion. This will be the key to establishing the
status of these terms as weak limits of discrete sums, although it will be necessary to establish
that the limiting integrand processes are stochastically bounded and almost surely continuous.

4 Integration by Parts

It appears natural, when d1+d2 > 0 and under appropriate asssumptions such that both conver-
gence results exist, to equate the process �XY (�) + �XY �1+dX+dY with the one denoted

R �
0 XdY

in (1.10). As we show elsewhere, the existence of the former limit can be established under more
general conditions that of the latter, but in view of the complex nature of these formulae, the
�stochastic integral�designation needs to be placed on �rmer ground To this end, our purpose in
this section is to establish the validity of the the integration by parts formula

�XY (�) + �Y X(�) +  XY �
1+dX+dY = X(�)Y (�) (4.1)

where  XY is de�ned by the second equality of (2.6). The decomposition into components
 XY = �XY +�Y X is not de�ned for dX+dY � 0, and E(Gn) generally diverges when dX+dY < 0.
In this case a formula of the form (4.1) is not de�ned generally, but it does apply for the case
 XY = 0, such that the processes X and Y are independent.

Consider the random process complementary to the one we considered in the previous section,
where the X and Y processes are everywhere interchanged. The next step is to establish the
relationship between this process and the original. De�ne 	X(r; t; �) as the complementary case
of (3.14) with X replacing Y , and consider (recalling t � r in these formulae)

~X(t; �) = ZX(r; t) + 	X(r; t; �)

=
1

� (dX)

Z r

0

 Z minft;sg

�1
(s� �)dX�1 dBu (�)

!
ds

+
1

� (dX)

Z �

r

�Z t

�1
(s� �)dX�1 dBu (�)

�
ds

=
1

� (dX)

Z �

0

 Z minft;sg

�1
(s� �)dX�1 dBu (�)

!
ds

= X(�)� �X(t; �) (4.2)

where

�X(t; �) =
1

� (dX)

Z �

max(t;0g

�Z s

t
(s� �)dX�1 dBu (�)

�
ds
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=

8>>>>><>>>>>:

1

� (dX + 1)

R �
t (� � �)

dXdBu (�) t � 0

1

� (dX + 1)

0@ R �
0 (� � �)

dXdBu (�)

+
R 0
t

�
(� � �)dX � (��)dX

�
dBu (�)

1A t < 0:

(4.3)

Note the implication of (4.2) that

X(�)Y (�) =

Z �

0

~X�Y +

Z �

0

�X�Y (4.4)

where Z �

0

�X�Y =
1

� (dY )

Z �

0

Z r

�1
�X(t; �) (r � t)dY �1 dBw (t) dr:

The status of this latter term is not yet evident, although it exists by virtue of identity (4.4).

However, since E
�R �
0
~X�Y

�
= 0 by construction, we can deduce that

E

�Z �

0

�X�Y

�
= EX(�)Y (�) =  XY �

1+dX+dY :

It further follows from (4.4) and its complementary case that

�XY (�) + �Y X(�) =

Z �

0

~X�Y +

Z �

0

~Y �X

= 2X(�)Y (�)�
Z �

0

�X�Y �
Z �

0

�Y �X: (4.5)

Next, consider the following representations, using the rearrangements in (3.4) and (4.3) respec-
tively. WriteZ �

0

�X�Y =
1

� (dY + 1)

�Z �

0
(� � t)dY �X(t; �)dBw (t) +

Z 0

�1

h
(� � t)dY � (�t)dY

i
�X(t; �)dBw (t)

�
=

1

� (dX + 1)� (dY + 1)

Z �

0

�Z �

t
(� � �)dXdBu (�)

�
(� � t)dY dBw (t)

+
1

� (dX + 1)� (dY + 1)

Z 0

�1

�Z �

0
(� � �)dXdBu (�)

�h
(� � t)dY � (�t)dY

i
dBw (t)

+
1

� (dX + 1)� (dY + 1)

Z 0

�1

�Z 0

t

h
(� � �)dX � (��)dX

i
dBu (�)

�
�
h
(� � t)dY � (�t)dY

i
dBw (t)

(4.6)

=
1

� (dX + 1)� (dY + 1)

Z �

0

�Z �

0
(� � t)dY dBw (t)

�
(� � �)dXdBu (�)

+
1

� (dX + 1)� (dY + 1)

�Z 0

�1

h
(� � t)dY � (�t)dY

i
dBw (t)

��Z �

0
(1� �)dXdBu (�)

�
+

1

� (dX + 1)� (dY + 1)

Z 0

�1

�Z �

�1

h
(� � t)dY � (�t)dY

i
dBw (t)

�
�
h
(� � �)dX � (��)dX

i
dBu (�) +  Y X�

1+dX+dY :

(4.7)
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Note how the third equality re-writes the integral in the form that separates the stochastic (zero
mean) and non-stochastic components. In other words, in the terms of the fourth member, there
is no intersection of the times of the Brownian motions Bw and Bu. The �rst term and third term
of (4.7) can be constructed as Itô integrals with respect to dBu(�) of F(�)-measurable processes,
while the second term is the product of terms de�ned on (�1; 0] and (0; �] respectively. Since
all these terms have mean 0, we can deduce that the mean of the third member of (4.6) has to
appear explicitly in (4.7), as shown.

Further, consider the expression obtained by taking (4.7) and interchanging the pairs X;Y ,
u;w, and also t; � . It is easily seen that the sum of this expression and (4.6) is simply X(�)Y (�)+
 XY �

1+dX+dY . Clearly, the same equality holds if all the arguments are interchanged. It therefore
becomes evident that Z �

0

�X�Y +

Z �

0

�Y �X = X(�)Y (�) +  XY �
1+dX+dY : (4.8)

In combination with (4.5), (4.8) establishes the required integration by parts formula (4.1).

5 Discussion

There exists quite an extensive mathematical literature on the properties of integrals with respect
to fractional Brownian motion. See, inter alia, Lin (1995), Dai and Heyde (1996), Zähle (1998),
Decreusefond and Üstünel (1999), Decreusefond (2001), Pipiras and Taqqu (2000, 2001, 2002),
Bender (2003) and the references therein. However, much of this literature is concerned with
�sample-path� de�nitions of the integrals, and with their existence for classes of deterministic
integrand. There has been less emphasis on their properties as random variables, and as the
limits of discrete sums. In this context our results appear to have some novel features.

In particular, we have drawn a distinction between the apparently �natural�representation of
an integral with fractional integrator that we have denoted by

R
X�Y , and the limiting covariance

process which, following previous literature, we should denote formally by
R
XdY . For adapted

integrands the former process may be given an Itô representation, as in (3.5), but it fails the
criterion of satisfying an integration by parts formula, as follows implicitly from (4.1). Therefore
it does not provide a satisfactory de�nition of stochastic integral. The limiting covariance process
never has an Itô representation, and in fact decomposes into Itô-type terms in which the �inte-
grator�and �integrand�change places, but it satis�es the integration by parts formula, and is the
necessary time domain counterpart of the harmonic representation (1.10) for this case, as follows
from (4.1), Another noteworthy feature of the results is the fact that, while the stochastic integral
is both an adapted process and a martingale, the driving processes of �integrator�and �integrand�
both play the role of Brownian integrators in the components. This is, we suggest, an illuminating
way to view the implications of having an integrator process that is not a semimartingale.

6 Appendix: Proofs

6.1 Proof of Proposition 1.1

The coe¢ cient of Lj in the expansion of b(L) = �(L)a(L) is

bj =

jX
i=0

�iaj�i
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s
1

�(dX)

j�1X
i=0

�i(j � i)dX�1: (6.1)

Therefore, for any � > 1 note that

bj s
jdX�1

�(dX)

�j � j1=�
j

�dX�1 j�1X
i=0

�i

� j � i
j � j1=�

�dX�1
: (6.2)

Write
j�1X
i=0

�i

� j � i
j � j1=�

�dX�1
= A(j) +B(j)

where

A(j) =

[j1=� ]�1X
i=0

�i

� j � i
j � j1=�

�dX�1
and

B(j) =

j�1X
i=[j1=� ]

�i

� j � i
j � j1=�

�dX�1
:

Since the �j are summable and
j

j � j1=�
! 1

it is clear that A(j) ! �(1) as j ! 1: To show that B(j) ! 0, de�ne k = j � i. since
�i = O(i�1��) for � > 0 by assumption,

B(j) �
j�1X

i=[j1=� ]

j�ij
� j � i
j � j1=�

�dX�1

= O

�
(j � j1=�)1�dX j�(1+�)=�

j�[j1=� ]X
k=1

�j � k
j1=�

��1��
kdX�1

�
= O((j � j1=�)j�(1+�)=�)

in view of the fact that j � k � j1=� for all the k. Since � > 1 is arbitrary, pick � < 1 + � to
complete the proof.

6.2 Proof of Proposition 2.1

Under the independence assumption,

E(G2n) =
1

K(n)

1X
k=0

bk

k+n�1X
j=k+1

cj

n�jX
i=1�k

E(uiwi)

=
!uw
K(n)

1X
k=0

bk

n�1X
t=1

(n� t)ck+t: (6.3)

where the second equality makes the substitution t = j � k. It can be veri�ed that
1X
k=0

bk

n�1X
t=1

(n� t)ck+t =
n�1X
t=1

t�1X
s=0

� sX
k=0

bk

�
cs+1 +

n�1X
t=1

1X
s=t

� sX
k=s�t+1

bk

�
cs+1
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=
n�1X
t=1

t�1X
s=0

an;t�s(t=n; 0)cs+1 +
n�1X
t=1

1X
s=t

an;t�s(t=n; 0)cs+1 (6.4)

where the expression

ant(s; s
0) =

[ns]�tX
j=maxf0;[ns0]�t+1g

bj (6.5)

is de�ned in DDJ, equation (3.2). According to a straightforward extension of DDJ Lemma 3.1,

an;[ns]�[nx](s; 0) �

8>>><>>>:
LX(n)[nx]

dX

�(dX + 1)
; 0 � x � s

LX(n)
[nx]dX � ([nx]� [ns])dX

�(dX + 1)
; x > s:

In the case dX + dY > 0 we have, applying Assumption 2 and substituting dY =�(dY + 1) for
1=�(dY ),

1

K(n)

n�1X
t=1

t�1X
s=0

an;t�s(t=n; 0)cs+1 �
dY

n2�(dX + 1)�(dY + 1)

n�1X
t=1

tX
s=1

� s
n

�dX+dY �1
! dY
�(dX + 1)�(dY + 1)

Z 1

0

Z �

0
�dX+dY �1d�d�

=
dY

�(dX + 1)�(dY + 1)(dY + dX)(1 + dY + dX)
: (6.6)

Similarly,

1

K(n)

n�1X
t=1

1X
s=t

an;t�s(t=n; 0)cs+1

� dY
n2�(dX + 1)�(dY + 1)

n�1X
t=1

1X
s=0

 �
s+ t

n

�dX
�
� s
n

�dX!�s+ t
n

�dY �1
! dY
�(dX + 1)�(dY + 1)

Z 1

0

Z 1

0
((� + �)dX � �dX )(� + �)dY �1d�d�

=
1

�(dX + 1)�(dY + 1) (dX + dY )

�
Z 1

0
[dY (1 + �)

dX+dY + dX�
dX+dY � (dX + dY ) (1 + �)dY �dX ]d�: (6.7)

Combining these two limits completes the �rst part of the proof for the cases with dY 6= 0. If
dY = 0, Assumption 2(b) does not permit the explicit representation used in (6.6) and (6.7).
However, summability of the cs coe¢ cients implies that

n�1X
t=1

1X
s=0

an;t�s(t=n; 0)cs+1 = o(n1+dXLX(n)) (6.8)

and E(G2n) vanishes in the limit. These expressions are therefore formally correct in all the
cases.
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6.3 Proof of Proposition 2.2

Let

L(dX ; dY ) =
Z 1

0

h
dY (1 + �)

dX+dY + dX�
dX+dY � (dX + dY ) (1 + �)dY �dX

i
d� :

Denote the integrand by f(�). For 0 < dX;dY < 1=2; lim�!�1 f (�) = 0, lim�!0 f (�) = 1, and
the function is integrable for both positive and negative � . For �1=2 < dX;dY < 0, we have
lim�!�1 f (�) = 0, f (�) has a singularity at � = 0 with lim�!0 f (�) ��(dX+dY ) = 1, and f(�) is
integrable for � � 0. It also has a singularity at � = �1 with lim�!�1 f (�) (� + 1)�(dX+dY ) = 1,
and so is also integrable.

Consider an auxiliary integral

L�(dX ; dY ) =
Z 1

�1
f(�) d� :

Changing the variable of integration, � + 1 = �t, we obtain:

L�(dX ; dY ) =
Z 1

�1

h
dY (1 + �)

dX+dY + dX�
dX+dY � (dX + dY ) (1 + �)dY �dX

i
d�

=

Z 1

�1

h
dY (�t)dX+dY + dX (�t� 1)dX+dY � (dX + dY ) (�t)dY (�t� 1)dX

i
dt

= (�1)(dX+dY )
Z 1

�1

h
dY t

dX+dY + dX (t+ 1)
dX+dY � (dX + dY ) tdY (t+ 1)dX

i
dt

= (�1)dX+dY L�(dY ; dX):

Note that by interchanging dX and dY we obtain

L�(dX ; dY ) = (�1)dX+dY L�(dY ; dX)
= (�1)2(dX+dY ) L�(dX ; dY ) = 0

and hence also
L�(dX ; dY ) = 0

unless dX+dY = 0;�1;�2; : : :. Next, divide the range of integration in L�(dY ; dX) into (�1;�1),
(�1; 0), and (0;1). For the �rst interval change of variables � = �t� 1 givesZ �1

�1

h
dY t

dX+dY + dX (t+ 1)
dX+dY � (dX + dY ) tdY (t+ 1)dX

i
dt

=

Z 1

0

h
dY (�1� �)dX+dY + dX (��)dX+dY � (dX + dY ) (�1� �)dY (��)dX

i
d�

= (�1)dX+dY
Z 1

0

h
dY (1 + �)

dX+dY + dX�
dX+dY � (dX + dY ) (1 + �)dY �dX

i
d�

= (�1)dX+dY L(dX ; dY ):

For the second interval using � = �t we haveZ 0

�1

h
dY t

dX+dY + dX (t+ 1)
dX+dY � (dX + dY ) tdY (t+ 1)dX

i
dt

=

Z 1

0

h
dY (��)dX+dY + dX (1� �)dX+dY � (dX + dY ) (��)dY (1� �)dX

i
d�
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=

Z 1

0

h
(�1)dX+dY dY �dX+dY + dX (1� �)dX+dY � (�1)dY (dX + dY ) �dY (1� �)dX

i
d�

=
(�1)dX+dY dY
dX + dY + 1

(1� 0)� dX
dX + dY + 1

(0� 1)� (�1)dY (dX + dY )B(dX + 1; dY + 1)

=
(�1)dX+dY dY + dX

dX + dY + 1
� (�1)dY (dX + dY )B (dX + 1; dY + 1)

The integral over the third interval is simply L(dY ; dX). Adding the integrals over these three
intervals we obtain

L�(dY ; dX) = (�1)dX+dY L(dX ; dY ) +
(�1)dX+dY dY + dX

dX + dY + 1

� (�1)dY (dX + dY )B (dX + 1; dY + 1) + L(dY ; dX)
= 0: (6.9)

By symmetry,

L�(dX ; dY ) = (�1)dX+dY L(dY ; dX) +
(�1)dX+dY dX + dY

dX + dY + 1

� (�1)dX (dX + dY )B (dX + 1; dY + 1) + L(dX ; dY )
= 0: (6.10)

where we used B (x; y) = B (y; x). Now we multiply (6.9) by (�1)dX+dY and subtract from (6.10):

0 =
h
1� (�1)2(dX+dY )

i �
L(dX ; dY ) +

dY
dX + dY + 1

�
� (�1)dX

h
1� (�1)2dY

i
(dX + dY )B (dX + 1; dY + 1) :

Therefore,

L(dX ; dY ) = �
dY

dX + dY + 1

+ (�1)dX 1� (�1)2dY

1� (�1)2(dX+dY )
(dX + dY )B (dX + 1; dY + 1) :

Finally, using (�1)x = ei�x we rewrite in the second term

(�1)dX 1� (�1)2dY

1� (�1)2(dX+dY )
= ei�dX

1� ei�2dY
1� ei�2(dX+dY )

= ei�dX
ei�dY

�
e�i�dY � ei�dY

�
ei�(dX+dY )

�
e�i�(dX+dY ) � ei�(dX+dY )

�
=

sin�dY
sin� (dX + dY )

and therefore

L(dX ; dY ) = �
dY

dX + dY + 1
+ (dX + dY )B (dX + 1; dY + 1)

sin�dY
sin� (dX + dY )

:
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To complete proof of part (i), substitute this expression into (2.5) and rearrange using the iden-
tities B(x; y) = �(x)�(y)=�(x+ y), �(1� x)�(x) = �= sin�x and �(x+ 1) = x�(x):

�XY =
!uw

� (dX + 1)� (dY + 1) (dX + dY )
��

dY
1 + dX + dY

� dY
dX + dY + 1

+ (dX + dY )B (dX + 1; dY + 1)
sin�dY

sin� (dX + dY )

�
=

!uw
� (dX + 1)� (dY + 1)

B (dX + 1; dY + 1)
sin�dY

sin� (dX + dY )

=
!uw

� (2 + dX + dY )

sin�dY
sin� (dX + dY )

=
!uw

(1 + dX + dY ) � (1 + dX + dY )

�(1� dX � dY )�(dX + dY )
�(1� dY )�(dY )

=
!uw�(1� dX � dY )

� (1 + dX + dY ) (dX + dY )
sin�dY :

Part (ii) follows immediately on summing this expression with the complementary case having
dX and dY interchanged.

6.4 Proof of Proposition 2.3

In this case, note that if ant is de�ned by (6.5) then

an;t�s(t=n; 0)cs+1 = O(sdX+dY �1LX(s)LY (s))

so that these terms are summable by assumption. Considering expression (6.4), the lemma follows
since

n�1X
t=1

t�1X
s=0

an;t�s(t=n; 0)cs+1 = O(n)

and
n�1X
t=1

1X
s=t

an;t�s(t=n; 0)cs+1 = o(n):

6.5 Proof of Theorem 2.1

Without loss of generality we consider the case � = 1; and for simplicity of notation write G2n
for G2n(1). The extension to � < 1 is immediate.

Setting i = s� k; rewrite (2.3) as

G2n � E(G2n) =
1

K(n)

n�1X
t=1

tX
s=1

1X
k=0

bkck+t�s+1(us�kws�k � !uw)

=
1

K(n)

n�1X
t=1

tX
s=1

Pts

(say) where

Pts =

sX
i=�1

bs�ict+1�i(uiwi � !uw):
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Hence note that

E(G2n � E(G2n))2 �
2

K(n)2

n�1X
t=1

tX
s=1

t�sX
m=0

s�1X
k=0

E(PtsPt�m;s�k):

where, setting j = s� i in the third member and letting C denote a generic �nite constant,

E(PtsPt�m;s�k) =
�4uw � !2uw
K(n)2

s�kX
i=�1

bs�ibs�k�ict+1�ict�m+1�i

=
�4uw � !2uw
K(n)2

1X
j=k

bjbj�kct+1�s+jct�m+1�s+j

� C

n2(1+dX+dY )

1X
j=k

jdX�1(j � k)dX�1(j + t+ 1� s)dY �1(j + t�m+ 1� s)dY �1

� C

n2(1+dX+dY )
k2dX�1(k + t+ 1� s)dY �1(k + t�m+ 1� s)dY �1:

Hence,

E(G2n � E(G2n))2 �
C

n2(1+dX+dY )

n�1X
t=1

tX
s=1

(s� 1)2dX (t+ 1� s)dY �1
t�sX
m=0

(t�m+ 1� s)dY �1:

These sums can be bounded by conventional summation arguments (Davidson 1994, Thm 2.27)
as follows, also applying Lemma A.1 of DDJ in the case dX < 0.
Case dY > 0:

E(G2n � E(G2n))2 �
C

n2(1+dX+dY )

n�1X
t=1

tX
s=1

(t+ 1� s)2dY �1(s� 1)2dX

= O(n�1):

Case dY � 0:

E(G2n � E(G2n))2 �
C

n2(1+dX+dY )

n�1X
t=1

tX
s=1

(t+ 1� s)dY �1(s� 1)2dX

=

�
O(n�1 log n); dY = 0
O(n�1�2dY ); dY < 0

:

6.6 Proof of Theorem 3.1

A fractional Brownian motion Y is de�ned for 0 � t � 1 by

Y (t) =
1

� (dY + 1)

�Z t

0
(t� �)dY dBw (�) +

Z 0

�1

�
(t� �)dY � (��)dY

�
dBw (�)

�
:

However, note that for 0 � t � 1,

1

� (dY + 1)

�Z t

0
(t� �)dY dBw (�) +

Z 0

�1

�
(t� �)dY � (��)dY

�
dBw (�)

�
=

1

� (dY )

�Z t

0

�Z t

�
(r � �)dY �1 dr

�
dBw (�)
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+

Z 0

�1

�Z t

0
(r � �)dY �1 dr

�
dBw (�)

�
=

1

� (dY )

"Z t

�1

 Z t

maxf0;�g
(r � �)dY �1 dr

!
dBw (�)

#

=
1

� (dY )

Z t

0

�Z r

�1
(r � �)dY �1 dBw (�)

�
dr:
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