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Abstract

This paper considers a class of nonparametric autoregressive processes and

then a class of nonparametric time series regression models with a nonstationary

regressor. For the autoregression case, we propose a nonparametric unit–root

test for the conditional mean. For the nonparametric time series regression case,

we construct a nonparametric test for testing whether the regression is of a

known parametric form indexed by a vector of unknown parameters. We establish

asymptotic distributions of the proposed test statistics. Both the setting and

the results differ from earlier work on nonparametric time series regression with

stationarity. In addition, we develop a bootstrap simulation scheme for the

selection of suitable bandwidth parameters involved in the kernel tests as well as

the choice of simulated critical values. An example of implementation is given

to show that the proposed tests work in practice.
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1. Examples and motivation

Example 1.1 Consider a parametric linear model of the form

Xt = θ Xt−1 + ut, t = 1, 2, · · · , T (1.1)

where {ut} is a sequence of independent and identically distributed (i.i.d.) random

errors with E[u1] = 0 and σ2
0 = E[u2

1], and θ is an unknown parameter.

To check whether there is a kind of unit–root structure, existing results propose

testing

H01 : θ = 1. (1.2)

Example 1.2 Consider a nonparametric nonlinear model of the form

Xt = g(Xt−1) + ut, t = 1, 2, · · · , T (1.3)

where g(·) is an unknown function.

To test whether there is a kind of unit–root structure, we propose to test

H02 : P (g(Xt−1) = Xt−1) = 1 versus (1.4)

H12 : a non–/semiparametric alternative.

The main advantage of using (1.12) and (1.4) is as follows:

• No need to assume the parametric form before testing;

• Model mis–specification may be avoided; and

• Estimation and testing of g(·) may be done simultaneously.

Example 1.3 Consider a nonlinear regression model of the form

Yt = m(Xt) + et with Xt = Xt−1 + ut, (1.5)

where m(·) is unknown, both et and ut are independent, and {es} are independent of

{ut}.
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Estimation of m(·) has been done in Karlsen, Myklebust and Tjøstheim (2007).

We are also interested in testing

H03 : P (m(Xt) = mθ0(Xt)) = 1 vs (1.6)

H13 : a non–/semiparametric alternative,

where mθ0(·) is a parametric function of θ0.

Under H03, model (1.5) becomes a parametric nonlinear model of the form

Yt = mθ0(Xt) + et with Xt = Xt−1 + ut, (1.7)

which has been discussed in Park and Phillips (2001).

When et = σ(Xt)εt, it is also interested in testing

H04 : P (m(Xt) = mθ0(Xt), σ(Xt) = σθ0(Xt)) = 1 vs (1.8)

H14 : a non–/semiparametric alternative,

where σθ0(·) is also a parametric function of θ0.

Example 1.4 Consider a parametric linear model with a nonlinear autoregressive error

model of the form

Yt = Xτ
t θ + ut with ut = g(ut−1) + et, (1.9)

where {Xt} is a vector of regressors, θ is a vector of unknown parameters, g(·) is an

unknown function and {et} is a sequence of errors.

The interest here is to test

H05 : P (g(ut−1) = θ0 ut−1) = 1 vs (1.10)

H15 : a non–/semiparametric alternative,

where the case of θ0 ≡ 1 is included.

In the following discussion, we focus on H02 and H03.
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During the past two decades or so, there has been much interest in both theoretical

and empirical analysis of long–run economic and financial time series data. Models

and methods used have been based initially on parametric linear autoregressive mov-

ing average representations (Granger and Newbold 1977; Brockwell and Davis 1990;

Granger and Teräsvirta 1993; and many others) and then on parametric nonlinear time

series models (see e.g. Tong 1990; Granger and Teräsvirta 1993; Fan and Yao 2003).

Such parametric linear or nonlinear models, as already pointed out in existing studies,

may be too restrictive in some cases. This leads to various nonparametric and semi-

parametric techniques being used to model nonlinear time series data with the focus

of attention being on the case where the observed time series satisfies a type of sta-

tionarity. Both estimation and specification testing has been systematically examined

in this situation (Robinson 1989; Masry and Tjøstheim 1995, 1997; Härdle, Lütkepohl

and Chen 1997; Fan and Yao 1998; Li and Wang 1998; Li 1999; Franke, Kreiss and

Mammen 2002; Fan and Yao 2003; Gao 2007; Li and Racine 2007 and others).

The stationarity assumption is restrictive because many time series are nonstation-

ary, and there is now a large literature on linear modeling of nonstationary series,

but not much has been done in the nonlinear situation. In nonparametric estimation

of nonlinear and nonstationary time series models as well as continuous–time finan-

cial models, existing studies include Phillips and Park (1998), Karlsen and Tjøstheim

(1998, 2001), Park and Phillips (2001), Bandi and Phillips (2002, 2003, 2005), and

Karlsen, Myklebust and Tjøstheim (KMT) (2007). The last paper provides a class

of nonparametric versions of some of those parametric models proposed in Engle and

Granger (1987). In the field of model specification with nonstationarity, there seems

to be very little work on testing in a nonlinear and nonstationary framework. Granger,

Inoue and Morin (1997) propose a class of parametric nonlinear random walk models

and then discuss their applications in economics and finance. As pointed out in their

paper, stochastic trends occur in many macroeconomic and financial series. They also

conclude that one of the important problems is how to test whether these nonlinear
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trends occur and whether such nonlinear trends would be adequate to represent actual

data. To provide possible answers to these as well as some other related specification

testing problems is the main objective of this paper.

The proposed methodologies and technologies in this paper are applicable to a

wide variety of nonlinear time series models, which include a class of nonlinear random

walk models proposed by Granger, Inoue and Morin (1997). Specifically, we propose

a novel unit root test procedure for stationarity in a nonlinear time series setting.

Such a test procedure can initially avoid misspecification through the need to specify

a linear conditional mean. In other words, we propose estimating the form of the

conditional mean and testing for stationarity simultaneously. Such a test procedure

may also be viewed as a nonparametric counterpart of those tests proposed in Dickey

and Fuller (1979), Phillips (1987), Phillips and Perron (1988), Phillips (1997), Lobato

and Robinson (1998), Phillips and Xiao (1998), Robinson (2003) and many others in

the literature.

We consider two different classes of nonlinear time series models with nonstation-

arity. The first is the class of nonlinear autoregressive models of the form

Xt = g(Xt−1) + εt, t = 1, 2, . . . , T, (1.11)

where g(·) is an unknown function defined over R1 = (−∞,∞), {εt} is a sequence

of independent and identically distributed (i.i.d.) errors with mean zero and finite

variance σ2
0 = E[ε2

1], and T is the number of observations. The initial value X0 of Xt

may be any Op(1) random variable. However, we set X0 = 0 in this paper to avoid

some unnecessary complications in exposition.

When g(Xt−1) = Xt−1 + g1(Xt−1) with g1(·) being an identifiable nonlinear func-

tion, model (1.11) becomes a nonlinear random walk model. Granger, Inoue and Morin

(1997) discuss some parametric cases for this model, and suggest several estimation pro-

cedures. Recently, Kapetanios, Shin and Snell (2003) propose a testing procedure for

a unit root in a parametric nonlinear time series model. As g1(·) usually represents
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some kind of nonlinear fluctuation in the conditional mean, it would be both theoreti-

cally and practically useful to test whether such a nonlinear term is significant before

using model (1.11) in practice. We therefore first consider testing the following null

hypothesis:

H02 : P (g1(Xt−1) = 0) = 1 or P (g(Xt−1) = Xt−1) = 1 for all t ≥ 1. (1.12)

To present our main ideas, we consider only testing (1.12). It should be pointed

out that we may also consider a generalized form of model (1.11) with σ0 replaced by

a stochastic volatility function σ(Xt−1). In this case, we should be considering a test

for P (g(Xt−1) = Xt−1 and σ(Xt−1) = σ0) = 1 for all t ≥ 1 instead of (1.12).

Our second class of nonlinear time series regression models is considered under the

assumption that H02 is true. It is given as:

Yt = m(Xt) + σϑ0(Xt) et with Xt = Xt−1 + ut, t = 1, 2, . . . , T, (1.13)

where m(·) is an unknown function defined over R1 = (−∞,∞), σϑ0(·) > 0 is a known

function indexed by a vector function of unknown parameters ϑ0, {ut} is a sequence

of i.i.d. normal errors, and {et} is a sequence of martingale differences. We are then

interested in testing the following null hypothesis:

H03 : P (m(Xt) = mθ0(Xt)) = 1 for all t ≥ 1, (1.14)

where mθ0(x) is a known parametric function of x indexed by a vector of unknown

parameters, θ0 ∈ Θ. Note that θ0 is different from ϑ0 involved in the conditional

variance function. Under H02, model (1.13) becomes a nonlinear parametric model of

the form

Yt = mθ0(Xt) + σϑ0(Xt) et with Xt = Xt−1 + ut, t = 1, 2, . . . , T. (1.15)

Park and Phillips (2001) extensively discuss some estimation problems for a form of

model (1.15).
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To the best of our knowledge, the problem of testing both (1.12) and (1.14) for

the case where {Xt} is nonstationary has not been discussed. This paper proposes

two tests and establishes their asymptotic distributions. As the discussion of the two

test problems is very different, we will discuss them separately. For model (1.11), we

consider testing H02 in a nonparametric setting. For model (1.13), we are also able to

establish a novel test of H03 for the case where {Xt} is a classical random walk model

of the form (1.13). In other words, this paper discusses separately how to test H02

for model (1.11) and then considers testing H03 for model (1.13). For both H02 and

H03, we construct two kernel based test statistics indexed by a pair of bandwidths and

establish their asymptotic distributions.

The rest of the paper is organised as follows. Section 2 establishes two test pro-

cedures as well as some asymptotic distributional results. One simulation procedure

for implementing the proposed tests is established in Section 3. Section 4 shows how

to implement the proposed tests in practice. Section 5 concludes the paper with some

remarks on extensions. Mathematical details are relegated to Appendix A.

2. Establishment of the tests and asymptotic theory

Let ĝ(·) be a nonparametric estimator of g(·). The idea is to establish a test based

on

MT =
1

T

T∑
t=1

[ĝ(Xt−1)−Xt−1]
2 , (2.1)

which is similar to the linear case where

θ̂ − 1 =

∑T
t=1 Xt−1(Xt −Xt−1)∑T

t=1 X2
t−1

. (2.2)

A suitably normalized version of MT suggests using

L̂T (h1) =

∑T
s=1

∑T
t=1, 6=s ûs K

(
Xs−1−Xt−1

h1

)
ût√

2
∑T

s=1

∑T
t=1, 6=s û2

s K2
(

Xs−1−Xt−1

h1

)
û2

t

, (2.3)

where ût = Xt − ĝ(Xt−1), K(·) is a probability kernel function and h1 is a bandwidth

parameter.
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When ĝ(x) = θ̂ x, a Dickey–Fuller type of test is as follows:

DFT =

∑T
t=2(Xt −Xt−1)Xt−1

σ̂T

√∑T
t=2 X2

t−1

(2.4)

where σ̂2
T = 1

T

∑T
t=1

(
Xt − θ̂T Xt−1

)2
with θ̂T =

∑T

t=2
(Xt−Xt−1)Xt−1∑T

t=2
X2

t−1

.

Note that under H03, the true model is a parametric nonlinear model of the form

Yt = f(Xt, θ0) + et. (2.5)

To test H03, we thus propose using a test statistic of the form

N̂T (h2) =

∑T
s=1

∑T
t=1, 6=s ês G

(
Xs−Xt

h2

)
êt√

2
∑T

s=1

∑T
t=1, 6=s ê2

s G2
(

Xs−Xt

h2

)
ê2

t

, (2.6)

where G(·) is a probability kernel function, h2 is a bandwidth parameter, êt = Yt −
f(Xt, θ̂), in which θ̂ is a consistent estimator of θ0 under H03.

To establish asymptotic distributions of L̂T (h1) and N̂T (h2), we need to impose the

following assumptions.

Assumption 2.1: (i) Assume that {ut = Xt −Xt−1} is a sequence of independent

and identically distributed (i.i.d.) normal errors with E[ut] = 0, E[u2
t ] = σ2

u and

0 < E[u4
t ] = µ4 < ∞.

(ii) Let K(·) be a symmetric probability density function with compact support C(K).

In addition,
∫

K2(u)du < ∞.

(iii) Assume that g(x) is twice differentiable in x ∈ R1 = (−∞,∞). In addition,

supx∈C(K) |g′(x)| < ∞.

(iv) Assume that h1 satisfies limT→∞ h1 = 0 and lim supT→∞ T
1
2
−δ1h1 = ∞ for some

0 < δ1 < 1
2
.

Remark 2.1. Assumption 2.1(i) implies that ut and Xt−1 are independent for all

t ≥ 1. In addition, this paper needs to assume that {ut} is an independent N(0, σ2
u)

error. As a result, Xt =
∑t

s=1 us ∼ N(0, tσ2
u). However, we believe that the normality
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assumption could be removed if the so–called “local–time approach” developed by

Phillips and Park (1998) or the Markov splitting technique of Karlsen and Tjøstheim

(1998, 2001) could be employed in establishing Theorem 2.1 below. As the potential

of the two alternative approaches requires further study, we thus assume normality

throughout this paper to establish our main results. Assumption 2.1(ii) holds in many

cases. For example, when K(x) = |x| I[−1,1](x), Assumption 2.1(ii) holds automatically.

In addition, Assumption 2.1(iii) is a very mild condition.

Assumption 2.1(iv) does not look unnatural in the nonstationary case, although

it looks more restrictive than for the stationary case. In addition, the conditions

of Theorems 5.1 and 5.2 of Karlsen and Tjøstheim (2001) imposed on h1 become

simplified since we are interested in the special case of random walk with a tail index

β = 1
2

involved in the conditions. As also pointed out in Remark 3.1 of Karlsen,

Myklebust and Tjøstheim (2007), the conditions on h1 required to establish Theorems

5.1 and 5.2 of Karlsen and Tjøstheim (2001) may be weakened to limT→∞ h1 = 0

and limT→∞ T
1
2
−δh1 = ∞ for some 0 < δ < 1

2
. Such conditions on the bandwidth

for nonparametric testing in the nonstationary case are equivalent to the minimal

conditions: limT→∞ h1 = 0 and limT→∞ Th1 = ∞ required in nonparametric kernel

testing for both the independence and the stationary time series cases (see Zheng

1996; Li and Wang 1998; Fan and Linton 2003; Gao and King 2005).

Assumption 2.2. (i) Assume that {ut = Xt−Xt−1} is a sequence of independent and

identically distributed normal errors with E[ut] = 0, E[u2
t ] = σ2

u and 0 < E[u4
t ] = µ4 <

∞.

(ii) Assume that {et} is a sequence of martingale differences satisfying E[et|Bt−1] = 0,

E[e2
t |Bt−1] = 1 a.s., E[e3

t |Bt−1] = 0 a.s. and 0 < ν4 = E[e4
t |Bt−1] < ∞ a.s., where

Bt−1 = σ{es : 1 ≤ s ≤ t− 1} is a σ–field generated by {es : 1 ≤ s ≤ t− 1}.

(iii) Assume that us and et are mutually independent for all s, t ≥ 1.

(iv) Let G(·) be a symmetric probability density function with compact support C(G).

In addition,
∫

G2(u)du < ∞.
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(v) Assume that m(x) is twice differentiable in x ∈ R1 = (−∞,∞). In addition,

supx∈C(G) |m′(x)| < ∞.

In addition to Assumption 2.2, we need more conditions on mθ(·) under H03. Let

QT (θ) =
1

T

T∑
t=1

(Yt −mθ(Xt))
2 .

Define the nonlinear least squares estimator of θ0 as the minimizer of QT (θ) over

θ ∈ Θ:

θ̂ = arg min
θ∈Θ

QT (θ).

Assumption 2.3. (i) There is a vector, ϑ0 = (σ0, ρ0), of unknown parameters such

that the conditional variance function can be specified as σ2
ϑ0

(x) = σ2
0|x|2ρ0, where both

σ0 > 0 and 0 ≤ ρ0 < ∞ are some constants.

(ii) Assume that h satisfies limT→∞ h2 = 0 and lim supT→∞ T
1
2
+ρ0−δ2h2 = ∞ for some

0 < δ2 < 1
2

+ ρ0.

(iii) Furthermore, suppose under H02 that the following holds in probability:

lim
T→∞

DT

T

T∑
t=1

(
mθ0(Xt)−m

θ̂
(Xt)

)2
= 0,

where DT = T
3
4
−2ρ0

√
h2.

Remark 3.1. (i) Assumption 2.2(i) is the same as Assumption 2.1(i). The key

difference is however that Assumption 2.1 imposes the normality condition on the

process {Xt} under H01 while Assumption 3.1 requires {ut} to be standard normal

under both H03 and H13. This is also because the current section considers testing the

parametric conditional mean under the assumption that the explanatory time series

{Xt} is normally distributed as N(0, tσ2
u), which is the same as assuming that H01 is

true. When H01 is not true, but {Xt} belongs to a class of null recurrent processes (as

discussed in Karlsen, Myklebust and Tjøstheim 2007), we believe that conditions can

be found such that the conclusions of Theorem 2.2 remain true. This case, along with
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other cases where {ut} is only a sequence of stationary errors, will be left for future

research.

(ii) Assumption 2.2(ii) is quite standard in this kind of problem. See, for example,

Assumption 2.1 of Park and Phillips (2001). Obviously, Assumption 3.1(ii) covers the

case where {et} is a sequence of independent and standard normally distributed errors.

(iii) Assumption 2.2(iii) imposes the independence between {es} and {ut} for all

s, t ≥ 1. Such an independence assumption is somewhat restrictive but may not be

too unreasonable, since the conditional volatility function σϑ0(Xt) has already been

extracted from the error process component. Assumption 2.2(iv)(v) is equivalent to

Assumption 2.1(ii)(iii). Such conditions on both the kernel and mean functions are

needed in this type of nonstationary cases.

(iv) Assumption 2.3(i) imposes some specific conditions on the form of the condi-

tional variance function, which covers some important models. It is possible that such

a specific form may be relaxed to cover some more general parametric functions as may

be seen from the derivation in the proof of Lemma B.1. Since the specification of the

conditional variance function is not the main interest of this paper, we wish to leave

such discussion for future study.

(v) Assumption 2.3(ii) is equivalent to Assumption 2.1(iv), and required to ensure

the proofs in Appendix B. Unlike the stationary case, Assumption 2.3(iii) involves both

the form of mθ0(·) and the rate of convergence of θ̂ to θ0. This is because, as discussed

extensively by Park and Phillips (2001), the rate of convergence depends on which

class mθ0(·) belongs to. For example, when mθ0(x) = α0 +β0x, the rate of convergence

of θ̂ to θ0 is of an order of T−1, faster than the usual rate of T−1/2. In this case,

Assumption 3.2(ii) reduces to limT→∞ h = 0, which is just the first part of Assumption

2.3(ii). In other cases, the rate of convergence of θ̂ to θ0 as shown in Theorem 5.1 of

Park and Phillips (2001) may be slower than the usual rate of T−1/2. Thus, in general

the bandwidth h needs to satisfy Assumption 2.3(iii). Assumption 2.3(iii) is needed to

establish the asymptotic consistency of the proposed test under H02.
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Theorem 2.1: (i) If Assumption 2.1 holds, then as T →∞

L̂T (h) →D N(0, 1) under H02. (2.7)

(ii) If Assumptions 2.2 and 2.3 hold, then as T →∞

N̂T (h) →D N(0, 1) under H03. (2.8)

The proof of (i) depends on

LT (h) =

∑T
s=1

∑T
t=1, 6=s us K

(
Xs−1−Xt−1

h

)
ut√

2
∑T

s=1

∑T
t=1, 6=s u2

s K2
(

Xs−1−Xt−1

h

)
u2

t

=

∑T
s=2

∑s−1
t=1 us K

(∑s−1

i=t
ui

h

)
ut√∑T

s=2

∑s−1
t=1 u2

s K2

(∑s−1

i=t
ui

h

)
u2

t

→D N(0, 1) (2.9)

as T →∞, using ut ∼ N(0, σ2
0) and Xt =

∑t
i=1 ui ∼ N(0, tσ2).

The proof of (ii) depends on

NT (h) =

∑T
s=1

∑T
t=1, 6=s es K

(
Xs−Xt

h

)
et√

2
∑T

s=1

∑T
t=1, 6=s e2

s K2
(

Xs−Xt

h

)
e2

t

=

∑T
s=2

∑s−1
t=1 es K

(∑s

i=t+1
ui

h

)
et√∑T

s=2

∑s−1
t=1 e2

s K2

(∑s

i=t+1
ui

h

)
e2

t

→D N(0, 1) (2.10)

as T →∞, using ut ∼ N(0, σ2
0) and Xt =

∑t
i=1 ui ∼ N(0, tσ2) as well as the fact that

{es} is assumed to be independent of {ut} for all s, t.

3. Simulation scheme

In this section, we focus on the implementation of Theorem 2.1(i). For ease of

expressions, we use h = h1 throughout the rest of this paper.
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The exact α–level critical value, lα(h) (0 < α < 1) is the 1−α quantile of the exact

finite–sample distribution of L̂T (h). We therefore suggest choosing an approximate

α–level critical value, l∗α(h), by using the following simulation procedure:

• Let X∗
0 = 0. For each t = 1, 2, . . . , T , generate X∗

t = X∗
t−1 + σ̂0ε

∗
t , {ε∗t} is

sampled independently from the Normal distribution: N(0, 1), and σ̂2
0 is an initial

estimator of σ2
0 based on the original sample.

• Use the data set {X∗
t : t = 1, 2, . . . , T} to re–estimate σ2

0. Denote the resulting

estimate by σ̂∗0. Compute the test statistic L̂∗T (h) that is the corresponding version

of L̂T (h) by replacing σ̂0 and {Xt : 1 ≤ t ≤ T} with σ̂∗0 and {X∗
t : 1 ≤ t ≤ T} on

the right–hand side of L̂T (h).

• Repeat the above steps M times and produce M versions of L̂∗T (h) denoted by

L̂∗Tm(h) for m = 1, 2, . . . ,M . Use the M values of L̂∗Tm(h) to construct their

empirical bootstrap distribution function. The bootstrap distribution of L̂∗T (h)

given the full sample YT = {Yt : 1 ≤ t ≤ T} is defined by P ∗
(
L̂∗T (h) ≤ x

)
=

P
(
L̂∗T (h) ≤ x|YT

)
.

Let l∗α(h) satisfy P ∗
(
L̂∗T (h) ≥ l∗α(h)

)
= α and then estimate lα(h) by l∗α(h).

Define the size and power functions by

α(h) = P
(
L̂T (h) ≥ l∗α(h)|H02

)
and

β(h) = P
(
L̂T (h) ≥ l∗α(h)|H12

)
.

Let H = {h : α(h) ≤ α}. Choose an optimal bandwidth h0 such that

ĥtest = arg max
h∈H

β(h).

We then use l∗α(ĥtest) in the computation of both the size and power values of L̂T (ĥtest)

for each case.
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4. Examples of implementation

Example 4.1. Consider a nonlinear time series model of the form

Xt = Xt−1 + g1(Xt−1) + ut, (4.1)

where g1(·) is an unknown function, X0 = 0, and {ut} is a sequence of independent

Normal random errors with E[u1] = 0 and E[u2
1] = σ2

0 < ∞.

In this example, we consider two different alternatives for g1(·). In the first case, we

consider a linear alternative of the form g1(x) = βx with −2 < β < 0 being estimated

by the conventional least squares estimation.

In the second case, the form of g1(·) is given by g1(x) = βx
(
1− eβx2

)
, where

−2 < β < 0 and 0 < σ < ∞ are estimated using a maximized likelihood estimation

procedure.

Since we are interested in assessing the performance of the proposed test for a

number of different values for β, the true value of σ2
0 = 0.05 was used in generating

the data in both cases. In addition to the case of σ2
0 = 0.05, we have also tried some

other values of σ0. Probably because the test L̂T (h) does not depend on the choice of

σ0, the resulting finite sample results are very similar.

To assess the variability of both the size and power with respect to various band-

width values, we then consider a set of bandwidth values of the form

hi =
1

25−i
ĥtest for i = 1, · · · , 5. (4.2)

To simplify the notation, we introduce

L1i = L̂T (hi) for i = 1, · · · , 5. (4.3)

Let L05 = DFT . The corresponding simulated sizes and power values with 1000

replications for model (4.4) below are given in Table 4.1.

Consider a linear model of the form

H01 : Xt = Xt−1 + ut versus (4.4)

H11 : Xt = Xt−1 + βXt−1 + ut,
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where −2 < β < 0.

Table 4.1. Simulated sizes and power values at the 5% level

T = 250 T = 500 T = 750

β L05 L15 L05 L15 L05 L15

0.00 0.037 0.041 0.059 0.039 0.054 0.051

-0.05 0.718 0.464 1.000 0.679 1.000 0.804

-0.10 0.999 0.811 1.000 0.966 1.000 0.986

-0.20 1.000 0.993 1.000 1.000 1.000 1.000

Table 4.1 shows that while the sizes are comparable, the conventional test L05 is

more powerful than the proposed test L15 as expected when the alternative model is

a linear autoregressive model. However, the biggest power reduction is only about

36% at the case of T = 250 and β = −0.05. This may suggest that we should use

the proposed test for nonstationarity in the conditional mean when there is no priori

information about the form of the conditional mean.

When the alternative is a nonlinear parametric form as in (4.5), our studies show

that L05 is basically inferior to our test in the sense that it is much less powerful than

the proposed test. We now give the corresponding simulated sizes and power values

with 1000 replications for model (4.5) below for the tests in Tables 4.2 and 4.3.

Consider a nonlinear model of the form

H02 : Xt = Xt−1 + ut versus (4.5)

H12 : Xt = Xt−1 + βXt−1

(
1− eβX2

t−1

)
+ ut,

where −2 < β < 0.

Table 4.2. Simulated sizes for T = 250 at the 5% level

15



T L11 L12 L13 L14 L15 L05

250 0.003 0.010 0.034 0.047 0.039 0.038

500 0.007 0.017 0.026 0.041 0.037 0.061

750 0.005 0.014 0.038 0.050 0.049 0.056

Table 4.3. Power values for T = 250 at the 5% level

β L11 L12 L13 L14 L15 L05

-0.05 0.105 0.123 0.132 0.149 0.218 0.084

-0.10 0.212 0.271 0.353 0.439 0.652 0.123

-0.20 0.562 0.734 0.889 0.978 0.997 0.415

-0.40 0.989 1.000 1.000 1.000 1.000 0.671

Example 4.2. This example examines the three-month Treasury Bill rate data given

in Figure 1 below sampled monthly over the period from January 1963 to December

1998, providing 432 observations. Since we consider a monthly data set, this gives

∆ = 20
250

.

Let {Xt : t = 1, 2, · · · , 432} be the set of Treasury Bill rate data. We assume that

{Xt} satisfies a nonlinear model of the form

Xt = g(Xt−1) + ut, (4.6)

where {et} is a sequence of stationary errors.

we need to propose the following procedure for computing the p–value of L̂T (ĥtest):

• For the real data set, construct ĝ(·), ĥtest and L̂T (ĥtest).

• Let X∗
1 = X1. Generate a sequence of bootstrap resamples {u∗t} from N(0, 1)

and then X∗
t = X∗

t−1 + σ̂0 u∗t for 2 ≤ t ≤ 432.

16
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• Compute the corresponding version L̂∗T (ĥtest) of based on {X∗
t }.

• Repeat the above steps 1000 times to find the bootstrap distribution of L̂∗T (ĥtest)

and compute the proportion that L̂T (ĥtest) < L̂∗T (ĥtest). This proportion is an

approximate p–value of L̂T (ĥtest).

Our conclusion is as follows:

• Apply DFT to test H01. Simulation returns the simulated p–value of p̂1 = 0.005.

• Apply L̂T (h0) to test H02. Simulation returns the simulated p–value of p̂2 = 0.011.

• While both of the simulated p–values suggest that there is no enough evidence

of supporting unit–root at the 5% significance level, there is some evidence of

accepting unit–root based on L̂T (h) at the 1% significance level.
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5. Conclusions and discussion

• We have proposed a new nonparametric test for the conditional mean functions.

• An asymptotically normal distribution of the proposed test has been established.

• In addition, we have also proposed the Simulation Scheme to implement the

proposed test in practice.

• The finite–sample results show that both the proposed test and the Simulation

Scheme are practically applicable and implementable.

• Meanwhile, we like to mention some possible extensions of the main ideas to some

other closely related models.

Appendix A. As the proofs of the theorems and the necessary lemmas are already

extremely technical, we give only an outline for each of the proofs. However, any more

details are available from the authors upon request.

To avoid notational complication, we use h = h1 throughout the proof of Theorem

2.1. Let ast = Kh(
∑t−1

i=s ui) = K
(∑t−1

i=s
ui

h

)
and ηt = 2

∑t−1
s=1 ast us.

Observe that under H01

L1T (h1) =
T∑

t=1

T∑
s=1, 6=t

ûs Kh1(Xs−1 −Xt−1) ût =
T∑

t=1

T∑
s=1, 6=t

us Kh1(Xs−1 −Xt−1) ut

+
T∑

t=1

T∑
s=1, 6=t

g̃s Kh1(Xs−1 −Xt−1) g̃t + 2
T∑

t=1

T∑
s=1, 6=t

us Kh1(Xs−1 −Xt−1) g̃t

≡ L1T1 + L1T2 + L1T3, (A.1)

σ̂2
1T = 2

T∑
t=1

T∑
s=1, 6=t

û2
s K2

h1
(Xs−1 −Xt−1) û2

t = 2
T∑

t=1

T∑
s=1

u2
s K2

h1
(Xs−1 −Xt−1) u2

t

+ 2
T∑

t=1

T∑
s=1, 6=t

g̃2
s K2

h1
(Xs−1 −Xt−1) g̃2

t + R̂1T , (A.2)
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where g̃t = ĝ(Xt−1)− g(Xt−1) and R̂1T is the remainder term given by

R̂1T = σ̂2
1T − 2

T∑
t=1

T∑
s=1

u2
s K2

h1
(Xs−1 −Xt−1) u2

t − 2
T∑

t=1

T∑
s=1, 6=t

g̃2
s K2

h1
(Xs−1 −Xt−1) g̃2

t .

In view of (A.1) and (A.2), to prove Theorem 2.1, it suffices to show that as T →∞

L1T1

σ̃1T

→D N(0, 1), (A.3)

L1Ti

σ̃1T

→P 0 for i = 2, 3, (A.4)

L1T1 ·
(

1

σ̂1T

− 1

σ̃1T

)
→P 0, (A.5)

where σ̃2
1S = 2

∑S
t=1

∑S
s=1 u2

s a2
st u2

t for 1 ≤ S ≤ T .

We will return to the proof of (A.5) and (A.4) in the second half of this appendix

after having proved Lemmas A.1–A.5. In order to prove (A.3), we apply Theorem 3.4

of Hall and Heyde (1980, p.67) to our case. We now start to prove (A.3). The proof

of (A.4) is given in the proof of Theorem 2.1 below. Before verifying the conditions of

their Theorem 3.4, we introduce the following notation.

Let YTt = ηtut

σ1T
, ΩT,s = σ{ut : 1 ≤ t ≤ s} be a σ–field generated by {ut : 1 ≤ t ≤ s},

GT = ΩT,M(T ) and GT,s be defined by

GT,s =


ΩT,M(T ), 1 ≤ s ≤ M(T ),

ΩT,s, M(T ) + 1 ≤ s ≤ T ,
(A.6)

where M(T ) is chosen such that M(T ) → ∞ and M(T )
T

→ 0 as T → ∞. Let Ũ2
M(T ) =

σ̃2
1,M(T )

σ2
1,M(T )

, where σ2
1S = Var

[∑S
t=2 ηtut

]
for all 1 ≤ S ≤ T as defined before. We can prove

that as T →∞
σ̃2

1T

σ2
1T

− Ũ2
M(T ) →P 0. (A.7)

Thus, equation (3.28) of Hall and Heyde (1980) can be satisfied. The proof of (A.7) is

given in Lemma A.4 below.

Before we apply Theorem 3.4 of Hall and Heyde (1980) to our case, we need to state

that the conclusion of their Theorem 3.4 remains true if the unconditional assumptions
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(3.18) and (3.20) involved in their Theorem 3.4 are replaced by the corresponding

conditional assumptions as used in Corollary 3.1 of Hall and Heyde or conditions (A.9)

and (A.10) below. Therefore, in order to prove that as T →∞

L1T1

σ̃1T

=
1

σ̃1T

T∑
t=2

ηtut →D N(0, 1), (A.8)

it suffices to show that there is an almost surely finite random variable ξ such that for

all δ > 0,

T∑
t=2

E
[
Y 2

Tt|ΩT,t−1

]
→D ξ2, (A.9)

T∑
t=2

E
[
Y 2

TtI{[YT t|>δ]}|ΩT,t−1

]
→P 0, (A.10)

T∑
t=2

E [YTt|GT,t−1] =
M(T )∑
t=2

YTt +
T∑

t=M(T )+1

E [YTt|ΩT,t−1] =
M(T )∑
t=2

YTt →P 0, (A.11)

T∑
t=2

|E [YTt|GT,t−1]|2 =
M(T )∑
t=2

Y 2
Tt +

T∑
t=M(T )+1

|E [YTt|ΩT,t−1]|2 =
M(T )∑
t=2

Y 2
Tt →P 0, (A.12)

lim
δ→0

lim inf
T→∞

P

(
σ̃1T

σ1T
> δ

)
= 1. (A.13)

The proof of (A.9) is given in Lemma A.3, while Lemma A.2 below gives the proof

of (A.10). The proof of (A.11) is similar to that of (A.12), which follows from

M(T )∑
t=2

E
[
Y 2

Tt

]
= O

(M(T )

T

) 3
2

→ 0 (A.14)

as T →∞, in which Lemma A.1 below is used.

The proof of (A.13) follows from

σ̃2
1T

σ2
1T

→D ξ2 > 0. (A.15)

An outline of the proof of (A.15) is given in Lemma A.5 below.

In order to prove (A.10), it suffices to show that

1

σ4
1T

T∑
t=2

E
[
η4

t

]
→ 0. (A.16)
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The proof of (A.16) is given in Lemma A.2 below.

A.1. Lemmas. The following lemmas are necessary for the complete proof of

(A.8).

Lemma A.1. Assume that the conditions of Theorem 2.1 hold. Then for suffi-

ciently large T

σ2
1T = Var

[
T∑

t=2

ηtut

]
=

4
∫

K2(y)dy

3
√

2π
T 3/2h(1 + o(1)). (A.17)

Proof: It follows from the definition that

σ2
1T = E

[
T∑

t=1

ηtut

]2

= 2
T∑

t=1

T∑
s=1

E
[
a2

stu
2
su

2
t

]
+ 4

T∑
t=2

t−1∑
s1 6=s2=1

E
[
as1tas2tus1us2u

2
t

]

= 2σ2
u

T∑
t=1

T∑
s=1

E
[
a2

stu
2
s

]
+ R1T , (A.18)

where R1T = 4σ2
u

∑T
t=2

∑t−1
s1 6=s2=1 E [as1tas2tus1us2 ].

Let ust =
∑t−1

i=s+1 ui. Throughout this proof, we assume that {ui} is a sequence of

independent and normally distributed random variables. Without loss of generality,

we also let σ2
u = E[u2

i ] ≡ 1. Let gst(x) = 1√
2π(t−s−1)

e−
x2

2(t−s−1) and f(u) = 1√
2π

e−
u2

2 be

the density functions of N(0, t− s− 1) and N(0, 1), respectively. A simple calculation

implies

E[a2
stu

2
s] =

∫ ∫
K2

h(ust + us)u
2
sf(us)gst(ust)dusdust

= h
∫ ∫

K2(y)x2f(x)gst(hy − x)dxdy

= h(1 + o(1))
∫ ∫

K2(y)x2f(x)gst(x)dxdy

=
h(1 + o(1))√

2π

∫
K2(y)dy√
t− s− 1

t− s− 1

t− s
(A.19)

using the fact that both f(·) and gst(·) are normal density functions.
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It can then easily be shown that for sufficiently large T

T∑
t=2

t−1∑
s=1

E[a2
stu

2
s] =

4
∫

K2(y)dy

3
√

2π
T 3/2h(1 + o(1)). (A.20)

To deal with R1T , we need to introduce the following notation: for 1 ≤ i ≤ 2,

Zi = usi
, Z11 =

t−1∑
i=s1+1

ui, Z22 =
s1−1∑

j=s2+1

uj, (A.21)

ignoring the notational involvement of s, t and others.

Let fii(xii) be the probability density function of Zii having Zii ∼ N(0, σ2
ii) with

σ2
11 = t − s1 − 1 and σ2

22 = s1 − s2 − 1. Similarly to (A.19), we can show that for

sufficiently large T

E [as1tas2tus1us2 ] = E

Kh

 t−1∑
i=s1

ui

Kh

 t−1∑
j=s2

uj

us1us2


= E [Z1Z2Kh (Z2 + Z22) Kh (Z1 + Z2 + Z11 + Z22)]

= E

 2∏
i=1

ZiKh

 i∑
j=1

(Zj + Zjj)


=

∫
· · ·
∫

x1x2Kh(x1 + x2 + x11 + x22)Kh(x2 + x22)

× f(x1)f(x2)f11(x11)f22(x22)dx1dx2dx11dx22

using yii =
xi + xii

h

= h2
2∏

j=1

∫ K

 j∑
i=1

yii

xjf(xj)fjj(xj − hyjj)dxjdyjj


using Taylor expansions and

∫
xjf(xj)fjj(xj)dxj = 0

= h4(1 + o(1))
2∏

j=1

∫ ∫ yjjK

 j∑
i=1

yii

xjf(xj)f ′jj(xj)dxjdyjj


= h4(1 + o(1))

2∏
j=1

∫ yjjK

 j∑
i=1

yii

 dyjj

 · 2∏
j=1

[∫
xjf(xj)f ′jj(xj)dxj

]

=
C11(K)h4(1 + o(1))∏2

j=1 σ2
jj

2∏
j=1

[∫
x2

jf(xj)fjj(xj)dxj

]
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=
C11(K)h4(1 + o(1))

2π

2∏
j=1

1(√
1 + σ2

jj

)3

=
C11(K)h4(1 + o(1))

2π

1(√
t− s1

)3 1

(
√

s1 − s2)
3 , (A.22)

using f ′jj(xj) = − xj

σ2
jj

fjj(xj), where C11(K) =
∏2

j=1

∫
yjjK

(∑j
i=1 yii

)
dyjj < ∞ involved

in (A.22).

Thus, as for (A.20),

T∑
t=2

t−1∑
s1 6=s2=1

E [as1tas2tus1us2 ] = 2
T∑

t=3

t−1∑
s1=2

s1−1∑
s2=1

E [as1tas2tus1us2 ] = o
(
T 3/2h

)
(A.23)

using Assumption 2.1.

Both (A.20) and (A.23) show that as T →∞

σ2
1T =

4
∫

K2(y)dy

3
√

2π
T 3/2h(1 + o(1)). (A.24)

The proof of Lemma A.1 is therefore finished.

Lemma A.2. Under the conditions of Theorem 2.1, we have

lim
T→∞

1

σ4
1T

T∑
t=2

E
[
η4

t

]
= 0. (A.25)

Proof. Observe that

E
[
η4

t

]
= 16

t−1∑
s1=1

t−1∑
s2=1

t−1∑
s3=1

t−1∑
s4=1

E [as1tas2tas3tas4tus1us2us3us4 ] . (A.26)

We mainly consider the cases of si 6= sj for all i 6= j in the following proof. Since the

other terms involve at most triple summations, we may deal with such terms similarly.

Without loss of generality, we only look at the case of 1 ≤ s4 < s3 < s2 < s1 ≤ t − 1

in the following evaluation. Let

us1t = us1 +
t−1∑

i=s1+1

ui, us2t = us1 + us2 +
s1−1∑

i=s2+1

ui +
t−1∑

j=s1+1

uj,

us3t = us1 + us2 + us3 +
s2−1∑

k=s3+1

uk +
s1−1∑

i=s2+1

ui +
t−1∑

j=s1+1

uj,

us4t = us1 + us2 + us3 + us4 +
s3−1∑

l=s4+1

ul +
s2−1∑

k=s3+1

uk +
s1−1∑

i=s2+1

ui +
t−1∑

j=s1+1

uj.
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Similarly to (A.21), let again Zi = usi
for 1 ≤ i ≤ 4,

Z11 =
t−1∑

i=s1+1

ui, Z22 =
s1−1∑

j=s2+1

uj, Z33 =
s2−1∑

k=s3+1

uk, Z44 =
s3−1∑

l=s4+1

ul. (A.27)

Analogously to (A.22), we may have

E

[
4∏

i=1

asitusi

]
= E

 4∏
j=1

ZjKh

 j∑
i=1

[Zi + Zii]


=

∫ 4∏
j=1

Kh

 j∑
i=1

[xi + xii]

xjf(xj)fjj(xjj)dxjdxjj


using yii =

xi + xii

h

= h4
∫ 4∏

j=1

K

 j∑
i=1

yii

xjf(xj)fjj(xj − hyjj)dxjdyjj


using Taylor expansions and

∫
xjf(xj)fjj(xj)dxj = 0

= h8(1 + o(1))
∫ 4∏

j=1

yjjK

 j∑
i=1

yii

xjf(xj)f ′jj(xj)dxjdyjj


= h8(1 + o(1))

4∏
j=1

∫ yjjK

 j∑
i=1

yii

 dyjj

 · 4∏
j=1

[∫
xjf(xj)f ′jj(xj)dxj

]
using f ′jj(xj) = − xj

σ2
jj

fjj(xj)

=
C22(K)h8(1 + o(1))∏4

j=1 σ2
jj

4∏
j=1

[∫
x2

jf(xj)fjj(xj)dxj

]

=
C22(K)h8(1 + o(1))

4π2

4∏
j=1

1(√
1 + σ2

jj

)3 , (A.28)

where C22(K) =
∏4

j=1

∫
yjjK

(∑j
i=1 yii

)
dyjj < ∞ involved in (A.28), σ2

11 = t − s1 − 1,

σ2
22 = s1 − s2 − 1, σ2

33 = s2 − s3 − 1 and σ2
44 = s3 − s4 − 1.

Hence, similarly to (A.20) we have

T∑
t=2

∑
1≤s4<s3<s2<s1≤t−1

E [as1tas2tas3tas4tus1us2us3us4 ] = o
(
T 3h2

)
(A.29)
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using Assumption 2.1.

Analogously, we can deal with the other terms of (A.26) as follows:

T∑
t=2

∑
1≤s2 6=s1≤t−1

E
[
a2

s1ta
2
s2tu

2
s1

u2
s2

]
= o

(
T 3h2

)
, (A.30)

T∑
t=2

∑
1≤s3 6=s2 6=s1≤t−1

E
[
a2

s1tas2tas3tu
2
s1

us2us3

]
= o

(
T 3h2

)
, (A.31)

T∑
t=2

∑
1≤s2 6=s1≤t−1

E
[
a3

s1tas2tu
3
s1

us2

]
= o

(
T 3h2

)
, (A.32)

using Assumption 2.1.

Thus, we can finish the proof of (A.25) using (A.26)–(A.32).

As in the proof of Lemma A.1, we assume without loss of generality that σ2
u = 1.

To prove (A.9), we thus need only to show that as T →∞

1

σ2
1T

T∑
t=2

η2
t →D ξ2. (A.33)

Lemma A.3. Let the conditions of Theorem 2.1 hold. Then as T →∞

1

σ2
1T

T∑
t=2

η2
t →D ξ2 (A.34)

with ξ2 = 3
√

2π
2

M 1
2
(1), where M 1

2
(·) is a special case of the Mittag–Leffer process Mβ(·)

with β = 1
2

as described by Karlsen and Tjøstheim (2001, p.388).

Proof. To simplify the following proof, ignoring the higher–order term we rewrite

σ2
1T =

4σ3
0J02

3
√

2π
T 3/2h ≡ C10 T 3/2h. (A.35)

Observe that

T∑
t=2

η2
t =

T∑
t=2

(
2

t−1∑
s=1

astus

)2

= 4
T∑

t=1

T∑
s=t+1

a2
stu

2
t + 4

T∑
t=2

t−1∑
s1=1

t−1∑
s2=1, 6=s1

us1 as1tas2t us2 . (A.36)

To continue the following proof, we need to strengthen Theorem 5.1 of Karlsen

and Tjøstheim (2001, p.404) in which under Assumption 2.1, the conclusion of their
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Theorem 5.1 holds uniformly in x. The detailed proof is quite tedious and therefore

relegated to Appendix D below.

Let Q(u) = K2(u)
J02

. Then Q(·) is a probability kernel. According to the strengthened

version of Theorem 5.1 of Karlsen and Tjøstheim (2001, p.404), we have for a small

set C and as T →∞
1

J02NC(T )h

T∑
s=2

K2
(

Xs−1 − x

h

)
=

1
NC(T )h

T∑
s=2

Q

(
Xs−1 − x

h

)

→ pC(x) =
πs(x)
πs(C)

almost surely (a.s.) (A.37)

uniformly in x, where NC(T ) =
∑T

t=0 IC(Xt) is as defined as in TC(n) in Remark 3.5 of

Karlsen and Tjøstheim (2001, p.384), and πs(·) is as defined in (3.7) of Karlsen and

Tjøstheim (2001, p.379).

Since the distribution of {Xt} is assumed to be Gaussian, Corollary 4.1 of Karlsen

and Tjøstheim (2001, p.395) implies that πs can be chosen to be πs(x) ≡ 1 uniformly

in x and that as T →∞
NC(T )

πs(C)

1

N(T )
→a.s. 1, (A.38)

where N(T ) is defined as T (n) by Karlsen and Tjøstheim (2001, p.383). This, together

with (A.37), implies

1

N(T )h

T∑
s=2

Q
(

Xs−1 − x

h

)
→a.s. 1 (A.39)

uniformly in x.

In addition, Theorem 3.2 of Karlsen and Tjøstheim (2001, p.389) can be applied to

the current case of Xt = Xt−1 + ut to show that as T →∞
N(T )√

T
→D M 1

2
(1). (A.40)

Therefore, equations (A.37)–(A.40) implies as T →∞

4

σ2
1T

T∑
t=1

 T∑
s=t+1

a2
st

u2
t =

2

TC10

T∑
t=1

u2
t

(
1√
Th

T∑
s=1

a2
st

)

→D
2 J02

C10

M 1
2
(1) =

3
√

2π

2
M 1

2
(1). (A.41)
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Moreover, we may show that as T →∞

4

σ2
1T

T∑
t=2

t−1∑
s1=1

t−1∑
s2=1, 6=s1

us1 as1tas2t us2 =
4

σ2
1T

T∑
s1=1

T∑
s2=1

 T∑
t=min s1,s2+1

as1tas2t

us1us2

→P 0. (A.42)

Finally, equations (A.41) and (A.42) complete the proof of Lemma A.3.

We now introduce the following notation:

Û2
M(T ) =

σ̂2
1,M(T )

σ2
1,M(T )

with σ2
1,M(T ) = Var

M(T )∑
t=2

ηtut

 ,

σ̂2
1,M(T ) = 2

M(T )∑
t=1

M(T )∑
s=1

û2
s a2

st û2
t with ût = Xt − ĝ(Xt−1). (A.43)

Lemma A.4. Let the conditions of Theorem 2.1 hold. Then as T →∞

σ̂2
1T

σ2
1T

− Û2
M(T ) →P 0. (A.44)

Proof. For 1 ≤ S ≤ T , recall Ũ2
S =

σ̃2
1S

σ2
1S

, where σ̃2
1S = 2

∑S
t=1

∑S
s=1 u2

s a2
st u2

t . In

view of the proof of Theorem 2.1 below, in order to prove (A.44), it suffices to show

that as T →∞
σ̃2

1T

σ2
1T

− Ũ2
M(T ) →P 0. (A.45)

To simplify our proofs, we introduce the following lower case notation: m = T ,

n = M(T ), σ2
m = σ2

1T , σ2
n = σ2

1,M(T ), and for 1 ≤ i ≤ n, 1 ≤ j ≤ i− 1,

eij =
(
u2

i − E[u2
i ]
)

K2
h

i−1∑
l=j

ul

u2
j and Xmi =

1

σ2
m

i−1∑
j=1

eij. (A.46)

v2
i =

i−1∑
j=1

K2
h

i−1∑
l=j

ul

u2
j =

i−1∑
j=1

K2
h

 i−1∑
l=j+1

ul + uj

u2
j . (A.47)

Observe that

σ̃2
1T

σ2
1T

− Ũ2
M(T ) =

m∑
i=1

Xmi −
n∑

j=1

Xnj + E[u2
i ]

 1

σ2
m

m∑
i=1

v2
i −

1

σ2
n

n∑
j=1

v2
j


≡ Imn + E[u2

1] Jmn. (A.48)
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In view of (A.47), in order to prove (A.45), it suffices to show that as m, n →∞

Imn →P 0 and Jmn →P 0. (A.49)

We now prove the first part of (A.49). In view of the fact that the independence of

{ui} implies for n + 1 ≤ i ≤ m and 1 ≤ j ≤ n,

E [Xmi (Xmj −Xnj)] =
σ2

n − σ2
m

σ4
mσ2

n

i−1∑
k=1

j−1∑
l=1

E
[(

u2
i − E[u2

i ]
)]

× E

(u2
j − E[u2

j ]
)

K2
h

 i−1∑
p=k

up

u2
k K2

h

j−1∑
q=l

uq

u2
l

 = 0,

we have

E[I2
mn] = E

 m∑
i=1

Xmi −
n∑

j=1

Xnj

2

= E

 m∑
i=n+1

Xmi +
n∑

j=1

(Xmj −Xnj)

2

= E

 m∑
i=n+1

Xmi

2

+ E

 n∑
j=1

(Xmj −Xnj)

2

=
1

σ4
m

m∑
i=n+1

E
(
u2

i − E
[
u2

i

])2
E
[
v4

i

]
+

(σ2
m − σ2

n)
2

σ4
m σ4

n

×
n∑

j=1

E
(
u2

j − E
[
u2

j

])2
E
[
v4

j

]
. (A.50)

We start by looking at
∑m

i=n+1 E [v4
i ] and

∑n
j=1 E

[
v4

j

]
in order to complete the proof

of the first part of (A.49). Before we compute the two terms, we have a look at how

to prove the second part of (A.49).

Note that

E
[
J2

mn

]
= E

 1

σ2
m

m∑
i=1

v2
i −

1

σ2
n

n∑
j=1

v2
j

2

= E

 1

σ2
m

m∑
i=n+1

v2
i +

σ2
n − σ2

m

σ2
m σ2

n

n∑
j=1

v2
j

2

=
1

σ4
m

E

 m∑
i=n+1

v2
i

2

+
(σ2

n − σ2
m)

2

σ4
m σ4

n

E

 n∑
j=1

v2
j

2

− 2
σ2

m − σ2
n

σ4
m σ2

n

m∑
i=n+1

n∑
j=1

E
[
v2

i v
2
j

]
≡ I1 + I2 − 2I12. (A.51)
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We first deal with I1. Recalling aji = Kh

(∑i−1
l=j ul

)
, we have

E

 m∑
i=n+1

v2
i

2

= E

 m∑
i=n+1

m∑
j=n+1

v2
i v2

j

 =
m∑

i=n+1

E[v4
i ]

+
m∑

i=n+1

m∑
j=n+1, 6=i

E[v2
i v2

j ] ≡ J1 + J2. (A.52)

We now evaluate the orders of
∑m

i=n+1 E[v4
i ] and

∑m
i=n+1

∑m
j=n+1, 6=i E[v2

i v2
j ] respec-

tively. To do so, we now consider one of the cases: 1 ≤ t ≤ s−1; 2 ≤ s ≤ j−1; n+1 ≤
j ≤ i− 1; n + 2 ≤ i ≤ m for the following term

E

 m∑
i=n+2

i−1∑
j=n+1

j−1∑
s=2

s−1∑
t=1

a2
siu

2
sa

2
tju

2
t

 =
m∑

i=n+2

i−1∑
j=n+1

j−1∑
s=2

s−1∑
t=1

E
[
a2

siu
2
sa

2
tju

2
t

]
(A.53)

=
m∑

i=n+2

i−1∑
j=n+1

j−1∑
s=2

s−1∑
t=1

×E

K2
h

 j−1∑
c=s+1

uc +
i−1∑
c=j

uc + us

u2
s K2

h

 s−1∑
d=t+1

ud +
j−1∑

d=s+1

ud + us + ut

u2
t

 .

Other terms may be dealt with similarly. To simplify our calculation, we now

introduce the following simplistic symbols: Z11 =
∑s−1

d=t+1 ud, Z22 =
∑j−1

c=s+1 uc, Z33 =∑i−1
c=j uc, Z1 = ut and Z2 = us.

As for the proofs of Lemmas A.1 and A.2, we have

E

[
K2

h

(
2∑

i=1

(Zi + Zii)

)
K2

h (Z2 + Z22 + Z33) Z2
1Z

2
2

]
(A.54)

=
∫
· · ·
∫

K2
h

(
2∑

i=1

(xi + xii)

)
K2

h (x2 + x22 + x33)

(
2∏

i=1

x2
i f(xi)fii(xii)dxi dxii

)
× f33(x33)dx33

using yi = xi and yii =
xi + xii

h

= h2
∫
· · ·
∫

K2(y11 + y22)K2(y22 + y33)y2
1y

2
2f(y1)f(y2)f11(y1 − y11h)f22(y2 − y22h)f33(y33)

×dy1dy2dy11dy22dy33
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= h2(1 + o(1))
(∫

K2(u)du

)2 (∫
x2

1f(x1)f11(x1)dx1

) (∫
x2

2f(x2)f22(x2)dx2

)
,

which is exactly identical to the squared value of E[a2
jiu

2
j ] involved in (A.19), where

fii(·) denotes the marginal density of Zii and f(·) denotes the density of Zi.

In view of (A.53) and (A.54), similarly to the calculations of (A.19), (A.20) and

(A.24), it can be shown that for sufficiently large m and n,

E

 m∑
i=n+1

m∑
j=n+1, 6=i

v2
i v2

j

 =
m∑

i=n+1

m∑
j=n+1, 6=i

E
[
v2

i v2
j

]

=

(
4
∫

K2(y)dy

3
√

2π
(m− n)3/2h

)2

(1 + o(1))

= σ4
m−n(1 + o(1)), (A.55)

where σ2
m is as defined above (A.46).

Analogously, we may show that for sufficiently large m and n,

m∑
i=n+1

E[v4
i ] =

m∑
i=n+1

i−1∑
s=1

i−1∑
t=1

E
[
a2

sia
2
tiu

2
su

2
t

]
= o

(
σ4

m−n

)
(A.56)

due to the fact that there is only a triple summation involved in (A.56) while equation

(A.55) involves a quadruple summation.

In view of the definition of {vi : i ≥ 1}, we have the following decompositions:

E
[
v2

i v
2
j

]
=

i−1∑
`=1

j−1∑
k=1

Ea2
`ia

2
kju

2
`u

2
k =

j−1∑
`=1

+
i−1∑
`=j

 j−1∑
k=1

E
[
a2

`ia
2
kju

2
`u

2
k

]

=
j−1∑
`=1

j−1∑
k=1

E
[
a2

`ia
2
kju

2
`u

2
k

]
+

i−1∑
`=j

j−1∑
k=1

E
[
a2

`iu
2
`

]
E
[
a2

kju
2
k

]
≡ C1(i, j) + C2(i, j), (A.57)

where the mutual independence of {ul : j ≤ l ≤ i − 1} and {uk : 1 ≤ k ≤ j − 1} has

been used in C2(i, j).

Similarly to (A.55), we also have for sufficiently large m and n,

m∑
i=n+1

n∑
j=1

E
[
v2

i v
2
j

]
=

m∑
i=n+1

n∑
j=1

[C1(i, j) + C2(i, j)] = σ2
m−n σ2

n (1 + o(1)). (A.58)
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Therefore, equations (A.51)–(A.58) imply that as m, n →∞

E
[
J2

mn

]
= E

 1

σ2
m

m∑
i=1

v2
i −

1

σ2
n

n∑
j=1

v2
j

2

= E

 1

σ2
m

m∑
i=n+1

v2
i +

σ2
n − σ2

m

σ2
m σ2

n

n∑
j=1

v2
j

2

=
1

σ4
m

E

 m∑
i=n+1

v2
i

2

+
(σ2

n − σ2
m)

2

σ4
m σ4

n

E

 n∑
j=1

v2
j

2

− 2
σ2

m − σ2
n

σ4
m σ2

n

m∑
i=n+1

n∑
j=1

E
[
v2

i v
2
j

]

=

(m− n)3

m3
+

(
m3/2 − n3/2

)2

m3
− 2

(m3/2 − n3/2) (m− n)3/2

m3

 (1 + o(1))

→ (1− r)3 + (1− r3/2)2 − 2 (1− r3/2)(1− r)3/2

=
(
(1− r)3/2 −

(
(1− r3/2

))2
≥ 0 (A.59)

using σ2
m =

4σ3
0J02

3
√

2π
m3/2h, σ2

n =
4σ3

0J02

3
√

2π
n3/2h and r = limm,n→∞

n
m

. Since r = 0 from our

assumption, we have therefore shown the second part of (A.49). We now complete the

first part of (A.49).

Using the results that
∑m

i=n+1 E[v4
i ] = o

(
σ4

m−n

)
and

∑n
j=1 E[v4

j ] = o (σ4
n), the proof

of the first part of (A.49) follows from (A.50). We therefore have completed the proof

of Lemma A.4.

Lemma A.5. Let the conditions of Theorem 2.1 hold. Then as T →∞

σ̃2
1T

σ2
1T

→D ξ2 > 0. (A.60)

Proof: In view of the fact that {us} and {ut} are independent for s 6= t and the

definition of σ̃2
1T = 2

∑T
t=1

∑T
s=1 u2

s a2
st u2

t = 4
∑T

t=2

(∑t−1
s=1 a2

stu
2
s

)
u2

t , in order to show

(A.60), it suffices to show that

4

σ2
1T

T∑
t=2

(
t−1∑
s=1

a2
stu

2
s

)
→D ξ2, (A.61)

which follows exactly from the proof of Lemma A.3 by noting the fact that σ̃2
1T is the

leading term involved in (A.36).
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A.2. Proof of Theorem 2.1. In view of (A.3), to complete the proof of Theorem

2.1, it suffices to prove (A.5) and (A.4). We only give the proof of (A.4), since the

same technique can be used to prove (A.5).

Before we are able to prove (A.5), we need to strengthen Theorem 5.2 of Karlsen and

Tjøstheim (2001, p.406) in which under Assumption 2.1, the conclusion of their Theo-

rem 5.2 holds uniformly in x. The detailed proof is similar to that of the strengthened

version of their Theorem 5.1, and omitted here but available in Appendix D below.

To prove (A.4) for i = 3, in view of the fact that

L2T3

T
√

Th
=

1

T

T∑
t=1

 1√
Th

T∑
s=t+1

K
(

Xs−1 −Xt−1

h

)
us

 g̃t, (A.62)

by Lemma A.1 and using the uniform convergence of g̃t, it suffices to show that

1√
Th

T∑
s=t+1

K
(

Xs−1 −Xt−1

h

)
us = OP (1) (A.63)

uniformly in all t ≥ 1. The proof of (A.63) is very similar to (A.42), and therefore

omitted.

Similarly, using the strengthened version of Theorem 5.2 of Karlsen and Tjøstheim

(2001, p.406) about uniform convergence, in order to prove (A.4) for i = 2, it suffices

to show that
1

T

T∑
t=1

 1√
Th

T∑
s=t+1

K
(

Xs−1 −Xt−1

h

) = OP (1). (A.64)

But this follows from the strengthened version of Theorem 5.1 of Karlsen and Tjøstheim

(2001), which implies that

1√
Th

T∑
s=t+1

K
(

Xs−1 −Xt−1

h

)
= OP (1) (A.65)

uniformly in all t ≥ 1. This finally completes the proof of Theorem 2.1(i).

The proof of 2.1(ii) follows similarly, and the detail is available from Appendix B

of Gao et al (2007).
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